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Formalising Huffman’s algorithm

Laurent Théry
Dipartimento di Informatica
Università di L’Aquila, Italy

Abstract

This paper presents a formalisation of Huffman’s algorithm that

has been done in the Coq proof assistant. The result of the formalisa-

tion is a certified version of Huffman’s algorithm written in the Ocaml

functional programming language.

1 The algorithm

The algorithm is described in [2]. It generates an optimal code for encod-
ing/decoding a text file. The premises are the following. The text file is
composed of a sequence of characters. A code associates a sequence of bits
to each character. Encoding consists in applying the association list to every
character of the text to get the sequence of bits. Decoding is the opposite
operation. Decoding only makes sense when the code is prefix free, i.e no
sequence of bits in the association list is a prefix of any other sequence in the
list. The code obtained using Huffman’s algorithm is optimal in the sense
that the size of the encoded file is as small as possible.

To explain the algorithm, we present its concise implementation in the
functional language Ocaml [3]. As a text file is a sequence of characters, it
can be represented by an object of type char list. The encoded file is a
sequence of bits, so it can be represented by an object of type bool list. A
code is an association list:

type code = (char * bool list) list

For example, the code that associates the sequence 101 to the character a

and the sequence 0 to the character b is represented as:
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[(’a’, [true; false; true]); (’b’, [false])] : code

The coding function has the type:

encode: code -> (char list) -> (bool list)

Encoding the text bab with the previous code returns the boolean list 01010.
The decoding function has the following type:

decode: code -> (bool list) -> (char list)

Using the previous code, decoding the list 00101 gives the text bba.
Huffman’s algorithm uses the frequency of the different characters in the

text to encode. The idea is simple: the more frequent a character is, the
smaller its associated list of bits should be. In fact, to be closer to what the
algorithm actually does we should say: the less frequent a character is, the
longer its associated list of bits should be. The two sentences are of course
equivalent.

To implement the algorithm we need two auxiliary functions. The first
one computes the frequency of the different characters in the text:

frequency_list: (char list) -> ((char * int) list)

For example, given the text aba it returns the list

[(’a’, 2); (’b’, 1)]

The second function inserts a pair, whose first element is an integer, into an
ordered list by keeping the list ordered. Its type is

insert: (int * a) -> ((int * ’a) list) -> ((int * ’a) list)

A list is ordered if given any two consecutive pairs in the list, the first element
of the first pair is smaller or equal to the first element of the second pair. For
example, inserting (3, "d") in [(0, "a"); (2, "b"); (4, "c")] returns
[(0, "a"); (2, "b"); (3, "d"); (4, "c")],

Given these two functions, Huffman’s algorithm can be implemented in
Ocaml in the following way:
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let huffman m =

let addl b l = map (fun (x, y) -> x, b :: y) l in

let rec iter l = match l with

| [] -> ([]: code)

| [n, l] -> l

| (n1, l1) :: (n2, l2) :: l ->

iter

(insert

(n1 + n2, append (addl false l1) (addl true l2))

l)

in

iter (fold_right (fun (a, n) l -> insert (n, [a, []]) l)

(frequency_list m)

[])

The self-contained implementation is given in Appendix A. To explain how
the algorithm works, let us take the text abbcccddddeeeee as an example.
Its frequency list is

[(a, 1); (b, 2); (c, 3); (d, 4); (e, 5)]

The algorithm recursively manipulates a list of type (int * code) list.
Elements of this list are pairs that contain a code and its “frequency”. During
all the manipulations, the list is kept ordered from least “frequent” to most
“frequent”.

Initially the list is composed of singleton codes. For each character in the
text, the singleton code associates an empty list of booleans to the charac-
ter. The frequency of such singleton codes is equal to the frequency of the
corresponding character in the text. In our example, we get the initial list:

[(1, [(a, [])]); (2, [(b, [])]); (3, [(c, [])]);

(4, [(d, [])]); (5, [(e, [])])]

Now the algorithm iteratively takes the two least frequent codes and merges
them together. This is done by appending the two lists, prefixing the lists of
booleans of the first code by false and the lists of booleans of the second
code by true. In our case, merging [(a, [])] and [(b, []) gives the new
code

[(a, [false]); (b, [true])]
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The frequency of the new code is the sum of the frequency of the two previous
codes, so here 3. The new code and its frequency are then inserted so to keep
the list ordered.

[(3, [(a, [false]); (b, [true])]); (3, [(c, [])]);

(4, [(d, [])]); (5, [(e, [])])]

The process is iterated. At each step the length of the list is reduced by one.
We first get a list with three elements by merging the code with a, b and the
code with c:

[(4, [(d, [])]); (5, [(e, [])]);

(6, [(a, [false; false]); (b, [false; true]); (c, [true])])]

Then we merge the code with d and the code with e:

[(6, [(a, [false; false]); (b, [false; true]); (c, [true])]);

(9, [(d, [false]); (e, [true])])]

Finally merging the code with a, b, c and the code with d, e leaves us with
one single code and its frequency:

[(15, [(a, [false; false; false]);

(b, [false; false; true]);

(c, [false; true]);

(d, [true; false]);

(e, [true; true])])]

The resulting code is an optimal code.

2 The formalisation

In this section we present some aspects of the formalisation that has been
done inside the Coq prover [1].

2.1 Codes

Codes are defined over an arbitrary alphabet A. A code is represented as an
association list between elements of A and lists of booleans. A text is defined
as a list of elements of A. In the following, we use the standard notations for
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lists: [] represents the empty list, [a; b] represents the list with two elements
a and b. On lists we use the concatenation function l1 + l2, the function
length(l) that indicates the number of elements of a list, the predicate a ∈ l
that means that a belongs to l and the predicate l1 ≈ l2 that means that l1
is a permutation of l2.

Two functions encode and decode are defined using association lists. These
functions are total:

- when encoding, if a character of the text is not found in the code an
empty list of booleans is generated;

- when decoding, if no prefix sequence of the encoded text corresponds
to a sequence of booleans in the code the empty list of characters is
generated.

Some predicates are defined on codes:

- A code c is prefix free iff

∀(a1, l1) ∈ c,∀(a2, l2) ∈ c, (l1 prefix l2) ⇒ (a1 = a2 ∧ l1 = l2)

where (l1 prefix l2) means that ∃l3, l2 = l1 + l3.

- A code c is not null iff

∀(a, l) ∈ c, l 6= [].

- A code c is in the alphabet of a text m iff

∀a ∈ m, ∃l, (a, l) ∈ c.

Some properties of the encoding and decoding operations are then derived.
The main theorem proves that under some conditions the decoding operation
is the reverse of the encoding one.

Theorem 2.1.1 (correct Encoding) If c is not null, prefix free and in the
alphabet of a text m, then decode(c, encode(c,m)) = m.

Another theorem ensures that encoding does not depend on the order of the
characters in the text.
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Theorem 2.1.2 (Encode Permutation) If m1 ≈ m2, then encode(c,m1)
≈ encode(c,m2).

The weight of a code c with respect to a text m is then defined as:

weight(m, c) ≡ length(encode(c,m)).

A code c is optimal for a text m iff c is not null, prefix free and in the
alphabet of m and for all c1 that is not null, prefix free and in the alphabet
of m, weight(c,m) ≤ weight(c1 ,m). What has been proved formally is that
Huffman’s algorithm always returns an optimal code.

2.2 Partial binary trees

In order to prove the algorithm correct we follow the usual proof on paper.
It amounts to dealing with the so-called Huffman’s trees. The first step is to
consider partial binary trees. A partial binary tree is either a leaf , a left
node /, a right node \ or a binary node /\. It is relatively easy to show that
there is an isomorphism between prefix free codes and partial binary trees
with distinct leaves. For example, the code

[(’a’, [true; false; false]); (’b’, [true; false; true])]

corresponds to the tree

.
.

.

a b

To do the correspondence, we just need to interpret the list of booleans as
a path in the tree structure: true as going down to the right and false as
going down to the left.

Trees are a natural representation for codes. For example, the decoding
operation can be easily explained using the tree structure. We start from the
root of the tree. Reading one boolean tells us on which subtree to move down
to. Once a leaf is reached, the character (the value of the leaf) is output and
we start again from the root of the tree.

The isomorphism is formally proved. For this, we use two functions
buildTree and computeCode. The former one takes a code and builds a tree.
The latter one takes a tree and computes a code. We have the following two
theorems that establish the isomorphism.
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Theorem 2.2.1 (Compute Build) If c 6= [] and is prefix free, then
computeCode(buildTree(c)) ≈ c.

Theorem 2.2.2 (Build Compute) If t is a partial binary tree with distinct
leaves, then buildTree(computeCode(t)) = t.

2.3 Binary trees

Binary trees are composed only of leaves and binary nodes /\. A recursive
function toTree transforms partial binary trees into binary trees by canceling
left and right nodes:

toTree( x ) = x

toTree( /
t

) = toTree(t)

toTree( \
t
) = toTree(t)

toTree( /\
t1 t2

) = /\
toTree(t1) toTree(t2)

.

When applied to the example of the previous section, it gives

.

a b

As for partial binary trees, we can define a function computeCode that com-
putes the corresponding code. With respect to the function toTree we have
the following relation:

Theorem 2.3.1 (toTree smaller) If t is a partial binary tree and m is a text,
then weight(m, computeCode(toTree(t))) ≤ weight(m, computeCode(t)).

It follows that an optimal code can always be computed from a binary tree.
So the initial problem of finding an optimal code can be expressed only using
binary trees. For this, the notion of weight is also defined on binary trees.
The definition takes as parameter a function f that gives the frequency of
each character in the text m to encode. An auxiliary function sum that sums
the frequencies of all the leaves of a tree is first defined:

sum(f, x ) = f(x)

sum(f, /\
t1 t2

) = sum(f, t1) + sum(f, t2).
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The weight function is then defined as:

weight(f, x ) = 0

weight(f, /\
t1 t2

) = (sum(f, t1) + sum(f, t2)) +

(weight(f, t1) + weight(f, t2)).

Intuitively sum(f, t1) and sum(f, t2) compute the “cost” of adding the left
edge and the right edge respectively. The fact that the notion of weight on
binary trees corresponds to the notion of weight on codes is proved by the
following theorem:

Theorem 2.3.2 (weight Compute) If t is a binary tree with distinct leaves
and forall a, f(a) gives the frequency of the character a in the message m,
then weight(m, computeCode(t)) = weight(f, t).

It proves that a binary tree of minimal weight whose leaves are the different
characters of the text leads to an optimal code.

Before explaining how the formal proof proceeds, it is interesting to
present the informal proof. The informal proof uses a more direct notion
of weight that is:

weight(f, t) =
∑

x ∈t

f(x) × height( x )

where the function height returns the height of a subtree in a tree, i.e. the
distance of the subtree from the root of the tree. To compute the weight of the
tree one simply adds, for all leaves of the tree, the product of the frequency
of the leave by its height. To give an example, consider the following tree:

.
.

d e

.

c.

a b

with f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4, f(e) = 5. We can either
compute the weight recursively:

33.
9.

d e

9 .

c
3 .

a b
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or use the summation formula with height(a) = 3, height(b) = 3, height(c) =
2, height(d) = 2, height(e) = 2 thus yielding:

weight(f, t) = (1 × 3) + (2 × 3) + (3 × 2) + (4 × 2) + (5 × 2) = 33.

The informal proof works as follows. It considers a binary tree of minimal
weight and looks at a node of maximum height. As this node has maximum
height, it is composed of two leaves. The frequencies of these two leaves
should be minimal, otherwise given the summation formula exchanging these
leaves with the two less frequent leaves would lead to a tree of smaller weight.
Now, if we replace this node of maximum height by a new leaf whose fre-
quency is the sum of the frequencies of the two previous leaves, the resulting
tree should also be of minimal weight for the new alphabet. This is again
proved by contradiction. If it were not the case, a tree of minimal weight for
the new alphabet could be transformed into a tree of smaller weight for the
original alphabet. Iterating the process gives us a way to check optimality.

To give a concrete example, let us consider our previous example and
annotate the leaves with their frequencies:

.
.

d4
e5

.

c3
.

a1 b2

The tree has a node of maximum height whose leaves have minimal frequen-
cies:

.
.

d4
e5

.

c3
.

a1 b2

Replacing this node by a leaf f of frequency 1 + 2 (f(f) = 3) yields:

.
.

d4
e5

.

c3f3

This tree has a node of maximum height whose leaves have minimal frequen-
cies:
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.
.

d4
e5

.

c3f3

By creating a new leaf g with f(g) = 3 + 3, we get:

.
.

d4
e5

g6

Again this tree has a node of maximum height whose leaves have minimal
frequencies:

.
.

d4
e5

g6

By creating a new leaf h with f(h) = 4 + 5, we get:

.

h9
g6

This tree has only one node, thus it is of minimal height. From this deriva-
tion, we can conclude that our initial tree was of minimal height. Note that
the derivation follows exactly the same steps as in the execution of the ex-
ample given in Section 1.

This informal proof has revealed to be difficult to formalise in a prover.
There are several reasons:

- As described, the process does not work for all trees of minimal weight.
For example, it does not work for the following tree that is of minimal
weight:
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.
.

. e5

.

c3d4

a1 b2

After merging a and b, we get

.
.

f3
e5

.

c3d4

where the two nodes of maximum height do not have leaves of minimal
frequencies. In fact, such a node only exists up to exchanging subtrees
of same height (such exchanges do not modify the weight of the tree).
Dealing formally with this kind of equivalence is always tedious.

- During the checking process new names are introduced. It is not clear
how this mechanism could be formalised in a simple way.

- The process works in a bottom-up fashion. For top-down procedures,
structural induction usually provides elegant proofs. For bottom-up
ones, more sophisticated induction principles and larger invariants are
often needed.

- The informal proof strongly relies on the notion of height of a sub-
tree. Defining this notion formally is not so obvious. For example, the
height can only be seen as a function if the tree is composed of distinct
subtrees.

In the following, we explain how we have managed to overcome all these
problems.

2.4 Covering

The central notion in our formalisation is the one of cover. From it, four
other notions are derived:
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cover

buildordered cover

height substitute

Cover

A list of trees l is a cover of a tree t if t can be built from l using only nodes.
More formally we have:

cover([t], t).

cover(l, t) if l ≈ [t1; t2] + l1 and cover([ /\
t1 t2

] + l1, t).

Two properties of cover are for example:

Theorem 2.4.1 (Cover Perm) If we have l1 ≈ l2 and cover(l1, t), then
cover(l2, t).

Theorem 2.4.2 (Cover App) If we have cover(l1, t1) and cover(l2, t2), then
cover(l1 + l2, /\

t1 t2
).

What we want to find is a binary tree whose leaves are the different characters
of the text and whose weight is minimal. Suppose that our text has five differ-
ent characters a, b, c, d, e. Using the cover predicate, we can express this as
finding a tree t of minimal weight such that cover([ a ; b ; c ; d ; e ], t).
For example, it is easy to check that cover([ a ; b ; c ; d ; e ], t) holds
for the following tree t:

.
.

d e

.

c.

a b

Allowing a list of trees and not only a list of characters in the cover predicate
simulates the mechanism of creating new elements of the alphabet. For exam-
ple, in the previous tree when the leaves a and b are merged, what is searched
for is a tree of minimal weight such that cover([

/\

a b
; c ; d ; e ], t).

There is no need anymore to create the new character f.

12

ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/Cover.html#cover
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/Cover.html#cover_permutation
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/Cover.html#cover_app


Build

To build trees of minimal weight we just need to slightly modify the definition
of the cover predicate and require that the elements that are merged have
minimal frequencies. This is done by the predicate build:

build(f, [t], t).

build(f, l, t)
if l ≈ [t1; t2] + l1 and O(f, [t1; t2] + l1) and build(f, [ /\

t1 t2
] + l1, t).

where the O predicate indicates that the list is ordered from the least frequent
to the most frequent:

O(f, []).

O(f, [t]).

O(f, [t1; t2] + l) if sum(f, t1) ≤ sum(f, t2) and O(f, [t2] + l).

From these definitions, it follows that the build predicate is a refinement of
the cover predicate:

Theorem 2.4.3 (Build Cover) If build(f, l, t), then cover(l, t).

Moreover, the weight of the tree that is built is independent of the way the
list is ordered:

Theorem 2.4.4 (Build Weight) If build(f, l, t1) and build(f, l, t2), then
weight(f, t1) = weight(f, t2).

Of course what is left to be proved is that if we have build(f, l, t) then t is of
minimal weight for all trees t′ such that cover(l, t′).

Ordered cover

In order to prove that a tree t such that build(f, l, t) is of minimal weight, we
need, as in the informal proof, to analyse the properties of trees of minimal
weight. The first step in that direction is to refine the cover so to order the
cover in a top-down left to right traversal. This is done by the ordered cover:

ordered cover([t], t).

ordered cover(l1 + l2,
/\

t1 t2
)

if ordered cover(l1, t1) and ordered cover(l2, t2).

An ordered cover is a refinement of a cover and any cover can be ordered:
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Theorem 2.4.5 (OrderedCover Cover) If ordered cover(l, t), then
cover(l, t).

Theorem 2.4.6 (Cover OrderedCover) If we have cover(l, t), then there
exists l1 such that l1 ≈ l and ordered cover(l1, t).

Height

Now that we have ordered the cover, the next step is to introduce the height.
As explained before, introducing the height as a function is not so simple,
thus we do that using a predicate. We extend the notion of ordered cover
with a predicate height with four arguments: an integer, a list of integers,
a list of trees and a tree. The integer indicates the local height. The list
of trees is an ordered cover of the tree. The list of integers corresponds to
the height of the different trees of the cover with respect to the local height.
Here is the definition:

height(n, [n], [t], t).

height(n, h1 + h2, l1 + l2,
/\

t1 t2
)

if height(n + 1, h1, l1, t1) and height(n + 1, h2, l2, t2).

This definition is a refinement of the one for ordered cover:

Theorem 2.4.7 (Height OrderedCover) If height(n, h, l, t), then
ordered cover(l, t).

Furthermore it is always possible to find the height for an ordered cover:

Theorem 2.4.8 (OrderedCover Height) If we have ordered cover(l, t), then
for any n there exists a list h such that height(n, h, l, t).

Substitute

The last transformation we need is the capability of exchanging subtrees.
This is implemented by a predicate substitute:

substitute([t1], [t2], t1, t2).

substitute(l1 + l3, l2 + l4,
/\

t1 t3
, /\

t2 t4
)

if substitute(l1, l2, t1, t2) and substitute(l3, l4, t3, t4).

The proposition substitute(l1, l2, t1, t2) holds if the tree t2 is the result of
replacing in the tree t1 all the trees in the list l1 by the respective trees in
the list l2. Substitutions work on ordered covers:
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Theorem 2.4.9 (Subst Left OrderedCover) If substitute(l1, l2, t1, t2), then
ordered cover(l1, t1).

Theorem 2.4.10 (Subst Right OrderedCover) If substitute(l1, l2, t1, t2),
then ordered cover(l2, t2).

Then substitution can be applied on lists of the same length:

Theorem 2.4.11 (OrderedCover Subst) If length(l1) = length(l2) and
ordered cover(l1, t1), then there exists a tree t2 such that substitute(l1, l2, t1, t2).

2.5 Formal proof of Huffman’s algorithm

The formal proof works as follows. It first shows that if we have build(f, l, t),
then t is of minimal weight for all tree t′ such that cover(l, t′). It is proved
by rule induction on build(f, l, t): the proof by contradiction is transformed
into a constructive proof.

The base case is trivial. For the inductive case, we consider l ≈ [t′1; t′2]+l1
with O(f, [t′1; t′2] + l1 and build(f, [ /\

t′
1

t′
2

] + l1, t). We take an arbitrary t′ such

that cover(l, t′) and want to prove that weight(f, t) ≤ weight(f, t′). It is
then sufficient to construct a t′′ such that weight(f, t′′) ≤ weight(f, t′) and
cover([ /\

t′
1

t′
2

] + l1, t′′). Because of the induction hypothesis, we know that

weight(f, t) ≤ weight(f, t′′).
How do we construct this t′′? We first know that there exists a list h such

that height(0, h, l, t′). Now if we consider the product ⊗f between a list of
integers and a list of trees defined as:

[n1; n2; · · · ; nk] ⊗f [t1; t2; · · · ; tk] =
k∑

i=1

ni × weight(f, ti)

the following property holds:

Theorem 2.5.1 (Height Weight) If height(n, h, l, t), then n × sum(f, t) +
weight(f, t) = h ⊗f l.

In the special case where n = 0 and t = t′, we have weight(f, t′) = h ⊗f l.
On the list h we consider the first occurrence of the maximum value that

we call a. This first occurrence has some special properties.
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Theorem 2.5.2 (Height Disj) If height(n, h1 + [a] + h2, l, t) and for all b ∈
h1, b < a and for all c ∈ h2, c ≤ a, then there exists h3 such that h2 = [a]+h3

or we have a = n, h1 = h2 = [] and l = [t].

Theorem 2.5.3 (Height Shrink) If height(n, h1 + [a; b] + h2, l1 + [t′1; t′2] +
l2, t) and for all c ∈ h1, c < a and for all d ∈ [b] + h2, d ≤ a, then
height(n, h1 + [a − 1] + h2, l1 + [ /\

t′
1

t′
2

] + l2, t).

The first property tells us that the first maximum is always followed by
another maximum. The second property asserts that these two maxima
delimit a node of maximum height that can be merged. As we have

h = h1 + [a; a] + h2

we can decompose l in the same way

l = l1 + [t1; t2] + l2 where length(h1) = length(l1)

Now the following theorem

Theorem 2.5.4 (⊗ Reorder) If length(h1) = length(l1) and length(h2) =
length(l2) and for all b ∈ h1, b ≤ a and for all c ∈ h2, c ≤ a and l1 +
[t1; t2] + l2 ≈ [t′1; t′2] + l and O(f, [t′1; t′2] + l), then there exist l3 and l4
such that length(l1) = length(l3) and length(l2) = length(l4) and [t′1; t′2]+ l ≈
l3 + [t′1; t′2] + l4 and (h1 + [a; a] + h2) ⊗f (l3 + [t′1; t′2] + l4) ≤ (h1 + [a; a] +
h2) ⊗f (l1 + [t1; t2] + l2).

gives us a way to lower the product. If we have l3 and l4 of< Theorem 2.5.4
such that

l ≈ l3 + [t′1; t′2] + l4

it is enough to take t′′ such that substitute(l, l3 + [t′1; t′2] + l4, t
′, t′′).

What we have done is to exactly follow the informal proof. We took the
first maximum in the list of heights. This maximum indicates a node of
maximum height. This is given by Theorem 2.5.2 and Theorem 2.5.3. Then,
Theorem 2.5.4 ensures us that putting there the two subtrees of minimum
frequencies t′1 and t′2 always lowers the product.

The last step of the formal proof is to show that the program given in
Appendix A computes effectively an optimal code. For this, we call c2t the
function that transforms a code into a binary tree

c2t(c) = toTree(buildTree(c)).

16

ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/HeightPred.html#height_pred_disj_larger
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/HeightPred.html#height_pred_shrink
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/Prod2List.html#prod2list_reorder2


If we consider the result c of the application (iter l) and write l as
[(n1, c1); (n2, c2); · · · ; (nk, ck)], the invariant of the iter function is:

ni = sum(f, c2t(ci)) for i ≤ k

and
build(f, [c2t(c1); c2t(c2); · · · ; c2t(ck)], c2t(c)).

It is easily proved by induction. Since the tree in the build predicate is
optimal, c is optimal.

3 Conclusions and Future Work

Formalising Huffman’s algorithm has been a very interesting exercise. First
of all, it shows how crucial it is to be able to change representations in
a proof system. The initial problem of finding an optimal code has been
reduced to a tree problem. Works like [4] indicate that more support could
be provided to automate this aspect of the formalisation. Second, getting a
formal proof that is relatively close to the informal proof was not so easy since
the informal proof contains some technical difficulties. We were interested
in the algorithm, so we had to turn the usual proof by contradiction into a
constructive proof. It was not a surprise.

The first key step in the formalisation has been the introduction of the
notion of cover. It gave us the induction principle. Because the cover defi-
nition was working in a bottom-up fashion, not much could be gained from
the inductive hypothesis.

The second key step has been to turn the bottom-up definition into a
top-down one, passing from the cover predicate to the ordered cover one. We
believe that this transformation from bottom-up to top-down is a general
technique. Interesting enough, the first version of the ordered cover predicate
was using a more Prolog-like definition using difference list [5] instead of
concatenation. We thought that having functions in the conclusion of the
predicate definitions could be a problem. It was not the case.

The last key step has been to realize that the first maximum in the list of
heights was giving the position of a node of maximum height. It is again a
consequence of the constructive flavour of our formalisation. In the informal
proof, one takes an arbitrary node of maximum length. In our constructive
proof we have to explicitly indicate which one to take.
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In the formal proof, we have been using inductively defined predicates
intensively. It is not clear whether this is only a question of personal style.
Anyway it allows us to easily overcome most of the problems in mechanising
the informal proof. A consequence of having so many inductively defined
predicates is that rule induction has been a fundamental proof tool for our
development.

Most proofs of the development are straightforward. There are mainly
three technical proofs that correspond to Theorem 2.5.2, Theorem 2.5.3 and
Theorem 2.5.4. The first two proofs are using rule induction. The last
one is by case analysis and requires a fair amount of properties about list
decompositions. The complete development is available at:
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Huffman/index.html.

This work is an initial step towards formalising more elaborated compres-
sion/decompression algorithms. For example, an interesting challenge would
be to get a certified version of a Jpeg [6] decoder. It is in that direction that
we plan to further work.
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A Huffman’s algorithm in Ocaml

open List

type code = (char * bool list) list

let frequency_list l =

let rec add a l = match l with

[] -> [a, 1]

| (b, n) :: l1 ->

if (a = b) then (b, n + 1) :: l1 else (b, n) :: (add a l1)

in fold_right add l []

let insert (n, a) l =

let rec iter l = match l with

[] -> [n, a]

| (m, b) :: l1 ->

if (n <= m) then (n, a) :: l else (m, b) :: (iter l1)

in iter l

let huffman m =

let addl b l = map (fun (x, y) -> x, b :: y) l in

let rec iter l = match l with

| [] -> ([]: code)

| [n, l] -> l

| (n1, l1) :: (n2, l2) :: l ->

iter

(insert

(n1 + n2, append (addl false l1) (addl true l2))

l)

in

iter (fold_right (fun (a, n) l -> insert (n, [a, []]) l)

(frequency_list m)

[])
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