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A Quantitative Approach on Assume-Guarantee Contracts
for Safety of Interconnected Systems*

Alina Eqtami1 and Antoine Girard1

Abstract— In this paper, the safety synthesis problem for
a discrete-time system comprised by multiple interconnected
systems is considered. Using compositional reasoning, a quan-
titative framework is applied to each of the subsystems. With
this framework it has been possible to derive robust controlled
invariant subsets for each of the subsystems with respect to
the control invariant subsets of the other subsystems. These
invariant subsets can be computed from a parameterized family
of sets and they share a common safety controller. Contract-
based design is utilized to built assume-guarantee contracts
for all the subsystems, namely to assume that the other
subsystems belong to their invariant sets and guarantee that the
subsystem will belong to its invariant set. This circularity of the
implications can be resolved by a fixed point algorithm which
computes the parameters to guarantee that all the subsystems
fulfill their contracts simultaneously. Then, the invariant set
and the safety controller are given for the original system.
To illustrate the effectiveness of the proposed approach, an
application for the temperature regulation of adjacent rooms
of a building is given as an example.

I. INTRODUCTION

The concept of safety synthesis refers to the ability of the
controller to maintain the state of the system in a specified
set of safe states, [1]. Controlled invariant sets, have been
widely used in the control literature for the solution to
the safety problem, [2], [3], [4]. Based on this classical
approach, the states of the system are qualitatively partitioned
to either being safety-controllable or safety-uncontrollable.
This depends, the former on that they belong to the maximal
controlled-invariant subset of the safe set and the latter, that
they don’t. Therefore, this classic approach does not allow
to compare states within the same category even though,
intuitively, some states can be considered safer than others
(i.e. those that are further from the unsafe set). It can then be
anticipated that a quantitative approach that measures safety
associated to the states of the system can be formulated.

In our previous work [5], a quantitative approach to
safety control based on a functional fixed-point iteration
was presented. This approach made it possible to compute
a measure of safety which quantifies how far from the
unsafe set (respectively, how close to the safe set) one
can stay, starting from a given controllable (respectively,
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uncontrollable) state. Furthermore, it was shown that the
level sets of the fixed-point coincide with the maximal
controlled invariant subsets of a parameterized family of sets
and that one can synthesize a common safety controller for
all the sets of the family. Other works using quantitative
semantics of qualitative specifications formulated in temporal
logic, have appeared in [6], [7], while others are using model
predictive control as in [8], [9].

Verifying invariance properties in a centralized manner is
limited to systems with moderate size. The full set of states
for larger systems is usually too big to design a controller.
For this reason, flourishing ongoing research has emerged the
recent years upon investigating decentralized approaches for
invariance on larger dynamical systems. A line of research
is focusing on investigating numerical methods to compute
compositionally invariants [10], [11], [12], [13], while others
are using formal methods and symbolic techniques [14], [15].

Another decentralized approach is contract-based design
which can be used to verify the invariance properties of
complex systems consisting of interconnected subsystems.
This approach can establish correct behavior of the composed
system, provided each subsystem satisfies its safety speci-
fication (guarantee) while assuming that the others satisfy
theirs (assumption). Therefore, assume-guarantee contracts
are assigned to all subsystems and if they all satisfy their
own contract it is possible to reason for the global invariance
property of the original system, [16], [17]. Assume-guarantee
contracts for compositional reasoning have been previously
used by means of small-gain theorems [18], [19]. The
assume-guarantee framework is always sound whenever there
is no circularity of implications. If there is circularity, then
the problem is usually resolved assuming that at least one
subsystem satisfies a contract independently of the others. In
the present work the circularity on the implications exists,
but we do not need to make any such (hard) assumptions on
the subsystems’ contracts.

In the current work, we consider the safety problem for a
complex finite system comprised by multiple interconnected
subsystems. The controller synthesis is not performed on
the full state space whereas the contract-based framework is
used to establish safety on the respective subsystems. We are
using a quantitative approach for the design of the controllers
of the subsystems, similar to our previous work [5]. This
approach provides characterization of the controlled invariant
subsets of a parameterized family of sets. Compositional
reasoning is then used to define the safety on the complex
system. It’s thereon apparent that there exists circularity on
assume-guarantee contracts of the subsystems, which makes



the problem hard to solve. However, using the proposed
quantitative approach, this problem is circumvented since
it is possible to compute the specific parameters, on the
parameterized safe sets, that guarantee the fulfillment of all
contracts simultaneously.

The structure of this paper is as follows. In Section II, we
introduce the class of transition systems considered through
the paper. Section III is devoted on the safety objectives for
interconnected systems, as well as introducing the concept
of assume-guarantee contracts as a compositional method.
In Section IV, first, we provide a brief overview of the
proposed quantitative approach introduced in [5] accordingly
modified for the decentralized framework and then the main
results of the paper are presented, i.e., the controller synthesis
for each system and the compositional synthesis for the
interconnected system, as well as the characterization of the
invariant set. Finally, in Section V, we show the effectiveness
of the proposed approach by applying it to a temperature
regulation problem of adjacent rooms.

II. PROBLEM FORMULATION

In this section, firstly, we are going to address the problem
under consideration and secondly we are going to introduce
basic concepts and tools that are utilized for its proposed
solution throughout the paper.

A. Interconnected systems

We consider a discrete-time dynamical system of the form:

x+1 = f1(x1,x2, . . . ,xN ,u1)

x+2 = f2(x2,x1, . . . ,xN ,u2)

...
x+N = fN(xN ,x1, . . . ,xN−1,uN)

(1)

with N ∈ N. For notational simplicity we are going to write
the individual equations for system i from Eqs. (1), as
follows:

x+i = fi(xi,x−i,ui), i ∈ {1,2, . . . ,N} (2)

where index −i denotes all the states that are not xi. By xi
we denote the states of the system with xi ∈ Xi ⊆Rni and by
ui we denote the control inputs with ui ∈Ui ⊆ Rmi . Notice
now, that system (1) is a composition of N interconnected
systems and that the terms x−i in (2) is the effect of all the
other systems on system i.

The control objective of this paper consists of the states of
system (1) meeting a safety specification. This specification
comprises maintaining the states xi with i ∈ {1,2, . . . ,N},
inside a set XSi ⊆ Xi, where XSi is considered to be the
corresponding safe set of system i. The formal definition
for this safety specification will be given in the following
subsection, however, before continuing it is of essence to
briefly discuss how these kind of problems are usually
treated.

The safety problem for system (1) is more often than
not, a difficult problem to solve in a centralized way, since
the full set of states X1× ·· ·×XN is too large to design a

controller. An approach is to design a local controller for the
safety problem of each system i, treating the effect of x−i
from (2), as a bounded disturbance. The composition of the
interconnected system is then resolved, using the assume-
guarantee reasoning that is going to be presented later.

B. Transition systems

A transition system can be defined as follows:
Definition 2.1: A transition system T is a tuple

T = (X ,U,∆) (3)

consisting of a set of states X ; a set of inputs U and a
transition relation ∆⊆ X×U×X .
For system (1), there is X = X1× ·· · ×XN and U = U1×
·· ·×UN . The transition relation ∆ signifies that a state x+

can be reached initiating from x under the control input u.
Furthermore, the set of enabled inputs at state x is denoted
by enab∆(x) = {u ∈ U | ∆(x,u) 6= /0}. If enab∆(x) = /0, then
x is said to be a blocking state and the set of non-blocking
states is denoted nbs∆.

As we discussed earlier, system (1) will be decomposed
to N subsystems such as (2), each one of them having its
own transition relation. Each subsystem can be modeled by
a transition system that is affected by disturbances. This
transition system is of the following form:

Definition 2.2: A transition system with disturbances Ti
is a quadruple

Ti = (Xi,Wi,Ui,∆i) (4)

where Xi is the set of states; Wi is the product space of
the state sets of all −i, i.e., Wi := Π j 6=iX j, Ui is the set of
inputs and ∆i is the transition relation ∆i ⊆ Xi×Wi×Ui×Xi,
describing the dynamics of (2).
It should be noted, that for transition systems with distur-
bances, the set of enabled actions at a state xi is given by:

enab∆i(xi) = {ui ∈Ui| ∀x−i ∈ X−i, ∆i(xi,x−i,ui) 6= /0}

III. ASSUME-GUARANTEE CONTRACTS FOR SAFETY

A. Safety specifications

Let us, now, consider a transition system Ti as in (4) for
each system i and XSi ⊆ Xi to be the corresponding set of
safe states. The safety problem for system i, consists in
characterizing a subset of safe states Si ⊆ XSi , such that
when the system’s state xi is initially in Si and assuming
that the states x−i belong to known safe sets S−i, the state xi
can remain in Si forever, under suitable control. Moreover,
we need to synthesize a controller which makes it possible
to restrict the behavior of the individual system so that its
state remains inside the set Si. The closely related notions
of a (robust) controlled invariant subset as well as the
corresponding safety controller are given next:

Definition 3.1: Let us consider transition system Ti and
XSi ⊆ Xi a set of safe states:
• Si ⊆ XSi is a (robust positively) controlled invariant

subset of XSi with respect to set of disturbances S−i
if and only if for all xi ∈ Si there exists ui ∈ enab∆i(xi)
such that for all x−i ∈ S−i , ∆i(xi,x−i,ui)⊆ Si.



• S?i ⊆ XSi is the maximal (robust positively) controlled
invariant subset of XSi with respect to the set of distur-
bances S−i, if and only if S?i is a controlled invariant
subset of XSi and for all controlled invariant subsets
Si ⊆ XSi , we have Si ⊆ S?i .

Given a (robust positively) controlled invariant subset Si ⊆
XSi , a safety controller maintains the state of the controlled
transition system inside Si:

Definition 3.2: Let us consider transition system Ti and
XSi ⊆Xi a set of safe states, let Si⊆XSi be a robust controlled
invariant subset of XSi with respect to the set of disturbances
S−i. The controller Ci : Xi→ 2Ui is a safety controller for the
robust controlled invariant subset Si if, Si ⊆Dom(Ci) and for
all xi ∈ Si and for all ui ∈Ci(xi), and all x−i ∈ S−i, we have
∆i(xi,x−i,ui)⊆ Si.

B. Assume-Guarantee reasoning for the composition of sub-
systems

The main objective of this paper, is to solve the safety
problem for the original system (1). In order to do so, we
are going to utilize the assume-guarantee reasoning. Firstly,
some preliminaries will be given on assume-guarantee con-
tracts. Intuitively, using this method a correct behavior of a
composed system can be derived if each subsystem satisfies
its specification (guarantee), assuming that the other subsys-
tems satisfy their specifications (assumption). In this paper,
the subsystems need to fulfill their safety specifications,
therefore, the assume-guarantee contract for safety for a
subsystem i will be defined as:

Definition 3.3: Let a transition system of the form (4) and
XSi be the safe set of system i. Furthermore, let XS−i be the
safe sets of the other subsystems −i. The contract for safety
of system i will be denoted as C s

i = (Ai,Gi), where:
• Ai ⊆ XS−i , are sets of assumptions;
• Gi ⊆ XSi , are sets of guarantees.

Each subsystem i, is assigned a C s
i contract that specifies

the invariance property that i-subsystem must fulfill, under
assumptions about its environment, i.e. subsystems −i. Using
the assume-guarantee reasoning for each subsystem i we
can derive a conclusion on the invariance property of their
composition, and therefore find the controlled invariant set
for system (1):

Proposition 3.1: Let each subsystem i of (2) be assigned
a contract C s

i , as it is defined in Definition (3.3). Assume
that Gi is a robust controlled invariant subset, with respect
to the set of disturbances Ai, i.e.,

∀xi ∈ Gi,∃ui ∈ enab∆i(xi) : ∀x−i ∈ Ai,∆i(xi,x−i,ui)⊆ Gi

and assume that Π j 6=iG j ⊆ Ai. Then, the set

G := G1×G2×·· ·×GN

is positively controlled invariant.
Proof: We need to prove that G := G1×G2×·· ·×GN

is positively controlled invariant for the transition system
(3), thus we need to show that for all (xi,x−i) ∈ G, there
exists (ui,u−i) ∈ Ui ×U−i such that the transition system

∆(xi,x−i,ui,u−i) ⊆ G. This implication is straightforward
noticing that, for Ti we obtain:

∀xi ∈ Gi,∃ui ∈ enab∆i(xi) : ∀x−i ∈ G−i,∆i(xi,x−i,ui)⊆ Gi

since G−i ⊆ Ai. Using this reasoning for all i ∈ {1, . . . ,N}
we can conclude that G is a positively invariant set.

Assume-guarantee contracts for compositional reasoning
is always sound, provided there is no circularity between
assumptions and guarantees. Circularity in a compositional
framework is arguably the main difficulty in contract-based
design. From Proposition 3.1, it can be deduced that there is
in fact a cyclic dependence of the controlled invariant subsets
Gi. Next, we proceed with the quantitative approach that aims
to overcome this problem; to characterize the sets Gi and to
design the safety controller.

IV. QUANTITATIVE APPROACH TO SAFETY CONTROLLER
SYNTHESIS FOR INTERCONNECTED SYSTEMS

In this section we are going to present the quantitative
approach for safety controller synthesis for each of the
subsystems (2). This approach is called quantitative since
not only does partition the states to safety controllable
(i.e. xi ∈ S?i ) and safety uncontrollable (i.e. xi /∈ S?i ), but
it also measures the level of safety at a given state. This
measure quantifies how far one can stay from the unsafe set,
starting from that state, while, it also provides a measure that
quantifies how close one can stay from the safe set, in case
this state is safety uncontrollable. This approach is useful
in the controller synthesis as well: for both controllable and
uncontrollable states, it provides control inputs that would
optimize the level of safety of the corresponding successors.
The quantitative approach has been first presented in [5] in a
centralized framework and is accordingly modified here for
the decentralized case.

A. Controller synthesis for each of the systems

We introduce a cost function hi : Xi→R, which is chosen
to be the signed distance from the state xi to the safe set XSi ,
i.e.

hi(xi) = ds(xi,XSi) (5)

This cost function is chosen because it can quantify how safe
or unsafe is a given state xi. The distance function is given
as:

ds(xi,XSi) =

{
sup{γ ≥ 0|B(xi,γ)∩XSi 6= /0} if xi /∈ XSi

−sup{γ ≥ 0|B(xi,γ)⊆ XSi} if xi ∈ XSi

where B(xi,γ) denotes the ball centered in xi of radius γ .
An interpretation of a positive value of hi(xi) is that xi lies
outside the safe set: the larger hi(xi), the further this state
is from the safe set. Conversely, a negative value of hi(xi)
means that xi lies inside the safe set. In this case the smaller
value of hi(xi), the further xi is from the boundary of the
safe set and thus, it is safer.

We are now ready to define the quantitative algorithm:
First we define a sequence {V k

i }k∈N for each subsystem i,
where V k

i : Xi → R∪{+∞}. This is now defined iteratively
as follows:



For k = 0, and xi ∈ Xi, we assume that: V 0
i (xi) := hi(xi).

For k ∈ N and xi ∈ Xi, we define:

V k+1
i (xi) := (6)

max
(

hi(xi), min
ui∈enab∆i (xi)

max
x′i∈∆i(xi,x−i,ui)

x−i∈Ai

V k
i (x
′
i)
)

ifx ∈ nbs∆i

+∞ ifxi /∈ nbs∆i

The fixed-point is then obtained by:

V ?
i (xi) := lim

k→+∞
V k

i (x) (7)

If Ti is finite, then the limit is reached for a finite k ∈ N.
The quantitative algorithm can also be used to design the

local safety controllers, as follows:
Theorem 4.1: Let Ti be finite, then for all a∈R Sa

i = {xi ∈
Xi | V ?

i (xi) ≤ a} is the maximal robust controlled invariant
subset of the set Xa

i = {xi ∈ Xi | hi(xi)≤ a}, with respect to
Ai. Let us consider the controller C?

i defined by:

C?
i (xi)=


/0 if xi /∈ nbs∆i

arg min
ui∈enab∆i (xi)

max
x′i∈∆i(xi,x−i,ui)

x−i∈Ai

V ?
i (x
′
i) if xi ∈ nbs∆i

(8)
Then, for all a ∈ R, C?

i is a safety controller for the robust
controlled invariant subset Sa

i , with respect to Ai.
The proof of this theorem is similar to the proof of Theorem
7 in [5]. Theorem 4.1 yields that the quantitative approach
allows to compute the maximal controlled invariant subsets
of a parameterized family of safe sets and allows the design
of a common safety controller C?

i given by (8) for the whole
family of maximal controlled invariant subsets.

B. Compositional synthesis for interconnected systems

It can be seen from (8), that C?
i chooses inputs that will

minimize the (worst-case) value of V ∗i at the next state. It
can then be obtained that applying controller C?

i , the function
V ?

i is non-increasing along the trajectories of the controlled
system. In order to make a connection to the classical control
theory, V ?

i can be seen to act as a (weak) robust Lyapunov
function with respect to the external effect x−i, with x−i ∈ Ai.
The value V ?

i (xi), then, provides a measure of the level of
safety of xi, since along trajectories of the controlled system,
starting from state xi, the value of V ?

i (·) and thus of hi(·)
would remain smaller than or equal to V ?

i (xi). Expanding
this realization on the measure of safety, we are now going
to parameterize the safe set. Assume the following form of
specifications span the N states of (1):

Ai := {x−i ∈ X−i | ds(x j,XS j)≤ δ j,∀ j 6= i} (9)

For every subsystem i, we are going to employ the quantita-
tive algorithm as described previously. Applying the quanti-
tative algorithm on the transition system Ti, with transition
relation x′i ∈ ∆i(xi,x−i,ui) with x−i ∈ Ai, we can derive the
value function V ?

i which will now depend on the parameter
δ−i. This procedure is described below in Algorithm 1.
The smallest value of V ?

i will then provide us with the

smallest non-empty robust controlled invariant set, according
to Theorem 4.1 and the respective parameters are denoted by
ηi(δ−i).

Algorithm 1: Design of value function V ?
i

Data: Ti, Ai, Gi
Result: Function ηi(δ−i)

1 for i = 1, . . . ,N do
2 Find V ?

i (xi) from (7), for x′i ∈ ∆i(xi,x−i,ui), with
x−i ∈ Ai given by (9);

3 ηi(δ−i) := minxi V
?
i (xi)

4 end

Corollary 1: Let the safety contract C s
i for subsystem Ti,

with Ai be taken from (9). Then, the set Gi := {xi ∈ Xi |
V ?

i (xi)≤ ηi(δ−i)} is a controlled invariant set for Ti.
Proof: From Theorem 4.1 taking a≡ ηi(δ−i) results to

Gi := {xi ∈ Xi | V ?
i (xi) ≤ ηi(δ−i)} being a robust controlled

invariant subset of the set Xηi(δ−i)
i = {xi ∈ Xi | ds(xi,XSi) ≤

ηi(δ−i)}, with respect to Ai.
Built upon these results, we are now able to obtain a

characterization on the invariant set of the original transition
system (3).

Theorem 4.2: Let Ti from (4), with guarantee set of the
form Gi := {xi ∈ Xi |V ?

i (xi)≤ ηi(δ−i)}. If

ηi(δ−i)≤ δi ∀i = {1, . . . ,N} (10)

then G = G1×·· ·×GN is a positive invariant set for T from
(3).

Proof: From Corollary 1, it can be obtained that the sets
Gi = {xi ∈ Xi |V ?

i (xi)≤ ηi(δ−i)} are controlled invariant sets
of subsystems Ti. We need now to prove that Π j 6=iG j ⊆ Ai,
which is true when ηi(δ−i)≤ δi for all i= {1, . . . ,N} because
Gi ⊆ {xi ∈ Xi | ds(xi,Xi)≤ ηi(δ−i)}. Hence, from Proposition
3.1 we conclude that G=G1×·· ·×GN is a positive invariant
set for T .

C. Characterization of the compositional invariant set

The circular dependence on the sets Gi that was described
earlier for the compositional framework, has now been
shifted on the parameters δi. Therefore, the objective is
to find parameters δ ?

i such that the corresponding sets Gi
that will be characterized through the quantitative procedure
(for these parameters), all be control invariant. Specifically,
according to Theorem 4.2, parameters δ ?

i should satisfy
(10). In fact, they can be computed by another fixed-point
iteration, as it is described in Algorithm 2.

D. Compositional abstraction based synthesis using the
quantitative approach

Let system (1) be decomposed into N subsystems (2) with
local specifications as we have already discussed. Making use
of symbolic abstractions (i.e. discrete abstractions) on the
subsystems we can compute local controllers, assuming that
the other subsystems meet their own specifications. These
abstractions can be obtained in several ways (computing



Algorithm 2: Parameters δ ?
i

Data: δi, ηi(δ−i)
Result: δ ?

i
1 initialization: k = 0, δ 0

i = δ min
i , δ 0

−i = δ min
−i ;

2 while δ k
i 6= δ

k−1
i and δ k

i ≤ 0 do
3 for i = 1, . . . ,N do
4 Find ηi(δ

k
−i) from Algorithm 1;

5 δ
k+1
i = ηi(δ

k
−i)

6 end
7 k = k+1;
8 if δ k

i = δ
k−1
i then

9 return δ k
i

10 end
11 else ∃i such that δ k

i > 0
12 ”No valid decomposition”
13 end
14 end

reachable sets, state quantization etc.) and in addition finite-
ness of the abstraction guarantees that the limit (7) is reached
in a finite number of steps k. The concrete subsystem as
well as the corresponding abstraction should be governed by
some required formal behavioral relationship between them.
In particular assume T c

i to be the transition system of the
concrete system and T a

i to be the transition system of the
abstraction. Then it is required that T c

i to be either approxi-
mately alternatingly simulated or approximately alternatingly
bisimilar to T a

i . The definitions of these relations can be
found in [20]. In our prior work in [5] has been proven
that provided the transition systems, concrete and abstraction,
lead these relations, applying the quantitative approach on the
abstraction results to a parameterized family of controlled
invariant subsets for the concrete system.

V. NUMERICAL RESULTS

In this section we consider a simple example for illus-
tration purposes: a temperature regulation problem for two
rooms which belong to a building and share a wall, is going
to be considered. Each of the rooms is equipped with a
respective heater. The two subsystems are interconnected
since the temperature of one is affecting the other and vice
versa. The problem at hand is to regulate the temperature
of each room around a desired nominal value. Using the
quantitative approach we are going to synthesize a controller
that keeps the temperature of each room in a set around their
nominal values, which will also be characterized. Notice,
that the same control scheme can be applied for a number
of rooms n greater than two, without significant difficulty.
The model that we are going to employ for the temperature
regulation is the following:

T+
1 = T1 +α(T2−T1)+β (Te−T1)+ γ(Th−T1)u1

T+
2 = T2 +α(T1−T2)+β (Te−T2)+ γ(Th−T2)u2

(11)

where T1, T2 are the temperatures of the first and second
room, respectively. The outside temperature is considered to

be constant, at Te = −1◦C, while Th = 50◦C is the heater
temperature. Each room i = {1,2}, has a control input that
lies in ui ∈ [0,1]. The conduction factors are given by α =
0.45, β = 0.045 and γ = 0.09.

Fig. 1. (a) Sequence of values η1(δ2) and η2(δ1) for system (11). Red
and blue solid lines represent η1(δ2) and η2(δ1), respectively. The black
solid line depicts the iteration of the parameters δ1 versus parameter δ2,
until they reach their fixed point δ ?

1 =−1.3750 and δ ?
2 =−1.3620.

Each rooms’ temperature lie in a state set Xi, for i = 1,2.
The first room’s temperature lies in X1 = [10,35]> while
for the second room there is X2 = [10,33]>. Moreover,
the corresponding safe sets are XS1 = [22,25]> and XS2 =
[20,23]>, respectively. The discrete-time dynamics of (11)
can be decomposed and be represented as two finite transition
subsystems T1 and T2. Two symbolic models were built
following the approach described in [14]. The symbolic
model for each room was built assuming that the temperature
of the other is not exactly known, but lying to its safe set,
which introduced non-determinism to the symbolic models.
Furthermore, the state sets were uniformly partitioned by
nxi intervals per component, with nx1 = nx2 = 1000, while
the control set U = [0,1]2 was uniformly discretized into
umodes = 21 for all the components.

The proposed algorithm (2) was then performed for the
two transition systems T1 and T2, assuming initial value for
the parameters δ 0

1 = −1.5 and δ 0
2 = −1.5. The number of

iterations of the algorithm (2) were finite and specifically
k = 5, as it can be seen in Fig.1.The fixed point δ ?

1 ,δ
?
2 was

obtained with δ ?
1 =−1.3750 and δ ?

2 =−1.3620. Hence, we
conclude that the set S = S1× S2 is a controlled invariant
set, with S1 = [22−δ ?

1 ,25+δ ?
1 ]
> = [23.3750,23.6250]> and

S2 = [20−δ ?
2 ,23+δ ?

2 ]
> = [21.3620,21.6380]>.

Assuming initial temperatures T 0
1 = 23.4◦C and T 0

2 =
21.4◦C for the two rooms, Fig.2 illustrates the trajectory of
the room’s temperatures while applying the controllers. It
can be witnessed that both temperatures remain inside the
safe set S which is illustrated by the dashed lines.



Fig. 2. The blue line depicts a trajectory of the two temperatures of the two
rooms, initiating at T 0

1,2 = [23.4,21.4]◦C. The black dashed lines represent
the safe set.

VI. CONCLUSIONS

In this paper, we proposed a quantitative approach to
safety controller synthesis for complex systems comprised by
multiple interconnected subsystems. Using assume-guarantee
contracts for each of the subsystems while applying the
quantitative fixed point algorithm we were able to compute
controlled invariant subsets of parameterized family of sets
and synthesize the corresponding controllers. In order to
argue for the safety specification of the original complex
system since there is circularity between the implications of
the subsystem’s contracts, we proposed a way to compute the
parameters on the parameterized invariant sets, that guarantee
the simultaneous fulfillment of all the contracts. Thus, the
compositional problem was resolved, providing the corre-
sponding controller and the characterization of the invariant
set. Finally, numerical results, showed the effectiveness of
the approach.

In future work, we plan to extend our framework to deal
with other high-level specifications beyond safety which is
considered in this paper, such as reachability or more general
properties specified by automata or temporal logic.
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