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SL(2,Z)-ACTION FOR RIBBON QUASI-HOPF ALGEBRAS

V. FARSAD, A.M. GAINUTDINOV, I. RUNKEL

Abstract. We study the universal Hopf algebra L of Majid and Lyubashenko in the case

that the underlying ribbon category is the category of representations of a finite dimensional

ribbon quasi-Hopf algebra A. We show that L = A∗ with coadjoint action and compute the

Hopf algebra structure morphisms of L in terms of the defining data of A. We give explicitly

the condition on A which makes RepA factorisable and compute Lyubashenko’s projective

SL(2,Z)-action on the centre of A in this case.

The point of this exercise is to provide the groundwork for the applications to ribbon

categories arising in logarithmic conformal field theories – in particular symplectic fermions

and Wp-models – and to test a conjectural non-semisimple Verlinde formula.
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1. Introduction

A modular tensor category is a finitely semisimple linear and abelian category, which is

in addition a ribbon category (a braided tensor category with ribbon twist), which has a

simple tensor unit, and whose braiding satisfies a certain non-degeneracy condition [Tu].

Modular tensor categories are important algebraic objects because they precisely encode the

data necessary to define a 3-2-1 extended topological field theory [RT, Tu, BDSPV].

One source of modular tensor categories are finite-dimensional ribbon Hopf algebras H

which are semisimple as algebras and which are factorisable [RS, Ta]. Factorisability means

that the monodromy matrix M = R21R ∈ H ⊗ H obtained from the universal R-matrix of

H is non-degenerate as a copairing.

A three-dimensional topological field theory gives rise to representations of mapping class

groups of surfaces, possibly with marked points (in the extended case). It turns out that one

can drop the semisimplicity condition on the category and still obtain such mapping class

group representations [Ly2, KL], even if there no longer is an underlying 3-2-1 topological

field theory in the sense of [BDSPV].

The algebraic datum is now a finite abelian ribbon category with simple tensor unit, whose

braiding satisfies a (more complicated) non-degeneracy condition [Ly1, Ly2]. We refer to such

categories as factorisable finite ribbon tensor categories. Again, finite-dimensional factorisable

ribbon Hopf algebras provide examples, now without the semisimplicity requirement.

In this paper we apply the general formalism of [Ly1, Ly2, KL] to finite-dimensional ribbon

quasi -Hopf algebras A. We express the relevant non-degeneracy condition on the braiding in

terms of the defining data of A (see Section 7.3) and compute the action of SL(2,Z) – the

mapping class group of the torus – on the centre Z(A) of A (Theorem 8.1). As is maybe not

surprising for readers who have looked at quasi-Hopf algebras before, this leads to fairly long

expressions in terms of the coassociator, universal R-matrix, etc.

Our motivation for carrying out this exercise is two fold: firstly – as we explain next – it

is easy to detect when a finite tensor category comes from a quasi-Hopf algebra; secondly,

it puts in place the explicit expressions we need for the symplectic fermion calculation in

[FGR2] (Remark 1.2).

Let C be a finite tensor category over a field k. If there exists a fiber functor F : C → vectk,

by reconstruction one can find a Hopf algebra H such that C ∼= RepH as linear tensor

categories [Ul], see also [Ma2, Sec. 9.4]. If we only require F to be multiplicative, i.e. that

there are isomorphisms F (U⊗V ) ∼= F (U)⊗F (V ) natural in U, V but not subject to coherence

conditions, then reconstruction results in a quasi-Hopf algebra [Ma2, Sec. 9.4]. While it may

be difficult to determine whether there is a fiber functor C → vectk, there is a very simple

criterion for the existence of multiplicative functors (see [EGNO, Prop. 6.1.14]):
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Theorem 1.1. Let C be a finite tensor category over an algebraically closed field for which

the Perron-Frobenius dimensions of its simple objects are integers. Then C is equivalent as a

linear tensor category to RepA for a finite-dimensional quasi-Hopf algebra A.

The Perron-Frobenius dimensions of a simple object X ∈ C is the positive real number

given by the maximal non-negative eigenvalue of the linear map [X ⊗−] on the C-linearised

Grothendieck ring C⊗ZGr(C), see e.g. [EGNO]. For RepA, the Perron-Frobenius dimension

of an object is simply the dimension of the underlying vector space.

We now describe in more detail the construction of [Ly1, Ly2, KL], see also [FS1, Sec. 4]

for a review. In this paper we will only be interested in the action of the mapping class group

of the torus, i.e. of SL(2,Z).

Let C be a factorisable finite ribbon tensor category over a field k. Let L ∈ C be the coend

for the functor Cop×C → C: (U, V ) 7→ U∗⊗V . As we review in Section 3, using the universal

property of the coend, one can endow L with the structure of a Hopf algebra in the braided

category C (Definition 2.1), together with a Hopf pairing ωL : L ⊗ L → 1. The category

C is called factorisable if ωL is non-degenerate. Using once more the universal property one

defines endomorphisms S, T of L which induce a projective action of SL(2,Z) on C(1,L) (see

Section 5.1). One finds that C(1,L) ∼= End(idC), and so one obtains a projective action of

SL(2,Z) on End(idC).

Let A be a finite-dimensional ribbon quasi-Hopf algebra (see Section 6 for conventions and

details). We show that, as for Hopf algebras [Ly2, Ke2], the coend L in RepA is given by

the coadjoint representation on A∗ (Proposition 7.1). We compute the structure morphisms

of the Hopf algebra L, as well as the pairing ωL, in terms of the data of A (Theorem 7.3).

Note that End(idRepA) ∼= Z(A), the centre of A. Using our explicit expressions, we give the

action of the S- and T -generators of SL(2,Z) on Z(A) in terms of the defining data of A and

an integral, see Proposition 7.8 and Theorem 8.1. This generalises results for Hopf algebras

in [LM] to quasi-Hopf algebras.

The Hopf algebra structure on L can be understood as a special case of braided ver-

sion [Ma1] of the reconstruction theorem [Ul]. There, one characterises a Hopf algebra in a

braided monoidal category V via a monoidal functor F from a monoidal category C to V (see

Section 2). If C is itself braided, there is a canonical choice for V and F , namely one can

consider idC : C → C. We will refer to the Hopf algebra A in C characterised by this functor

as universal Hopf algebra (being defined by a universal property, A may or may not exist).

We explain in detail an observation in [Ly1] that A ∼= L as Hopf algebras in C with Hopf

pairing (Proposition 3.9).

This reconstruction point of view is also used in [BT], where the notion of factorisability

of a quasi-triangular quasi-Hopf algebra has first been defined. The definition in [BT] is a

priori different from factorisability of RepA (i.e. non-degeneracy of ωL), but we show in
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Corollary 7.6 that the two definitions are equivalent. To do so, we use that factorisability can

be expressed as the invertibility of a map – composed of braidings and duality morphisms –

from the coend L for (U, V ) 7→ U∗ ⊗ V to the end for (U, V ) 7→ U ⊗ V ∗ (Proposition 4.11).

When applied to RepA, this invertibility condition reduces precisely to the definition in [BT]

(see Section 7.4).

In our discussion of the universal Hopf algebra via reconstruction and via coends, we are

careful to include the coherence isomorphism of the underlying monoidal category (as opposed

to [Ma1, Ly1] which work in the strict case). This is not meant as an extra torture for the

reader but is necessary for the computation of the structure morphisms on the coend in

Section 7.

Remark 1.2. Computing the SL(2,Z)-action on End(idRepA) explicitly is part of a larger

project to provide a family of examples for a conjectured non-semisimple variant of the

Verlinde formula [GR2, Conj. 5.10]. The original semisimple version of the Verlinde formula

was found in [Ve] and proved in the context of vertex operator algebras in [Hu]. A related

investigation of the non-semisimple Verlinde formula is carried out in [CG].

The conjecture in [GR2] stipulates an isomorphism of projective representations between

two SL(2,Z)-actions associated to a C2-cofinite, simple, self-dual and non-negatively graded

vertex operator algebra V . The first action is obtained by modular transformations on the

space of so-called pseudo-trace functions of V [Mi, AN]. For the second action one uses that

RepV is conjecturally a factorisable finite ribbon tensor category and thus carries a projective

SL(2,Z)-action on End(idRepV ) as described above (see e.g. [GR2, Sec. 5] for details).

The series of examples we investigate are the so-called symplectic fermions, which are para-

metrised by N ∈ Z>0, the “number of pairs of symplectic fermions”. In [DR1, Ru] a conjecture

was presented for the explicit ribbon category structure on RepV , for V the (even part of

the) vertex operator algebra of N pairs of symplectic fermions, see [DR2, Conj. 7.4] for a

precise formulation. Using the results of the present work, in the follow-up paper [FGR2] a

description of this category as representations of a quasi-Hopf algebra QN is given and the

SL(2,Z)-action on End(idRepQN
) is computed (see also [GR1] for the case N = 1). The

SL(2,Z)-action on the space of pseudo-trace functions follows from [GR2]. The outcome of

this project is that the SL(2,Z)-actions do indeed agree projectively [FGR2] – this provides

the first example of such a comparison for non-semisimple theories in the literature.

In a separate ongoing project [CGR], the formalism presented here is applied to a series of

ribbon quasi-Hopf algebras based on so-called restricted quantum groups for sl(2) that have

already appeared in relation to the logarithmic Wp-triplet conformal field theories [FGST].

The explicit description via quasi-Hopf algebras of the factorisable finite tensor categories

associated to symplectic fermions and Wp-triplet models in [FGR2, CGR] will also be useful

when investigating bulk correlation functions for these models using the formalism developed

in [FS1, FSS, FS2].
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The Verlinde formula has a purely categorical counterpart. Namely, let C be a factorisable

finite tensor category over an algebraically closed field of characteristic zero. Denote by SC

the action of the S-generator of SL(2,Z) on End(idC) from [Ly1]. Using the theory of internal

characters of [FS1, Sh1] one obtains an injective map φ : Gr(C)→ End(idC), [M ] 7→ φM (see

Section 5.2). For U, V,W ∈ C simple denote by N W
UV the structure constants in Gr(C), i.e.

[U ][V ] =
∑

W N W
UV [W ]. Here, the sum runs over representatives W of isomorphism classes

of simple objects in C. The categorical Verlinde formula states [GR2, Thm. 3.9] (see [Tu,

Thm. 4.5.2] for the semisimple case, i.e. the case of modular fusion categories)

(1.1) S−1
C
(
SC(φU) ◦ SC(φV )

)
=
∑
W

N W
UV φW .

In Section 7.6 we evaluate this result explicitly in the case C = RepA for A a finite dimen-

sional factorisable quasi-Hopf algebra. We give elements χχχM ∈ Z(A), M ∈ RepA, corre-

sponding to SRepA(φM) via Z(A) ∼= End(idRepA). One finds that the structure constants of

Gr(RepA) can be computed from (1.1) in terms of

• the defining data of the ribbon quasi-Hopf algebra A,

• the characters TrM(−) of all irreducible A-modules.

Explicitly, the N W
UV are uniquely determined by the following linear relations in Z(A):

(1.2) χχχU χχχV =
∑
W

N W
UV χχχW .

We stress that there is no need to compute the centre of A, which is a difficult problem in

general. A related (but different) result on the categorical Verlinde formula in the case of

factorisable Hopf algebras is given in [CW].

This paper is organised as follows.

In Section 2 we give our conventions for braided tensor categories and Hopf algebras in

them, and we review the reconstruction theory for Hopf algebras of [Ma1] in the special case

of the identity functor, leading to the universal Hopf algebra. In Section 3 an equivalent

description of the universal Hopf algebra in terms of coends is given. This is the formalism

used in [Ly1] and in the rest of this paper. The categorical setting we will work in – factorisable

finite tensor categories – is described in Section 4. The SL(2,Z)-action of [Ly1] and the

theory of internal characters of [FS1, Sh1] are recalled in Section 5. In Section 6 we state

our conventions for quasi-triangular quasi-Hopf algebras A. Section 7 contains our first main

result, the explicit computation of the Hopf algebra structure maps of the universal Hopf

algebra L in RepA. We state the factorisability condition on RepA in terms of the defining

data of A and show that it is equivalent to the definition in [BT]. Finally, Section 8 contains

our second main result, namely explicit expressions for the S- and T -action on the centre

Z(A) of a ribbon quasi-Hopf algebra A.
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Conventions: In what follows, by “category” we will mean “essentially small category”, i.e.

we will always assume that the isomorphism classes of objects form a set. For the set of

morphisms U → V in a category C we use the notation C(U, V ) instead of HomC(U, V ). We

fix a field k and denote by vectk the category of finite-dimensional k-vector spaces. For A a

k-algebra (later mostly a quasi-Hopf algebra), the k-linear category of finite-dimensional left

A-modules will be denoted by RepA.

2. The universal Hopf algebra in a braided monoidal category with duals

In this section, we introduce our conventions on monoidal categories, duals and braidings, as

well as for Hopf algebras in such categories. Then we review the generalized Tannaka–Krein-

like reconstruction of a Hopf algebra for a braided category with left duals, following [Ma1].

2.1. Conventions for monoidal categories. Let C be a monoidal category. Our conven-

tions for associator and unit isomorphisms are (following [CP, Sec. 5])

(2.1) αU,V,W : U ⊗ (V ⊗W )
∼−−→ (U ⊗ V )⊗W , λU : 1⊗ U ∼−→ U , %U : U ⊗ 1

∼−→ U .

For a braided monoidal category we denote the braiding isomorphisms by

(2.2) cU,V : U ⊗ V ∼−−→ V ⊗ U .

A monoidal category C is said to have left duals if for each U ∈ C there have been chosen an

object U∗ ∈ C and morphisms

(2.3) evU : U∗ ⊗ U → 1 , coevU : 1→ U ⊗ U∗ ,

which satisfy the two zig-zag identities. Similarly, we say C has right duals if for each U ∈ C
there have been chosen an object ∗U ∈ C and morphisms

(2.4) ẽvU : U ⊗ ∗U → 1 , c̃oevU : 1→ ∗U ⊗ U .

subject to the zig-zag identities.

For a monoidal category C with left duals one obtains a contravariant functor (−)∗ : C → C.
For a morphism f : U → V , the image f ∗ : V ∗ → U∗ under (−)∗ is constructed from evU ,

coevU and the coherence isomorphisms of C. An analogous remark applies to right duals and
∗(−) : C → C.

A rigid monoidal category is a monoidal category which has both right and left duals.

A braided monoidal category with left duals is ribbon if it is equipped with a natural

isomorphism θ of the identity functor (the ribbon twist), which satisfies, for all U, V ∈ C,

(2.5) θU⊗V = (θU ⊗ θV ) ◦ cV,U ◦ cU,V and θU∗ = (θU)∗ .
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In a ribbon category, the left dual U∗ of an object U is automatically also a right dual, with

the right duality morphisms constructed from the left ones, together with the braiding and

the ribbon twist, see e.g. [Ka, Sec. XIV.3]. In particular, a ribbon category is rigid and in

fact pivotal, see [EGNO, Sec. 8.10].

Below we will use string diagram notation for morphisms. Our diagrams are read from

bottom to top, and the diagrams we will use for the braiding, ribbon twist, and the left/right

duality maps are

cU,V =

U V

V U

, evU =

U∗ U

, coevU =

U∗U

,(2.6)

θU =

U

U

, ẽvU =

U ∗U

, c̃oevU =

∗U U

.(2.7)

When giving morphism involving associator and unit isomorphism, we often write them as

sequences of arrows, where for better readability we omit the tensor product symbol between

objects and often only write “∼” for a composition of coherence isomorphisms of the monoidal

category. For example, one of the two zig-zag identities for left duals reads

(2.8)
[
U
∼−→ 1U

coevU ⊗idU−−−−−−→ (UU∗)U
∼−→ U(U∗U)

id⊗evU−−−−→ U1
∼−→ U

]
= idU .

In a monoidal category C with left duals, there is a canonical natural isomorphism γV,U :

U∗ ⊗ V ∗ → (V ⊗ U)∗. To define it, we first introduce the morphism (here we write out all

coherence isomorphisms explicitly as we will need them in Section 7)

γ̃V,U =
[
(U∗V ∗)(V U)

α−1
U∗,V ∗,V U−−−−−−→ U∗(V ∗(V U))

id⊗αV ∗,V,U−−−−−−→ U∗((V ∗V )U)

id⊗evV ⊗id−−−−−−→ U∗(1U)
id⊗λU−−−→ U∗U

evU−−→ 1
]
.

(2.9)

Using this, γV,U is given by

γV,U =
[
U∗V ∗

%−1
U∗V ∗−−−−→ (U∗V ∗)1

id⊗coevV U−−−−−−→ (U∗V ∗)((V U)(V U)∗)

αU∗V ∗,V U,(V U)∗−−−−−−−−−→ ((U∗V ∗)(V U))(V U)∗
γ̃V,U⊗id
−−−−→ 1(V U)∗

λ(V U)∗−−−−→ (V U)∗
]
.

(2.10)



8 V. FARSAD, A.M. GAINUTDINOV, I. RUNKEL

In string diagram notation, these definitions look much simpler:

(2.11) γ̃V,U =

U∗ V ∗ V U

, γV,U =

U∗ V ∗

V U (V U)∗

=

U∗ V ∗

V U (V U)∗

γ̃V,U
.

Finally we note that if C has left duals, there is a canonical isomorphism 1∗ → 1 given by

(2.12) 1∗
%−1
1∗−−→ 1∗1

ev1−−→ 1 .

When writing 1∗
∼−→ 1 below, we refer to this isomorphism.

2.2. Conventions for Hopf algebras in braided categories. The definition of a Hopf

algebra over a field has a natural generalisation to braided monoidal categories, see e.g. [Ma3].

Definition 2.1. Let C be a braided monoidal category. A Hopf algebra H in C is an object H

together with morphisms

(product) µH : H ⊗H → H , (coproduct) ∆H : H → H ⊗H ,(2.13)

(unit) ηH : 1→ H , (counit) εH : H → 1 ,

(antipode) SH : H → H .

These data are subject to the conditions

• associativity and unitality:[
H(HH)

id⊗µH−−−−→ HH
µH−−→ H

]
=
[
H(HH)

∼−→ (HH)H
µH⊗id−−−−→ HH

µH−−→ H
]
,(2.14) [

H
∼−→ 1H

ηH⊗id−−−→ HH
µH−−→ H

]
= idH =

[
H
∼−→ H1

id⊗ηH−−−→ HH
µH−−→ H

]
.

• coassociativity and counitality: same as above but with all arrows reversed, µH replaced

by ∆H and ηH by εH .

• ∆H , εH are algebra homomorphisms:

∆H ◦ ηH = (ηH ⊗ ηH) ◦ λ−1
1 ,(2.15) [

HH
µH−−→ H

∆H−−→ HH
]

=
[
HH

∆H⊗∆H−−−−−→ (HH)(HH)
∼−→ H((HH)H)

id⊗cH,H⊗id
−−−−−−−→ H((HH)H)

∼−→ (HH)(HH)
µH⊗µH−−−−→ HH

]
,

and

(2.16) εH ◦ µH = λ1 ◦ (εH ⊗ εH) , εH ◦ ηH = id1 .

• antipode condition:[
H

εH−→ 1
ηH−→ H

]
=
[
H

∆H−−→ HH
SH⊗id−−−−→ HH

µH−−→ H
]

(2.17)

=
[
H

∆H−−→ HH
id⊗SH−−−−→ HH

µH−−→ H
]
.
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As a consequence of the Hopf-algebra axioms, we get that SH is an algebra and a coalgebra

anti-homomorphism, in particular we have SH ◦ µH = µH ◦ cH,H ◦ (SH ⊗ SH), see [Ma3,

Lem. 2.3].

When using string diagram notation to depict morphisms involving Hopf algebras, we use

the following notation for its structure morphisms:

(2.18) µH = , ∆H = , ηH = , εH = , SH = .

H

H H H

H H

H

H
H

H

For example, the second condition in (2.15), i.e. that ∆H is compatible with µH , reads

(2.19)

HH

HH

∆H

µH

=

HH

HH

The appearance of the braiding as opposed to the inverse braiding in the above condition is a

choice, related to the choice made in defining the tensor product of algebras: For (associative,

unital) algebras (A, µA, ηA) and (B, µB, ηB) we define the algebra A ⊗ B to have structure

morphisms

µA⊗B =
[

(AB)(AB)
∼−→ (A((BA)B)

id⊗cB,A⊗id
−−−−−−→ (A((AB)B)(2.20)

∼−→ (AA)(BB)
µA⊗µB−−−−→ AB

]
,

ηA⊗B =
[
1
∼−→ 11

ηA⊗ηB−−−−→ AB
]
.

By definition, a Hopf pairing for a Hopf algebra H in C is a morphism ωH : H ⊗ H → 1

which makes the multiplication µH and the coproduct ∆H , as well as the unit ηH and the

counit εH , each others adjoints. In terms of string diagrams, this means
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H H H

ωH

=

H H H

ωH

ωH ,

H H H

ωH

=

H H H

ωH

ωH

H

ωH

=

H

,

H

ωH

=

H

(2.21)

Translating back into formulas, for example the first of the above identities becomes[
(HH)H

µH⊗id−−−−→ HH
ωH−−→ 1

]
(2.22)

=
[
(HH)H

id⊗id⊗∆H−−−−−−→ (HH)(HH)
∼−→ H((HH)H)

id⊗ωH⊗id−−−−−−→ H(1H)
∼−→ HH

ωH−−→ 1
]
.

If the braided monoidal category C is equipped with left duals, for each Hopf algebra H in

C we obtain the (left) dual Hopf algebra H∗. Its structure maps are

µH∗ =
[
H∗H∗

γH,H−−−→ (HH)∗
(∆H)∗−−−→ H∗

]
,(2.23)

∆H∗ =
[
H∗

(µH)∗−−−→ (HH)∗
γ−1
H,H−−−→ H∗H∗

]
,

ηH∗ =
[
1
∼−→ 1∗

(εH)∗−−−→ H∗
]
,

εH∗ =
[
H∗

(ηH)∗−−−→ 1∗
∼−→ 1

]
,

where we used the isomorphism γH,H from (2.10) and the isomorphism (2.12). The antipode

is given by SH∗ = (SH)∗.

Given a Hopf pairing ωH on H, we can define the map

(2.24) DH :=
[
H
∼−→ H1

id⊗coevH−−−−−→ H(HH∗)
∼−→ (HH)H∗

ωH⊗id−−−−→ 1H∗
∼−→ H∗

]
The definitions above are set up such that DH is a homomorphism of Hopf algebras.

Definition 2.2. Let H be a Hopf algebra in a braided monoidal category with left duals. A

Hopf pairing ωH for H is called non-degenerate if the morphism DH in (2.24) is an isomor-

phism.
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In Sections 4–8 we will also need integrals and cointegrals for a Hopf algebra H in C. In

general, these are morphisms ΛH : IntH → H and Λco
H : H → IntH for an invertible object

IntH (see e.g. [KL, Sec. 4.2.3]). In this paper we will only need to consider IntH = 1, and in

this case, the conditions satisfied by ΛH : 1→ H and Λco
H : H → 1 are:

(left integral) µH ◦ (idH ⊗ ΛH) ◦ %−1
H = ΛH ◦ εH ,(2.25)

(right integral) µH ◦ (ΛH ⊗ idH) ◦ λ−1
H = ΛH ◦ εH ,

(left cointegral) %H ◦ (idH ⊗ Λco
H ) ◦∆H = ηH ◦ Λco

H ,

(right cointegral) λH ◦ (Λco
H ⊗ idH) ◦∆H = ηH ◦ Λco

H .

One can use the integrals and cointegrals to test non-degeneracy of a Hopf pairing ωH :

Lemma 2.3 ([Ke2]). Assume that H ∈ C is a Hopf algebra with a right cointegral Λco
H : H → 1

and a Hopf pairing ωH . The Hopf pairing ωH is non-degenerate iff there exists a morphism

ΛH : 1→ H such that the cointegral Λco
H factors through ωH :

Λco
H =

[
H
∼−→ 1H

ΛH⊗id−−−−→ HH
ωH−−→ 1

]
.

If such a ΛH exists, it is automatically a left integral for H. A similar statement can be made

for left cointegrals.

2.3. Reconstruction of a Hopf algebra. Given a Hopf algebra A over a field k, let

coRep kA denote the category of finite-dimensional right corepresentations of a A over k.

We have the following well-known reconstruction theorem [Ul] (see also [CP, Thm. 5.1.11]):

Theorem 2.4. Let C be a k-linear abelian monoidal category with left duals and let F : C →
vectk be a fiber functor (i.e. a k-linear exact faithful monoidal functor into the category of

finite-dimensional k-vector spaces). Then there exists a Hopf algebra A over k such that

F factors monoidally as C → coRep kA
forget−−−→ vectk, where C → coRep kA is a k-linear

equivalence of monoidal categories.

This theorem can be formulated in a more general context [Ma1, Thm. 2.2], which we

now review. Let C be a monoidal category with left duals, let V be a braided monoidal

category with left duals, and let F : C → V be a monoidal functor (so V is a replacement for

vectk while F is a replacement for the fiber functor). In this situation there is a universal

property which characterises a Hopf algebra A internal to V such that F factors monoidally

as C → coRep VA
forget−−−→ V . Here, coRep VA is the category of A-comodules internal to V .

Existence of A is guaranteed under certain completeness conditions [Ma1], and we describe

such a situation in Section 4.2 below.

If C is in addition braided, one has the natural choice V = C, F = id, and we obtain a

universal property characterising a Hopf algebra in C which only depends on C. We will refer

to this Hopf algebra as the universal Hopf algebra for C.
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2.3.1. The universal Hopf algebra A. Let C be a braided monoidal category with left duals.

We now review the construction in [Ma1] in the special case V = C and F = id. As an object

in C, A is defined to represent the functor N : C → Set which on objects is given by

(2.26) N : V 7→ Nat(id, id⊗ V ) .

Here, id ⊗ V : C → C is the functor that sends an object to its tensor product with V . By

the overall assumption that all our categories are essentially small, the functor N does indeed

land in Set.

If a representing object exists, by definition it is equipped with a family of natural isomor-

phisms

(2.27) ϕV : C(A, V )
∼−−−−→ N(V ) = Nat(id, id⊗ V ) ,

and the pair (A, ϕV ) is uniquely defined up to a unique isomorphism.

In particular, for V = A we have the natural transformation

(2.28) ι̃ := ϕA(id) .

In terms of the morphisms ι̃X : X 7→ X ⊗ A, which are natural in X, we define the Hopf

algebra structure on A as follows.

(1) The comultiplication ∆A : A → A⊗A is defined by

(2.29) ϕA⊗A(∆A)X =
[
X

ι̃X−→ XA ι̃X⊗idA−−−−→ (XA)A ∼−→ X(AA)
]
.

(2) The counit εA : A → 1 is defined via the right unit isomorphism of C,

(2.30) ϕ1(εA)X =
[
X
∼−→ X1

]
.

In order to define the multiplication, we need to consider the functor N2 : C → Set acting

on objects as

(2.31) N2 : V 7→ Nat(−⊗−, (−⊗−)⊗ V ) ,

where the natural transformations are between two functors C×C → C. N2 is a kind of square

version of N. It is shown in [Ma1, Lem. 2.3] that this functor is representable by A⊗A. The

corresponding natural isomorphisms

(2.32) ϕ2
V : C(A⊗A, V )

∼−−→ N2(V )

are given by

(2.33) ϕ2
V (f)X,Y =

[
XY

ι̃X⊗ι̃Y−−−−→ (XA)(YA)
∼−→ X((AY )A)

id⊗cA,Y ⊗id
−−−−−−→ X((YA)A)

∼−→ X(Y (AA))
id⊗f−−→ X(Y V )

∼−→ (XY )V
]
.

(3) The multiplication µA ∈ C(A⊗A,A) is defined by the equality

(2.34) ϕ2
A(µA)X,Y =

[
XY

ι̃X⊗Y−−−→ (XY )A
]
.
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(4) The unit is given by ηA := λA ◦ ι̃1 : 1 → A, where λA : 1 ⊗ A → A is the left-unit

isomorphism of C.
(5) The antipode SA : A → A is defined by the equality

(2.35) ϕA(S)X =
[
X
∼−→ 1X

coevX ⊗id−−−−−−→ (XX∗)X
id⊗ι̃X∗⊗id−−−−−−→ (X(X∗A))X

id⊗c−1
A,X∗⊗id

−−−−−−−→ (X(AX∗))X ∼−→ X(A(X∗X))
id⊗evX−−−−→ X(A1)

∼−→ XA
]
.

The following theorem is shown in [Ma1, Sec. 2] (in the more general case of monoidal

functors F : C → V).

Theorem 2.5 (Part 1). Let A be an object representing N in (2.26). Then (1)-(5) endow A
with the structure of a Hopf algebra in C.

The above construction also provides us with a functor R : C → coRep CA. Namely, for

each X ∈ C consider the morphism ι̃X : X → X ⊗A. It is immediate from the definition of

A that this defines a right comodule structure on X. Naturality of ι̃ implies that morphisms

in C become comodule morphisms in coRep CA. Furthermore, it is straightforward to check

that R is strictly monoidal (i.e. via the identity morphisms R(X) ⊗ R(Y ) = R(X ⊗ Y ),

R(1) = 1). Altogether we see that the identity functor on C factors monoidally as

(2.36) idC =
[
C R−→ coRep CA

forget−−−→ C
]
.

(And this is indeed an equality, not just an equivalence.)

Theorem 2.5 (Part 2). The Hopf algebra A is universal in the sense that if A′ is another Hopf

algebra in C such that the identity functor factors monoidally as C → coRepCA′ → C as in

(2.36), then there exists a unique Hopf algebra map A → A′ and thus the corresponding functor

coRepCA → coRepCA′ such that the functor C → coRepCA′ equals the composition C →
coRepCA → coRepCA′.

2.3.2. Hopf pairing for A. The “inverse monodromy” natural isomorphisms c−1
X,Y ◦ c

−1
Y,X :

X ⊗ Y → X ⊗ Y of C can be used to define a pairing on the universal Hopf algebra A.

Namely, define the morphism ωA : A⊗A → 1 via

(2.37) ϕ2
1(ωA)X,Y =

[
XY

c−1
Y,X−−→ Y X

c−1
X,Y−−→ XY

∼−→ (XY )1
]
,

where the family ϕ2
1(f)X,Y was defined in (2.33). The following proposition is a corollary

to Theorem 3.6 and Proposition 3.9 below, where we give an alternative description of the

universal Hopf algebra A and of the pairing ωA in terms of coends.

Proposition 2.6. Suppose that the universal Hopf algebra A ∈ C exists. Then the pairing

ωA : A⊗A → 1 is a Hopf pairing for A.
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We remark that if one were to use the monodromy isomorphism cY,X ◦ cX,Y instead of the

inverse monodromy in (2.37) one would not obtain a Hopf pairing in the sense of (2.21).

In particular, if the universal Hopf algebra exists it is automatically equipped with a Hopf

algebra map

(2.38) DA : A → A∗ ,

as defined in (2.24). We note that in case C is the category of representations of a Hopf

algebra over a field, DA specialises to the Drinfeld map composed with an isomorphism to

the double dual (see Remark 6.6 (2) below).

Later in this paper we will be particularly interested in situations where DA is invertible,

or, equivalently, where ωA is non-degenerate (recall Definition 2.2).

3. The universal Hopf-algebra via coends

In this section, we first recall standard facts about coends in general. We then review a

construction due to [Ly1] which gives a Hopf algebra structure together with a Hopf pairing

on a certain coend for a braided monoidal category with left duals. We elaborate on the

observation in [Ly1] that this coend provides an alternative description of the universal Hopf

algebra from Section 2.3.1

Using the coend description, in [Ly1] a projective SL(2,Z) is defined on the space of

invariants of A, which we recall in Section 5.1.

3.1. The universal property of coends. Let C and D be any categories, denote by Cop

the opposite category with reversed morphisms, and let F : Cop × C → D be a functor. We

recall the definition of a dinatural transformation from the functor F to an object B ∈ D in

Appendix A and recall here the notion of a coend [McL].

Definition 3.1. A coend (C, ι) of a functor F : Cop × C → D is an object C ∈ D endowed

with a dinatural transformation ι : F
..−→ C, see Definition A.2 (1), satisfying the following

universal property: for any dinatural transformation φ : F
..−→ B there is a unique g ∈

D(C,B) such that the following diagram commutes for all U ∈ C:

(3.1) F (U,U)
ιU

{{

φU

##
C

∃! g
// B

or, in other words, any dinatural transformation φ : F
..−→ B factors through the coend of F

in a unique way: φU = g ◦ ιU for all U ∈ C.
1 In [Ly1, p. 289], the relation between the universal Hopf algebra and the coend is explained by: “In [9] a

Hopf algebra Aut C was introduced. It can be represented as a coend AutC ∼= F =
∫X∈C

X ⊗X∨.” We hope

it to be helpful to provide some additional details in Section 3.4.
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A coend is unique up to unique isomorphism, so that we may refer to ‘the coend’. A

common notation for the coend is C =
∫ U∈C

F (U,U). For brevity, we will often just write C

for the coend instead of the pair (C, ι).

We will also need multiple or iterated coends
∫ U∈B ∫ V ∈C

F (U,U, V, V ) of a functor

(3.2) F : Bop × B × Cop × C → D .

These are defined by considering first the functor F as the functor F̃ : Cop × C → Fun(Bop ×
B,D) to the category of functors from Bop × B to D, and assuming that the coend of F̃

exists as an object in this category of functors. We can then consider the coend of this

coend-object
∫ V ∈C

F (−,−, V, V ), which is by definition the iterated coend of F from above.

Alternatively, we could first take the coend (or “integration”) over objects in B as the ob-

ject
∫ U∈B

F (U,U,−,−) in the category of functors from Cop × C to D and take then the

corresponding coend (or “integration”) over objects in C. This gives another iterated coend∫ V ∈C ∫ U∈B
F (U,U, V, V ). Finally, one can consider the “double coend”, that is, the coend for

the functor

(3.3) (B × C)op × (B × C) ∼−−→ Bop × B × Cop × C F−−→ D ,

which we write as
∫ (U,V )∈B×C

F (U,U, V, V ). The iterated coends and the double coend can be

compared by a “Fubini theorem” (see e.g. [McL, IX.8]).

Proposition 3.2. Let B, C be categories and let F : Bop × B × Cop × C → D be a functor.

Consider the three coends∫ U∈B ∫ V ∈C
F (U,U, V, V ) ,

∫ (U,V )∈B×C
F (U,U, V, V ) ,

∫ V ∈C ∫ U∈B
F (U,U, V, V ) .

If any one of them exists, then so do the other two, and all three are canonically isomorphic.

We can similarly define higher iterated and multiple coends, up to a unique isomorphism.

Remark 3.3.

(1) We can define the category DIN(F ) of dinatural transformations for F : objects are

pairs (B, ι) and morphisms between two dinatural transformations (B, ι) and (B′, φ) are

defined as DIN(F )
(
(B, ι), (B′, φ)

)
:= {f ∈ D(B,B′) : φ = f ◦ ι}. Coends are then the

initial objects in DIN(F ). (And ends are terminal objects, but we only use these in

Section 4.4 below.)

(2) We will later use the following important property of a coend C: to define a morphism

C → B (e.g. for B = C ⊗ C below) is enough to fix a morphism from F (U,U) to B for

all U ∈ C and such that it is dinatural. This is due to the universal property of C: there

is a one-to-one correspondence between the set Din(F,B) of dinatural transformations

ι : F
..−→ B and the set D(C,B). Similarly, by Proposition 3.2 the iterated coend C =∫ U∈B ∫ V ∈C

F (U,U, V, V ) of a functor F : Bop×B×Cop×C → D has the following universal
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property: any transformation of F dinatural in both the arguments (for B and C) to an

object in D factors uniquely through the iterated coend.

3.2. The coend L. Let C be a braided monoidal category with left duals. We will now focus

on the coend of the functor

(3.4) F :=
[
Cop × C (−)∗×idC−−−−−→ C × C ⊗−−−−→ C

]
,

i.e. the functor which acts on objects and morphisms as (U, V ) 7→ U∗⊗V and (f, g) 7→ f ∗⊗g.

We denote this coend as

(3.5) L :=

∫ U∈C
U∗ ⊗ U ,

and the corresponding family of dinatural transformations as

(3.6) ιX : X∗ ⊗X −→ L , X ∈ C .

We will abbreviate the morphism ιX in string diagrams as

(3.7) ιX :=

L

X∗ X

Dinaturality means here that for all X, Y ∈ C and f ∈ C(X, Y ) we have

(3.8) ιY ◦ (idY ∗ ⊗ f) = ιX ◦ (f ∗ ⊗ idX) .

In string diagram notation, this equality reads

(3.9)

L

ιY

f

Y ∗ X

=

L

ιX

f∗

Y ∗ X

.

Remark 3.4. Consider the functor F : Cop × C × Cop × C −→ C which is defined on objects

and morphisms as

(3.10) F : (U, V,X, Y ) 7→ U∗ ⊗ V ⊗X∗ ⊗ Y , (f, g, h, k) 7→ f ∗ ⊗ g ⊗ h∗ ⊗ k .

It follows from the relation to iterated coends in Proposition 3.2 that the double coend is

given by

(3.11)

∫ (U,V )∈C×C
F (U,U, V, V ) = L ⊗ L ,
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with dinatural family ιU,V = ιU ⊗ ιV . As explained in Remark 3.3 (2), by the universal

property of L⊗L, any dinatural family φU,V from U∗ ⊗ U ⊗ V ∗ ⊗ V (dinatural in U and V )

to an object B ∈ C uniquely factors through a map g : L ⊗ L → B as φU,V = g ◦ (ιU ⊗ ιV ).

3.3. Hopf algebra structure and Hopf pairing on L. Let again C be a braided monoidal

category with left duals and assume that the coend L defined in (3.5) exists. Following [Ly1]

we now use the universal properties of the coends L and L ⊗ L (as in Remark 3.3 (2) and

Remark 3.4) to define the structure morphisms of a Hopf algebra on L and endow it with a

Hopf pairing. For example, instead of giving the map ∆L : L → L⊗L explicitly, we give the

corresponding dinatural transformation U∗ ⊗ U → L⊗L, etc.

In giving the dinatural transformations defining the product, coproduct, etc. on L, we will

write out all coherence isomorphisms of C explicitly. This involves choices and we will use the

precise form given below to derive explicit expressions for all structure morphisms in the case

of representations of a quasi-triangular quasi-Hopf algebra in Section 7. Other combinations

of associator and unit isomorphisms lead to the same structure morphisms, but the explicit

formulas in terms of the data of the quasi-Hopf algebra would look differently.

We will need Drinfeld’s canonical isomorphism uV : V → V ∗∗ between V and its double

dual V ∗∗, as well as a variant of it which uses the inverse braiding, and which we call ũV :

(3.12) uV =

V V ∗ V ∗∗

V ∗ V

, ũV =

V V ∗ V ∗∗

V ∗ V

.

As a composition of structure morphisms, this reads

uV =
[
V

%−1
V−−→ V 1

id⊗coevV ∗−−−−−−→ V (V ∗V ∗∗)
αV,V ∗,V ∗∗−−−−−−→ (V V ∗)V ∗∗(3.13)

cV,V ∗⊗id
−−−−−→ (V ∗V )V ∗∗

evV ⊗id−−−−→ 1V ∗∗
λV ∗∗−−−→ V ∗∗

]
,

ũV =
[
V

%−1
V−−→ V 1

id⊗coevV ∗−−−−−−→ V (V ∗V ∗∗)
αV,V ∗,V ∗∗−−−−−−→ (V V ∗)V ∗∗(3.14)

c−1
V ∗,V ⊗id

−−−−−→ (V ∗V )V ∗∗
evV ⊗id−−−−→ 1V ∗∗

λV ∗∗−−−→ V ∗∗
]
.

Remark 3.5. Suppose for a moment that C is in addition ribbon. Then it is in particular

pivotal, and we write δV : V → V ∗∗ for the pivotal structure. In this situation, uV and ũV
are related by uV = δV ◦ θ−1

V and ũV = δV ◦ θV (cf. Section 6.5).

Recall our Hopf-algebra conventions in Definition 2.1 and also the isomorphism γU,V from

(2.10). The structure morphisms on L are defined as follows.
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L
µL

L L

ιU ιV

U∗ U V ∗ V

:=

L

ιV⊗U

(V ⊗ U)∗ V ⊗ U

γV,U id

U∗ U V ∗ V

,

L L

∆L

L

ιU

U∗ U

:=

L L

ιU ιU

U∗ U

,

L

ηL

:=

L

ι1

λ
%−1

,

εL

ιU

U∗ U

:=

U∗ U

,

L

SL

ιU

U∗ U

:=

L
ιU∗

U∗ U

.

Figure 1. Hopf algebra structure on the coend L ∈ C. Here, γV,U is the

canonical isomorphism U∗ ⊗ V ∗ → (V ⊗ U)∗ defined by (2.10).

(1) (Multiplication) µL : L ⊗ L → L is determined by the universal property of the double

coend L ⊗ L via, for all U, V ∈ C,

µL ◦ (ιU ⊗ ιV ) =
[

(U∗U)(V ∗V )
α−1
U∗,U,V ∗V−−−−−−→ U∗(U(V ∗V ))(3.15)

id⊗cU,V ∗V−−−−−−→ U∗((V ∗V )U)
id⊗α−1

V ∗,V,U−−−−−−→ U∗(V ∗(V U))

αU∗,V ∗,V U−−−−−−→ (U∗V ∗)(V U)
γV,U⊗id
−−−−→ (V U)∗(V U)

ιV⊗U−−−→ L
]
.

(2) (Unit) ηL : 1→ L is defined directly as

ηL =
[

1
λ−1
1−−→ 11

(2.12)−1⊗id−−−−−−→ 1∗1
ι1−→ L

]
(3.16)

(∗)
=
[

1
coev1−−−→ 11∗

λ1∗−−→ 1∗
%−1
1∗−−→ 1∗1

ι1−→ L
]
,

where (*) follows from the zig-zag identity for ev1 and coev1 and naturality of the unit-

isomorphisms λ, %.

(3) (Coproduct) ∆L : L → L⊗L is determined by the universal property of the coend L via,

for all U ∈ C,

∆L ◦ ιU =
[
U∗U

id⊗λ−1
U−−−−→ U∗(1U)

id⊗coevU ⊗id−−−−−−−→ U∗((UU∗)U)(3.17)
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id⊗α−1
U,U∗,U−−−−−−→ U∗(U(U∗U))

αU∗,U,U∗U−−−−−−→ (U∗U)(U∗U)
ιU⊗ιU−−−→ L⊗ L

]
.

(4) (Counit) εL : L → 1 is determined by, for all U ∈ C,

εL ◦ ιU , =
[
U∗U

evU−−−→ 1
]
.(3.18)

(5) (Antipode) SL : L → L is determined by, for all U ∈ C,

SL ◦ ιU =
[
U∗U

cU∗,U−−−→ UU∗
ũU⊗id−−−→ U∗∗U∗

ιU∗−−→ L
]
.(3.19)

These defining relations are given in string diagram notation in Figure 1.

Finally, we define a pairing on L using the universal property of L ⊗ L via the condition

that for all U, V ∈ C,

ωL ◦ (ιU ⊗ ιV ) =
[

(U∗U)(V ∗V )
α−1
U∗,U,V ∗V−−−−−−→ U∗(U(V ∗V ))

id⊗αU,V ∗,V−−−−−−→ U∗((UV ∗)V )(3.20)

id⊗(cV ∗,U◦cU,V ∗ )⊗id
−−−−−−−−−−−−→ U∗((UV ∗)V )

id⊗α−1
U,V ∗,V−−−−−−→ U∗(U(V ∗V ))

id⊗id⊗evV−−−−−−→ U∗(U1)
id⊗%U−−−→ U∗U

evU−−→ 1
]
.

In string diagram notation this reads

(3.21) L L

ιU ιV

U∗ U V ∗ V

ωL

:=

U∗ U V ∗ V

We gather all the structures so far defined on the coend L in the following theorem.

Theorem 3.6 ([Ly1]). Let C be a braided monoidal category with left duals. If the coend L
from (3.5) exists, the morphisms defined by (3.15)–(3.19) turn it into a Hopf algebra in C.

The pairing (3.20) is a Hopf pairing for L.

3.4. Relation between the universal Hopf algebra in C and the coend L. Let C
be a braided monoidal category with left duals. At this point we have introduced two Hopf

algebras in C together with a Hopf pairing, subject to existence of solutions to certain universal

properties: on the one hand, the universal Hopf algebra A from Theorem 2.5, and on the other

hand the coend L from Theorem 3.6. In this section we show that A and L are canonically

isomorphic as Hopf algebras with Hopf pairing.

To describe the isomorphism, we need to consider two functors D,N : C → Set. Denote

by Din(F, V ) the set of dinatural transformations j : F
..−→ V , where F = (−)∗ ⊗ (−) :

Cop × C → C is the functor from (3.4). The first functor is D := Din(F,−). The second
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functor is N = Nat(id, id ⊗ −) as already defined in (2.26). We have the following simple

lemma.

Lemma 3.7. The family of maps of sets ζV : D(V )→ N(V ), V ∈ C, given by, for j ∈ D(V ),

(3.22) (ζV (j))X = j̃X :=
[
X
∼−→ 1X

coevX ⊗id−−−−−−→ (XX∗)X
∼−→ X(X∗X)

id⊗jX−−−→ XV
]
,

defines a natural isomorphism ζ : D→ N.

Proof. Using the zig-zag property of the evaluation and coevaluation maps, one easily checks

that the map

(3.23) ζ−1
V : j̃X 7→

[
X∗X

id⊗j̃X−−−→ X∗(XV )
∼−→ (X∗X)V

evX ⊗id−−−−→ 1V
∼−→ V

]
is the inverse to (3.22). The naturality of ζ follows from dinaturality of j. �

Suppose the coend (L, (ιV )V ∈C) from (3.5) exists in C. Recall from Remark 3.3 (2) that

there is a natural isomorphism C(L, V )
∼−→ Din(F, V ), given by f 7→ f ◦ι. In other words, the

coend L represents the functor D, while by definition the universal Hopf algebra A represents

the functor N, see Section 2.3.1. Therefore, we have following corollary to Lemma 3.7.

Corollary 3.8. If (L, ι) is a coend for the functor F = (−)∗ ⊗ (−), then (L, ϕ) with

(3.24) ϕV : C(L, V )→ Nat(id, id⊗ V ) , (ϕV (f))X = (ζV (f ◦ ι))X : X → X ⊗ V

represents N, with ζV defined in (3.22).

Conversely, if (A, ϕ) represents N, then (A, ιX = ζ−1
A (ι̃X)), with ζ−1 from (3.23) and ι̃

from (2.28), is a coend for the functor F .

In particular, the coend L exists in C if and only if the representing object A exists.

Proposition 3.9. Suppose the coend (L, ι) exists, and denote by (L, ϕ) the corresponding

representing object for N obtained from Corollary 3.8. The Hopf algebra structure morphisms

and the Hopf pairing defined on L in Theorem 2.5 and Proposition 2.6 via the representing

object property of (L, ϕ) are equal to those defined on L in Theorem 3.6 via the coend property

of (L, ι).

The proof of this proposition is given in Appendix B.

In what follows we will mostly work with the description of the universal Hopf algebra as

a coend, as this is the framework used in [Ly1, Ly2] to obtain mapping class group actions

on certain Hom spaces, see Section 5.1 below.
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4. Factorisable finite tensor categories

In this section we apply the construction of the universal Hopf algebra in the case of braided

finite tensor categories. It is known that for such categories, the universal Hopf algebra exists

(see Section 4.2). The Hopf pairing appears as one of several equivalent ways of characterising

factorisability of such a category (see Sections 4.3 and 4.4).

4.1. Finite tensor categories. Let k be a field. Following [EO], by a finite tensor category

C we mean:

• C is a finite abelian k-linear category. Here finite means that C is equivalent, as a k-linear

category, to the category of finite-dimensional representations of a finite-dimensional k-

algebra. In particular, C is essentially small.

• C is a rigid monoidal category with simple tensor unit 1, such that the tensor product is

a k-linear functor in each argument. As C is rigid, the tensor product is automatically

exact in each argument, see e.g. [BK, Prop. 2.1.8].

We note that in a finite tensor category, the dual of a projective object is again projective

(see e.g. [EGNO, Sec. 6.1]), and so each projective object is also injective.

The finiteness condition implies the following useful representability property (see e.g. [DSS,

Cor. 1.10]).

Lemma 4.1. Let A be a finite k-linear abelian category and let F : A → vectk be a k-linear

left exact functor from A to finite-dimensional k-vector spaces. Then F is representable, i.e.

there is A ∈ A such that A(A,−) is naturally isomorphic to F .

This result follows from the more general observation that a k-linear left exact functor

between two finite k-linear abelian categories admits a left adjoint (see e.g. [DSS, Cor. 1.9]).

Indeed, in the case of the above lemma, if we denote the left adjoint of F by G, we have

F(X) ∼= Homk(k,F(X)) ∼= A(G(k), X).

4.2. Existence of the universal Hopf algebra. Let k be a field and let C be a k-linear

braided finite tensor category. Using exactness of the tensor product, it is straightforward

to verify that the functor N : C → vectk from (2.26) is left exact. Lemma 4.1 now implies

[Ma1, Ly1]:

Proposition 4.2. The universal Hopf algebra from Theorem 2.5 exists in C.

Since we will mostly use the coend perspective (Proposition 3.9), we will denote the uni-

versal Hopf algebra in C by L in what follows.

We can describe L more explicitly as a cokernel. Since C is finite, it contains a projective

generator G. The coend can be written as a quotient of G∗ ⊗G:



22 V. FARSAD, A.M. GAINUTDINOV, I. RUNKEL

Proposition 4.3 ([KL, Cor. 5.1.8]). We have the short exact sequence

(4.1) 0 −→ K −→ G∗ ⊗G π−−−→ L −→ 0

where K is the image of the map
⊕

i(f
∗
i ⊗ id − id ⊗ fi) :

⊕
iG
∗ ⊗ G −→ G∗ ⊗ G and the

direct sum is taken over a basis {fi ∈ EndC(G)}.

Note that K in the above proposition is independent of the choice of the basis in EndC(G).

Remark 4.4. The coend L is equipped with the family of dinatural transformations ιX :

X∗ ⊗ X → L. The latter can be defined in terms of the surjective map π from (4.1) as

follows: note first that the map π in (4.1) is by definition ιG; we fix then a surjective map

fX : G⊕m → X (for some m ≥ 1) and define ιX by the equality of the (composition of the)

maps

(4.2) [X∗ ⊗G⊕m idX∗⊗fX−−−−−−→ X∗ ⊗X ιX−−→ L] = [X∗ ⊗G⊕m
f∗X⊗id
−−−−→ (G⊕m)∗ ⊗G⊕m

ιG⊕m−−−−→ L]

or graphically

(4.3)

L
ιX

X∗

X

fX

G⊕m

=

L
ιG⊕m

X∗

(G⊕m)∗

f∗X

G⊕m

where ιG⊕m is defined using (4.2) for X = G and recall that ιG = π is given to us.

We can describe L as a quotient of an even smaller projective object. Namely, the surjective

map π in (4.1) factors through a ‘diagonal’ product of the projective covers in C. Indeed, let

(4.4) Irr(C)

be a choice of representatives of the isomorphism classes of simple objects in C and let us

denote by PU a projective cover of U ∈ Irr(C).

Proposition 4.5. We have the short exact sequence

(4.5) 0 −→ W −→
⊕

U∈Irr(C)

P ∗U ⊗ PU
π̃−−−→ L −→ 0

where the object W (i.e. the kernel of π̃) is the union in
⊕

U P
∗
U ⊗ PU of the images2

(4.6) im(f ∗ ⊗ idPU
) , im(idP ∗V ⊗ f) , for U, V ∈ Irr(C) , U 6= V , f : PU → PV ,

2 That is, the smallest subobject of
⊕

U P
∗
U ⊗ PU containing all these images.
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and

(4.7) im(f ∗ ⊗ idPU
− idPU∗ ⊗ f) , for U ∈ Irr(C) , f : PU → PU .

Proof. In the exact sequence (4.1), we can choose G as the minimal projective generator

G = ⊕U∈Irr(C)PU in C. Denote the (primitive) idempotents in EndC(G) by eU : G→ PU → G,

for U ∈ Irr(C). The image of the map e∗U ⊗ id− id⊗ eU ∈ EndC(G
∗ ⊗G) equals

⊕
V 6=U P

∗
U ⊗

PV ⊕ P ∗V ⊗ PU . Therefore, the kernel K of π contains all P ∗U ⊗ PV such that V � U , and the

map π factors through a map π̃ from the diagonal part of G∗ ⊗G to L:

(4.8) π : G∗ ⊗G −→
⊕

U∈Irr(C)

P ∗U ⊗ PU
π̃−−−→ L .

We compute the kernel W of π̃ using the rest of the basis elements in EndC(G), those in the

radical, and it gives the span of (4.6) and (4.7). �

Remark 4.6. If C is semisimple, then by using (4.5) with PU = U we see that the coend L
is the direct sum over (isomorphism classes of) simple objects:

(4.9) L =
⊕

U∈Irr(C)

U∗ ⊗ U .

The corresponding family of dinatural transformations can be easily described using the

corresponding embeddings iU : U∗ ⊗ U → L, for details see [Ke2, Lem. 2].

4.3. Factorisability of a braided finite tensor category. Let k be a field and let C be

a k-linear braided finite tensor category.

By Proposition 4.2, the universal Hopf algebra L exists in C, and by Theorem 3.6 it is

equipped with a Hopf pairing ωL : L ⊗ L → 1. Recall from Definition 2.2 that ωL is called

non-degenerate if the Hopf algebra homomorphism DL : L → L∗ in (2.24) is an isomorphism.

Note that the kernel of DL is the left annihilator of ωL.

Definition 4.7. C is called factorisable if the Hopf pairing ωL is non-degenerate.3

In particular, in a factorisable finite tensor category the universal Hopf algebra L is self-dual

as a Hopf algebra.

Next we recall three more natural non-degeneracy conditions on the braiding of C and then

quote a theorem from [Sh2] which states that for k algebraically closed, they are all equivalent

3This definition is due to [Ly1, KL] where the name ‘modular’ is used. The usual definition of “modular

tensor category” implies semisimplicity. But in view of fact that the qualifier “modular” is motivated by

the projective action of the modular group, it would equally make good sense to speak of “modular fusion

category” and of “modular finite tensor category”. However, to avoid confusion we stick to the term “fac-

torisable” in this paper, which is motivated from the application to Hopf algebras and quasi-Hopf algebras

(see Section 6).
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to Definition 4.7. A fourth equivalent condition will be given later (Proposition 4.11). We

will need the k-linear map

(4.10) Ω : C(1,L) −→ C(L,1) , a 7→ ωL ◦ (a⊗ id) ◦ λ−1
L .

The three conditions are:

(1) The linear map Ω from (4.10) is an isomorphism.

(2) Every transparent object in C is isomorphic to a direct sum of tensor units. (T ∈ C is

transparent if for all X ∈ C, cX,T ◦ cT,X = idT⊗X .)

(3) The canonical braided monoidal functor C� C → Z(C) is an equivalence. (Here, � is the

Deligne product, C is the same tensor category as C, but has inverse braiding, and Z(C)
is the Drinfeld centre of C.)

Theorem 4.8 ([Sh2]). A braided finite tensor category over an algebraically closed field is

factorisable if and only if any one of the conditions (1)–(3) is satisfied.

Remark 4.9. In the case that C is semisimple, this equivalence was already known from

[Br, Mü]. C is then a modular tensor category (minus the ribbon structure), and condition

(1) above encodes the non-degeneracy of the S-matrix whose entries given by the quantum

traces of the monodromy of pairs of simple objects (see [Sh2, Sec. 5.1] for details).

The following result is instrumental in the construction of the projective SL(2,Z)-action

below.

Proposition 4.10 ([Ly1] and [KL, Sect. 5.2.3]). If C factorisable, the coend L has a two-sided

(that is, a simultaneous left and right) integral ΛL : 1→ L satisfying

(4.11) ωL ◦ (ΛL ⊗ ΛL) ◦ λ−1
1 = k id1

for some k ∈ k×. If Λ′L is another such integral, then Λ′L = rΛL for some r ∈ k×.

If k has square roots we can normalise ΛL in (4.11) such that k = 1. In this normalisation,

ΛL is unique up to a sign.

4.4. Factorisability as an isomorphism between end and coend. Let C be a finite

braided tensor category over a field k. Recall our functor F = (−)∗⊗ (−) : Cop×C → C from

(3.4) and that the coend L represents the functor D = Din(F,−) : C → vectk. The coend L
can be thought of as the dual notion to the end of the functor

(4.12) G := (−)⊗ (−)∗ : C × Cop → C

(note the change of the order in the tensor product). The end of G is an object in C represent-

ing the functor Din(−, G) : C → vectk, see Definition A.2 (2). We will denote such an object

(if it exists) as Γ together with its family of dinatural transformations jX : Γ→ X⊗X∗. The

dinaturality condition is now (compare with (3.8))

(4.13) (idY ⊗ f ∗) ◦ jY = (f ⊗ idX∗) ◦ jX for all f : X → Y .
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An end Γ exists by similar arguments as for coends in Section 4.2. The existence also

follows from Lemma 4.12 given below. As was the case for coends, ends are unique up to a

unique isomorphism.

Consider a family of maps

(4.14) TX,Y : X∗ ⊗X → Y ⊗ Y ∗ , X, Y ∈ C .

Suppose that for fixed Y the family (tX)X∈C with tX := TX,Y is a dinatural transformation

from F to Y ⊗ Y ∗, and that for fixed X the family (t′Y )Y ∈C with t′Y := TX,Y is a dinatural

transformation from X∗⊗X to G (see Definition A.2). Using the universal properties of ends

and coends, one easily checks that there exists a unique D : L → Γ such that TX,Y factors as

TX,Y = jY ◦D ◦ ιX for all X, Y ∈ C.
Consider now a special (“Hopf tangle”) dinatural transformation TX,Y defined explicitly as

TX,Y :=
[
X∗X

∼−−→ X∗(X1)
id⊗coevY−−−−−→ X∗(X(Y Y ∗))

id⊗αX,Y,Y ∗−−−−−−→ X∗((XY )Y ∗)(4.15)

id⊗(cY,X◦cX,Y )⊗id
−−−−−−−−−−−→ X∗((XY )Y ∗)

id⊗α−1
X,Y,Y ∗−−−−−−→ X∗(X(Y Y ∗))

αX∗,X,Y Y ∗−−−−−−→ (X∗X)(Y Y ∗)
evX ⊗id−−−−→ 1(Y Y ∗)

∼−−→ Y Y ∗
]
.

The corresponding diagram is

(4.16) TX,Y =

X∗ X

Y Y ∗

Y Y ∗

.

By the above discussion, this map factors through a unique map DL,Γ : L → Γ such that

(4.17) TX,Y = jY ◦ DL,Γ ◦ ιX .

We call DL,Γ the Drinfeld map for the category C. The reason for this is two-fold. Firstly,

in case C is the category of finite-dimensional representations of a finite-dimensional quasi-

triangular Hopf algebra, and for an appropriate choice of end and coend, DL,Γ is precisely

the Drinfeld map, see Remark 7.7 below. Secondly, invertibility of the map DL,Γ provides

another equivalent formulation of factorisability of C:

Proposition 4.11. C is factorisable iff DL,Γ is invertible.
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The proof requires the following lemma, which makes use of the canonical isomorphism

X → (∗X)∗ in a rigid category, which is given by

dX =
[
X

∼−−→ X1
id⊗coev∗X−−−−−−→ X(∗X(∗X)∗)(4.18)

∼−−→ (X ∗X)(∗X)∗
ẽvX⊗id−−−−→ 1(∗X)∗

∼−−→ (∗X)∗
]
.

Lemma 4.12. The pair (L, ι) is a coend of F = (−)∗ ⊗ (−) iff the pair (L∗, ι̂) with

(4.19) ι̂X =

L∗

ι∗X

X X∗

X X∗

X ∗X

dX

(∗X)∗

is an end for the functor G = (−)⊗ (−)∗.

Proof. The dinaturality condition (4.13) on ι̂X is easily verified from the diagram (4.19) using

the dinaturality of ι and naturality of dX . The universal property of (L∗, ι̂) is proven using

the universal property of (L, ι). �

Proof of Proposition 4.11. By definition, C is factorisable if the map DL defined in (2.24) is

invertible (Definitions 4.7 and 2.2).

Consider the end (L∗, ι̂) from Lemma 4.12. We will start by showing that DL,L∗ = DL. By

the unique factorisation property explained above, it is enough to show that for all X, Y ∈ C
we have ι̂Y ◦ DL,L∗ ◦ ιX = ι̂Y ◦ DL ◦ ιX . Using (4.17) we see that we need to show

(4.20) ι̂Y ◦ DL ◦ ιX = TX,Y
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with TX,Y as in (4.15). Substituting (2.24), (3.21), (4.19) and (4.18) into the left hand side

of (4.20) and using the zig-zag identity for the duality maps on L once gives

(4.21)

X∗ X

L
ιX ι∗Y

Y ∗Y (∗Y )∗ ∗Y Y Y ∗

L

ωL

Y Y ∗

(∗)
=

X∗ X

Y ∗Y Y ∗Y

Y Y ∗

,

where in (*) the zig-zag identity for duality morphisms was used once again. Using the zig-zag

identity once more, we find the right hand side of (4.20).

For an end (Γ, j), there is a unique isomorphism φ : (L∗, ι̂) ∼−→ (Γ, j) such that the diagram

(4.22) X ⊗X∗

L∗
φ

//

ι̂X
::

Γ

jX
cc

commutes. Then we have DL,Γ = φ ◦ DL,L∗ because by definition we have

(4.23) jY ◦ DL,Γ ◦ ιX = TX,Y = ι̂Y ◦ DL,L∗ ◦ ιX = jY ◦ φ ◦ DL,L∗ ◦ ιX .

Therefore, DL,Γ is invertible iff DL is and so iff the Hopf pairing ωL is non-degenerate. �

5. SL(2,Z)-action for factorisable finite tensor categories

For factorisable finite ribbon categories C with universal Hopf algebra L, one can define a

projective SL(2,Z)-action on C(1,L) (Section 5.1), and on the k-vector space End(idC). The

second action is independent of the choice of L (Proposition 5.3). In Section 5.2 we discuss

different ways to transport internal characters from C(1,L) to End(idC).

5.1. Projective SL(2,Z)-action. Let k be a field and let C be a factorisable finite tensor

category over k. We assume that (4.11) has a solution with k = 1 (e.g. if k is algebraically

closed). We furthermore assume that C is ribbon, and we will denote the ribbon twist on

V ∈ C by θV : V → V .

In this section we review from [Ly1] the projective SL(2,Z)-action on the Hom-space

C(1,L) and on the vector space End(idC), the natural endomorphisms of the identity functor.

We start by introducing the monodromy morphism Q : L ⊗ L → L⊗ L as

Q ◦ (ιU ⊗ ιV ) =
[
(U∗U)(V ∗V )

α−1
U∗,U,V ∗V−−−−−−→ U∗(U(V ∗V ))

id⊗αU,V ∗,V−−−−−−→ U∗((UV ∗)V )(5.1)
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id⊗(cV ∗,U◦cU,V ∗ )⊗id
−−−−−−−−−−−−→ U∗((UV ∗)V )

id⊗α−1
U,V ∗,V−−−−−−→ U∗(U(V ∗V ))

αU∗,U,V ∗V−−−−−−→ (U∗U)(V ∗V )
ιU⊗ιV−−−→ L⊗ L

]
,

or, in string diagram notation,

(5.2)

L L

L L

ιU ιV

U∗ U V ∗ V

Q

=

L L

ιU ιV

U∗ U V ∗ V

The Hopf pairing in (3.20) is related to Q as

ωL =
[
LL Q−→ LL εL⊗εL−−−−→ 11

∼−→ 1
]
.(5.3)

Following [Ly1], we introduce two endomorphisms S,T : L → L, which will then be used

to define the action of the S- and T -generator of SL(2,Z). We take the integral given to us

by Proposition 4.10 to be normalised such that

(5.4) ωL ◦ (ΛL ⊗ ΛL) ◦ λ−1
1 = id1

(as is possible by our assumptions on k). Recall that this fixes ΛL up to a sign. We set

(5.5) S = λL ◦ (εL ⊗ id) ◦ Q ◦ (id⊗ ΛL) ◦ %−1
L , T ◦ ιU = ιU ◦ (id⊗ θU) for all U ∈ C .

In terms of string diagrams we have

(5.6) S =

L
ΛL

Q

L

,

L

T

ιU

U∗ U

=

L

ιU

U∗ U

Theorem 5.1 ([Ly1]). The endomorphisms S,T from (5.5) satisfy

(ST)3 = λ S2 , S2 = S−1
L , ,(5.7)

for some constant λ ∈ k∗.
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It is not hard to verify directly from the definition in (3.19) that the antipode of L squares

to the ribbon twist,

(5.8) SL ◦ SL = θL .

Thus, the relations in Theorem 5.1 also imply S4 = θ−1
L .

By the S- and T -generators of SL(2,Z) we mean the 2×2 matrices S =
(

0 −1
1 0

)
and T =(

1 1
0 1

)
, respectively. One can describe SL(2,Z) as the group freely generated by S and T

subject to the relations

(5.9) (ST)3 = S2 , S4 = id .

Therefore, as an immediate consequence of Theorem 5.1 we have:

Corollary 5.2. The k-vector space C(1,L) carries a projective action of SL(2,Z) where the

action of S and T is given by, for f ∈ C(1,L),

(5.10) S.f := S ◦ f , T.f := T ◦ f .

Proof. The first relation in (5.9) is just the first relation in (5.7) (up to the projectivity

factor). The second relation in (5.9) follows from (5.7) and (5.8), together with naturality of

the ribbon twist: S4.f = S4 ◦ f = θ−1
L ◦ f = f ◦ θ−1

1 = f . �

The universal Hopf algebra L is only unique up to unique isomorphism, and in the above

projective representation of SL(2,Z) already the underlying vector space depends on L. It

can be helpful to have a variant of the action which is manifestly independent of the choice

of L (up to the choice of the sign of the integral). This can be achieved by transporting the

action to End(idC), as we explain next (see [Ly1, Sh1]).

We start by defining two k-linear isomorphisms

(5.11) ρ : C(L,1)→ C(1,L) , ψ : End(idC)→ C(L,1) .

Their values on f ∈ C(L,1) and α ∈ End(idC) are determined by

ρ(f) =
[
1

ΛL−→ L ∆L−−→ LL f⊗id−−→ 1L ∼−→ L
]
,(5.12)

ψ(α) ◦ ιX =
[
X∗X

id⊗αX−−−−→ X∗X
evX−−→ 1

]
for all X ∈ C .

The inverses of ρ and ψ can be given explicitly. For a ∈ C(1,L) and f ∈ C(L,1) we have

ρ−1(a) =
[
L ∼−→ 1L a⊗id−−→ LL SL⊗id−−−→ LL µL−→ L

Λco
L−−→ 1

]
,(5.13)

ψ−1(f)X =
[
X
∼−→ 1X

coevX ⊗id−−−−−−→ (XX∗)X
∼−→ X(X∗X)

id⊗ιX−−−→ XL id⊗f−−→ X1
∼−→ X

]
,

where the second line applies again for all X ∈ C. In terms of the isomorphisms ψ and

ρ, together with the isomorphism Ω from (4.10) and the ribbon twist θ, we define SC,TC ∈
Endk(End(idC)) as

SC =
[

End(idC)
ψ−→ C(L,1)

ρ−→ C(1,L)
Ω−→ C(L,1)

ψ−1

−−→ End(idC)
]
,(5.14)
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TC =
[

End(idC)
θ◦(−)−−−→ End(idC)

]
.

We collect the results reviewed in this section in the following proposition.

Proposition 5.3. The k-vector space End(idC) carries a projective action of SL(2,Z) where

the actions of S and T are given by, for α ∈ End(idC),

(5.15) S.α := SC(α) , T.α := TC(α) .

Moreover, SC and TC in (5.14) are independent of (L,ΛL) up to the choice of sign of ΛL.

Proof. We first show the identity

(5.16)
[
LL id⊗∆L−−−−→ L(LL)

∼−→ (LL)L ωL⊗id−−−→ 1L ∼−→ L
]

=
[
LL Q−→ LL εL⊗id−−−→ 1L ∼−→ L

]
.

To establish this equality we verify that it holds when precomposed with ιU ⊗ ιV for all

U, V ∈ C. Indeed, substituting the defining relations in (3.17), (3.20), (5.1) and (3.18) one

finds that (5.16) is equivalent to the following identity, which we give in terms of string

diagrams

(5.17)

U∗ U V ∗ V

L

U∗ U V ∗ V

L

=

This identity clearly holds by the zig-zag identity for duality morphisms. Thus also (5.16)

holds.

Precomposing (5.16) with id⊗ΛL and comparing to the definition of Ω and ρ in (4.10) and

(5.12), as well as to the definition of S in (5.5), shows that for all f ∈ C(1,L),

(5.18) ρ(Ω(f)) = S ◦ f .

It is now straightforward to check that conjugating the action of S and T in (5.10) with the

k-linear isomorphism ρ ◦ ψ gives the action in (5.15).

Next we show the independence of SC and TC from the choice of universal Hopf algebra

(L, ι) and integral ΛL (up to sign). For TC there is nothing to do. For SC, let (L′, ι′) be

another choice of coend and ΛL′ a choice of (normalised) integral for L′. Let h : L → L′
be the unique isomorphism satisfying h ◦ ιX = ι′X for all X ∈ C. Then using the defining

relations in Figure 1 for the Hopf algebra structure and the Hopf pairing (3.21) but written
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for the coend L′ and equating maps corresponding to the same dinatural transformations, we

find the relations

µL = h−1 ◦ µL′ ◦ (h⊗ h) , ∆L = (h−1 ⊗ h−1) ◦∆L′ ◦ h ,(5.19)

ωL = ωL′ ◦ (h⊗ h) , εL = εL′ ◦ h .

From this and Proposition 4.10 we get the relation ΛL′ = ±h ◦ ΛL between the normalised

integrals. Denote by Ω′, ρ′, ψ′ the maps in (4.10) and (5.12), but computed for L′. Using the

relations between L and L′ just stated, one easily verifies that, for x ∈ C(1,L′), f ∈ C(L′,1),

α ∈ End(idC),

Ω′(x) = Ω(h−1 ◦ x) ◦ h−1 , ψ′(α) = ψ(α) ◦ h−1 ,(5.20)

ρ′(f) = ±h ◦ ρ(f ◦ h) , (ψ′)−1(f) = ψ−1(f ◦ h) .

Substituting this into the definition of SC in (5.14) one arrives at S′C = ± SC. �

5.2. Internal characters and corresponding natural endomorphisms. Let k be an

algebraically closed field and let C be a k-linear factorisable and pivotal finite tensor category.

For the comparison to the conformal field theory calculation of the SL(2,Z)-action from

[GR2] in the companion paper [FGR2] and for the explicit form of the Verlinde formula

in Section 7.6 below, we will need to recall the definition and some properties of internal

characters.

The internal character of V ∈ C is the element χV ∈ C(1,L) given by [FS1, Sh1]

(5.21) χV =
[
1

c̃oevV−−−→ V ∗ ⊗ V ιV−→ L
]
,

where we use the convention in [GR2].

Denote by Gr(C) the Grothendieck ring of C, and recall the definition of Irr(C) from (4.4).

As C is finite, Gr(C) is the free Z-linear span of [U ], U ∈ Irr(C). We will abbreviate Grk(C) :=

k⊗ZGr(C) for the k-linearised Grothendieck ring. The following theorem was proved in [Sh1,

Cor. 4.2] under more general assumptions (in particular for non-braided C).

Theorem 5.4. The assignment V 7→ χV induces a k-linear map χ : Grk(C)→ C(1,L). The

map χ is injective.

We remark that if in addition k is of characteristic zero, then also the composition Gr(C)→
Grk(C)

χ−→ C(1,L) is injective.

Next we use the maps ρ−1 and ψ−1 from (5.13) to transport χV to End(idC),

(5.22) φV := ψ−1(ρ−1(χV )) .

From the proof of Proposition 5.3 and from Theorem 5.4 we conclude:
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Corollary 5.5. The φV only depend on the class [V ] of V in Gr(C) and on the choice of

sign for the integral ΛL, but are otherwise independent of the choice of the coend L. The set

{φU |U ∈ Irr(C)} ⊂ End(idC) is k-linearly independent.

Proof. Using the notation from the proof of Proposition 5.3, it remains to note that in addition

to (5.20) we have χ′V = h ◦ χV and (ρ′)−1(x) = ρ−1(h−1 ◦ x) ◦ h−1. �

After applying SC to φV , the expression simplifies to a “Hopf link operator” as considered

in [CG], see [GR2, Rem. 3.10 (2)],

(5.23) SC(φV )X = .

VX

X

V ∗

In terms of formulas, this reads

SC(φV )X =
[
X

%−1
X−−→ X1

id⊗c̃oevV−−−−−→ X(V ∗V )
αX,V ∗,V−−−−−→ (XV ∗)V(5.24)

(cV ∗,X◦cX,V ∗ )⊗id
−−−−−−−−−−→ (XV ∗)V

α−1
X,V ∗,V−−−−−→ X(V ∗V )

id⊗evV−−−−→ X1
%X−→ X

]
.

Combining Theorem 5.4 and [FS1, Sec. 4.5] gives (see also [Sh1, Thm. 3.11 & Prop. 3.14], as

well as [CG] and [GR2, Thm. 3.9]):

Theorem 5.6. The assignment [V ] 7→ SC(φV ) is an injective k-algebra homomorphism

Grk(C)→ End(idC).

This theorem implies Equation (1.1). If k has characteristic zero, it allows one to compute

the structure constants N W
UV of Gr(C).

In case that C is ribbon, a short calculation with string diagrams shows that the antipode

of L acts on internal characters as SL ◦ χV = χV ∗ . Combining this with S2 = S−1
L from

Theorem 5.1 and transporting everything to End(idC) gives:

Lemma 5.7. Let C be in addition ribbon. Then SC(SC(φV )) = φV ∗.

In this sense, we can think of S2
C as implementing “charge conjugation” on the internal

characters (and on their images in End(idC)).
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For C pivotal (but not necessarily ribbon), after a short calculation with string diagrams

one can find the following expression for the φV , which is a bit lengthy as we write out

associators for later use:

(φV )X =
[
X
∼−→ 1(X1)

coevXV ∗ ⊗id⊗c̃oevV−−−−−−−−−−−→ {(XV ∗)(XV ∗)∗}
(
X(V ∗V )

)
(5.25)

id⊗αX,V ∗,V−−−−−−−→ {(XV ∗)(XV ∗)∗}
(
(XV ∗)V

)
α−1
XV ∗,(XV ∗)∗,(XV ∗)V−−−−−−−−−−−−→ (XV ∗)

{
(XV ∗)∗

(
(XV ∗)V

)}
id⊗α(XV ∗)∗,XV ∗,V−−−−−−−−−−−→ (XV ∗)

{(
(XV ∗)∗(XV ∗)

)
V
}

id⊗(Λco
L ◦ιXV ∗ )⊗id

−−−−−−−−−−→ (XV ∗) {1V } ∼−→ (XV ∗)V

α−1
X,V ∗,V−−−−−→ X(V ∗V )

id⊗evV−−−−→ X1
∼−→ X

]
,

or graphically

(5.26) (φV )X =

X

X

id

id

ιXV ∗

Λco
LXV ∗ V

.

For the derivation of this diagram and for a more detailed study of the properties of φV ,

see [GR3].

6. Ribbon quasi-Hopf algebras

In this section we introduce our conventions for ribbon quasi-Hopf algebras A and for the

structure maps on the categories RepA of their finite-dimensional representations. We show

that the factorisability of RepA is equivalent the factorisability condition on A given in [BT].

6.1. Conventions. We begin with the definition of a quasi-Hopf algebra A [Dr2] and we

mainly follow the conventions in [CP, Sec. 16.1]. We will make the following

Assumption: We will only consider quasi-Hopf algebras A such that the unit

isomorphisms λU and %U in RepA are as in vectk.
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This simplifies for example the counit conditions (6.2) and (6.4) below as they do not involve

non-trivial invertible elements l and r.

We will use Sweedler’s sum notation with primes ′ for the coproduct ∆(a) ∈ A ⊗ A of an

element a ∈ A, and with subscript numbers 1,2,... for elements of tensor products of A. For

example,

(6.1) ∆(a) =
∑
(a)

a′ ⊗ a′′ , X =
∑
(X)

X1 ⊗X2 ⊗X3 for X ∈ A⊗3 .

Definition 6.1. A quasi-Hopf algebra over a field k is a unital associative algebra A over k
together with

• an algebra homomorphism ε : A→ C (the counit),

• an algebra homomorphism ∆ : A→ A⊗ A (the coproduct),

• an algebra anti-homomorphism S : A→ A (the antipode),

• a multiplicatively invertible element Φ ∈ A⊗ A⊗ A (the coassociator),

• elements α, β ∈ A (the evaluation and coevaluation element, respectively).

These data are subject to the conditions:

• counitality and coassociativity:

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆ ,(6.2) (
(∆⊗ id)(∆(a))

)
· Φ = Φ ·

(
(id⊗∆)(∆(a))

)
for all a ∈ A ,(6.3)

• the coassociator Φ is counital and a 3-cocycle:

(id⊗ ε⊗ id)(Φ) = 1⊗ 1 ,(6.4)

(∆⊗ id⊗ id)(Φ) · (id⊗ id⊗∆)(Φ) = (Φ⊗ 1) · (id⊗∆⊗ id)(Φ) · (1⊗ Φ) ,(6.5)

• the antipode conditions:

∑
(a)

S(a′)α a′′ = ε(a)α ,
∑
(a)

a′ β S(a′′) = ε(a)β for all a ∈ A ,(6.6)

∑
(Φ)

S(Φ1)αΦ2 β S(Φ3) = 1 ,
∑

(Φ−1)

(Φ−1)1 β S((Φ−1)2)α (Φ−1)3 = 1 ,(6.7)

for an expansion Φ =
∑

(Φ) Φ1 ⊗ Φ2 ⊗ Φ3 ∈ A⊗ A⊗ A and similarly for Φ−1, cf. (6.1).

Remark 6.2.

(1) We note that the antipode S, as well as α and β are uniquely determined up to the

conjugation by a unique element U : if the triple S̃, α̃, β̃ gives another antipode structure

in A then there exists a unique element U ∈ A such that

(6.8) S̃(a) = US(a)U−1 , α̃ = Uα , β̃ = βU−1 ,

see [Dr2, Prop. 1.1] for details.
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(2) Every Hopf algebra is also a quasi-Hopf algebra for which Φ = 1⊗1⊗1 and α = β = 1.

Let us denote by τ the symmetric braiding in vector spaces, i.e. for vector spaces U, V and

u ∈ U , v ∈ V we set

(6.9) τU,V (u⊗ v) = v ⊗ u .

Definition 6.3. A quasi-Hopf A is quasi-triangular if it is equipped with an invertible element

R ∈ A⊗ A, called the universal R-matrix, such that

• R relates the coproduct with the opposite coproduct ∆op := τA,A ◦∆ as

(6.10) R∆(a) = ∆op(a)R for all a ∈ A ,

• the quasi-triangularity conditions hold:

(∆⊗ id)(R) = (Φ−1)231R13 Φ132R23 Φ−1 ,

(id⊗∆)(R) = Φ312R13 Φ−1
213R12 Φ .

(6.11)

Here we set Φ231 =
∑

(Φ) Φ2 ⊗ Φ3 ⊗ Φ1 and R13 =
∑

(R) R1 ⊗ 1⊗R2, etc.

Remark 6.4. The data of a quasi-triangular quasi-Hopf algebra A allows one to turn RepA

into a k-linear braided category with left duals as follows.

• The associativity isomorphism αU,V,W : U ⊗ (V ⊗ W ) → (U ⊗ V ) ⊗ W for the tensor

product (over k) of A-modules U, V,W is given by

(6.12) αU,V,W (u⊗ v ⊗ w) = Φ.(u⊗ v ⊗ w) ,

for any elements u ∈ U , v ∈ V , w ∈ W . The 3-cocycle condition on Φ is equivalent to

the commutativity of the pentagon diagram for α.

• The antipode structure on A gives rise to left duals for RepA. Namely, the left dual U∗

for U in RepA is the vector space dual to U together with the A-action

(6.13) (a · f)(u) := f(S(a)u) , u ∈ U, f ∈ U∗, a ∈ A .

The elements α and β enter the definition of the evaluation and coevaluation morphisms

as

(6.14) evU : φ⊗ u 7→ φ(α.u) , coevU : 1 7→
∑
i

(β.ui)⊗ u∗i ,

where φ ∈ U∗, u ∈ U , and {ui} is a basis of U with {u∗i } is the corresponding dual basis.

• The braiding isomorphisms σU,V in RepA are defined in terms of the universal R-matrix

as

(6.15) σU,V (u⊗ v) = τU,V (R.(u⊗ v)) .

Due to (6.11), the isomorphisms σU,V satisfy the hexagon axioms of a braided monoidal

category. Applying the linear map id⊗ ε⊗ id to both equations in (6.11) and using the
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counital condition (6.4), we obtain the following result for a quasi-Hopf algebra under

our Assumption [Dr2, Sec. 3]:

(6.16) (ε⊗ id)(R) = 1 = (id⊗ ε)(R) .

These equalities correspond to the commutativity of the diagram involving the left and

right unit isomorphisms and the braiding.4

We will often use the monodromy element

(6.17) M := R21R ∈ A⊗ A .

It describes the double braiding in RepA: σV,U ◦ σU,V (u⊗ v) = M.(u⊗ v).

Let us give string diagrams for the structure maps in Remark 6.4. The action A⊗U → U

of A on a left A-module U will be written as

(6.18)

A U

U vectk

Here, the vectk in a box indicates that the corresponding string diagram is to be taken in

vectk. For the structure morphisms (6.12), (6.14) and (6.15) we get

αU,V,W (u⊗ v ⊗ w) =

Φ
U V W

vectk

,(6.19)

evU(u) =

U∗
α

U

vectk

, coevU(u) =

U

β

U∗

vectk

,(6.20)

σU,V (u⊗ v) =

R
U V

V U
vectk

,(6.21)

4 One can also demand the identities (6.16) as part of the definition of quasi-triangularity in Definition 6.3.

In this case one does not need to require that R is invertible, see [BN].
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for any u ∈ U , v ∈ V and w ∈ W . Note that since the string diagrams are in vectk, the

diagrams for duality maps and symmetric braiding represent the duality maps and braiding

of vectk, not those of RepA.

We will denote the standard pivotal structure of vectk by

(6.22) δvect : (−)→ (−)∗∗ , δvectV (v) = 〈−, v〉 ,

where V ∈ vectk, v ∈ V and 〈−,−〉 denotes the pairing between V ∗ and V .

Definition 6.5. A finite-dimensional quasi-triangular quasi-Hopf algebra A is called factoris-

able if its representation category RepA is factorisable in the sense of Definition 4.7.5

Remark 6.6.

(1) An equivalent way to phrase Definition 6.5 is to say that DL : L → L∗ from (2.24) is

invertible for the universal Hopf algebra L in C = RepA. We will show in Section 7 how

this somewhat indirect definition of factorisability can be made explicit in terms of data

of the quasi-Hopf algebra A. Namely, we will see that we can take L = A∗ and that the

composition A∗
DL−−→ A∗∗

(δvectA )−1

−−−−−→ A can be written as φ 7→ (id⊗ φ)(D̂L), where we used

the isomorphism δvectA from (6.22). The element D̂L ∈ A⊗ A is given by

(6.23) D̂L =
∑

(X),(W )

S(W3X
′
2)W4X

′′
2 ⊗ S(W1X

′
1)W2X

′′
1 ,

where X ∈ A⊗2, W ∈ A⊗4 are defined as

X =
∑
(Φ)

Φ1 ⊗ Φ2βS(Φ3) ,(6.24)

W = (1⊗α⊗ 1⊗α) · (1⊗ Φ−1) · (1⊗M ⊗ 1) · (1⊗ Φ) · (id⊗ id⊗∆)(Φ−1) ,

and M is as in (6.17). Thus, Definition 6.5 states that A is factorisable if and only if

D̂L ∈ A⊗ A is a non-degenerate copairing of vector spaces, i.e. iff D̂L =
∑

i∈I ai ⊗ bi for

two bases {ai | i ∈ I} and {bi | i ∈ I} of A.

(2) Let us specialise the factorisability condition to the case that A is a Hopf algebra. Then we

have the trivial coassociator Φ = 1⊗3 and α = β = 1. Equation (6.23) reduces to D̂L =∑
(M) S(M2)⊗M1 and the map (δvectA )−1 ◦DL : A∗ → A becomes φ 7→ S ◦

(
(φ⊗ id)(M)

)
.

Thus (δvectA )−1 ◦ DL is equal to the well-know Drinfeld mapping [Dr1] composed with

the antipode. We conclude that D̂L ∈ A ⊗ A is a non-degenerate copairing if and only

if the Drinfeld mapping is invertible. The latter condition is the usual definition of a

factorisable Hopf algebra [RS].

5 Definition 4.7 is formulated in terms of braided finite tensor categories, but we have so far only introduced

left duals. However, given V ∈ RepA, one can use the left duality morphisms evV ∗ and coevV ∗ from above

together with the Drinfeld isomorphism uV from (3.13) to obtain right duality morphisms as in (2.4) such

that V ∗ is right dual to V (in addition to being left dual to V ). We will not spell this out here as these right

duals are different from the ones in the ribbon case that we intend to use later (see Section 6.5). But we

stress that RepA is rigid, and in fact is a braided finite tensor category over k.
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6.2. Drinfeld twist. By definition, the antipode of a quasi-Hopf algebra is an algebra anti-

homomorphism. However, in contrast to Hopf algebras it is in general not an coalgebra

anti-homomorphism, i.e. the equality ∆
(
S(a)

)
= (S⊗S)(∆op(a)) may not hold. Instead, the

right hand side is conjugated by the Drinfeld twist [Dr2]. The Drinfeld twist is the invertible

element f ∈ A⊗ A given by

(6.25) f =
∑
(Φ)

(S ⊗ S)(∆op(Φ1)) · γ ·∆
(
Φ2βS(Φ3)

)
with

(6.26) γ =
∑
(X)

(S(X2)αX3)⊗ (S(X1)αX4) where X = (1⊗ Φ) · (id⊗ id⊗∆)(Φ−1) .

In terms of f , ∆ and ∆op are related by (see [Dr2])

(6.27) f∆
(
S(a)

)
f−1 = (S ⊗ S)(∆op(a)) , a ∈ A .

Lemma 6.7 ([Dr2]). As morphisms in RepA, γN,M and γ̃N,M from (2.10) and (2.9), re-

spectively, are given by (
γN,M(ϕ⊗ ψ)

)
(n⊗m) = (ψ ⊗ ϕ)(f . n⊗m) ,(6.28)

γ̃N,M(ϕ⊗ ψ ⊗ n⊗m) = (ψ ⊗ ϕ)(γ. n⊗m) ,(6.29)

where m ∈ M , n ∈ N , ϕ ∈ M∗, ψ ∈ N∗ and f and γ are defined in (6.25) and (6.26),

respectively.

Proof. We begin with γ̃. Let X = (1⊗ Φ) · (id⊗ id⊗∆)(Φ−1). Then (2.9) gives

γ̃N,M(ϕ⊗ ψ ⊗ n⊗m) = evM ◦(id⊗ evN ⊗id)(X .ϕ⊗ ψ ⊗ n⊗m) .(6.30)

Note that

(6.31) evN(a⊗ b . ψ ⊗ n) = ψ(S(a)αb . n) .

Indeed, we have

(6.32)

N∗ N

a⊗ b

α

vectk

=

N∗ N

a⊗ b

α =

N∗ N

a⊗ b

α .

It follows then from the above equalities that

γ̃N,M(ϕ⊗ ψ ⊗ n⊗m) =
∑
(X)

evM(X1 ⊗X4 . ϕ⊗m)ψ(S(X2)αX3 . n)(6.33)

=
∑
(X)

ϕ(S(X1)αX4 .m)ψ(S(X2)αX3 . n)
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=
∑
(X)

(ψ ⊗ ϕ)(S(X2)αX3 ⊗ S(X1)αX4 . n⊗m)

= (ψ ⊗ ϕ)(γ . n⊗m) .

Equation (6.28) follows by recalling (2.10) and using the identity

(6.34)

N∗ M∗
Φ

β

γ

N M (NM)∗

vectk

=

N∗ M∗
Φ β

γ

N M (NM)∗

�

6.3. Drinfeld element. Recall Drinfeld’s canonical natural isomorphism u : idC → (−)∗∗

from (3.13). In terms of the data of the quasi-triangular quasi-Hopf algebra, uU , for U ∈
RepA, becomes

(6.35) uU =

U U∗ U∗∗

U∗ U

R

Φ

β

α

vectk
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Abbreviate X = (α ⊗ 1 ⊗ 1) · (R ⊗ 1) · Φ · (1 ⊗ β ⊗ 1) and recall the standard pivotal

structure of vectk in (6.22). Then we have

(6.36)

uU =

U U∗ U∗∗

U∗ U

X

vectk

=

U U∗ U∗∗ U∗ U∗∗

U∗ U

X

=

U

δvectU

U∗∗

X

.

We conclude that

(6.37) uU = δvectU ◦ (u . (−)) ,

where u ∈ A is the Drinfeld element. Explicitly,

(6.38) u =
∑

(Φ),(R)

S(Φ2βS(Φ3))S(R2)αR1 Φ1 .

The Drinfeld element satisfies

(6.39) S2(a) = uau−1 ,

for any a ∈ A, see [AC, Sect. 3].

The corresponding calculation for the variant ũ in (3.14) gives the same expression with R

replaced by R−1. For later reference, we state it explicitly:

(6.40) ũU = δvectU ◦ (ũ . (−)) , ũ =
∑

(Φ),(R−1)

S(Φ2βS(Φ3))S((R−1)2)α (R−1)1 Φ1 .

6.4. Ribbon element. A quasi-triangular quasi-Hopf algebra A is called ribbon if it contains

a ribbon element v defined in the same way as for ordinary Hopf algebras [So]:

Definition 6.8. A nonzero central element v ∈ A is called a ribbon element if it satisfies

(6.41) M ·∆(v) = v ⊗ v, S(v) = v.

In a ribbon quasi-Hopf algebra A we have the identities [AC, So]

(6.42) v2 = uS(u) , ε(v) = 1 ,

where u is the canonical Drinfeld element defined in (6.38). By convention, the ribbon twist

θU on an object U is given by acting with v−1:

(6.43) θU = v−1.(−) .
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6.5. Pivotal structure. For a ribbon category C with ribbon twist θ, one can define a

pivotal structure δX : X → X∗∗ by δX = uX ◦ θX , where uX is as in (3.13), see e.g. [EGNO,

Sec. 8.10]. Recall from (3.14) that ũX is obtained from uX by using the inverse braiding.

A short calculation shows that (2.5) implies uX ◦ θX = ũX ◦ θ−1
X . Thus we can also write

δX = ũX ◦ θ−1
X .

The pivotal structure and the left duality morphisms allow one to turn the left dual U∗ of

an object U into a right dual. The right duality morphisms are

ẽvU =
[
UU∗

δU⊗id−−−→ U∗∗U∗
evU∗−−−→ 1

]
,(6.44)

c̃oevU =
[
1

coevU∗−−−−→ U∗U∗∗
id⊗δ−1

U−−−−→ U∗U
]
.

Let now A be a finite-dimensional ribbon quasi-Hopf algebra. Combining (6.37) and (6.43),

we see that in the category RepA the pivotal structure takes the form

(6.45) δU = δvectU ◦ (v−1u . (−)) : U → U∗∗ .

The evaluation and coevaluation morphisms are (compare to (6.14)),

(6.46) ẽvU : w ⊗ φ 7→ φ(S(α)v−1u.w) , c̃oevU : 1 7→
∑
i

w∗i ⊗ (u−1vS(β).wi) ,

where φ ∈ U∗, w ∈ U , and {wi} is a basis of U with dual basis {w∗i }.
Using the ribbon structure, we can give a relation between the two variants u and ũ of the

Drinfeld element. Namely, from uX ◦ θX = ũX ◦ θ−1
X we get uv−1 = ũv and combining this

with (6.42) gives

(6.47) ũ = S(u−1) .

Applying S to both sides and using (6.39) and (6.40) gives an explicit formula for u−1. An

alternative expression is given in [BN, Thm. 2.6].

7. Coends for quasi-triangular quasi-Hopf algebras

We begin this section by describing explicitly the coend object L in RepA for a quasi-

triangular quasi-Hopf algebra A. Then we give explicit expressions for its Hopf-algebra struc-

ture morphisms and Hopf pairing in terms of the defining data of A. Finally, we discuss

an equivalent factorisability condition for RepA and properties of integrals and internal

characters.

All string diagrams in this section are taken in vectk, and we will drop the label vectk

from the diagrams. Recall that this means that duality maps in string diagrams refer to those

of vectk, not those of RepA.
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7.1. The coend L in RepA. To describe the coend, we will need to discuss the coadjoint

representation of A, as well as an equivalent way of writing it. The adjoint representation

ρadj
A : A⊗ A→ A of A on itself is given by

(7.1) ρadj
A =

A

A A

.

By definition, the dual ρadj∗

A∗ : A⊗ A∗ → A∗ of the adjoint representation is given by

(7.2) ρadj∗

A∗ =

A∗

A A∗

.

We will show below that, as for Hopf algebras (see [Ly2, Ke2]), the coend L in RepA can

be taken to be the dual of the adjoint representation. However, again as for Hopf algebras

[Ke2], we find it convenient to work with the action ρLA∗ on A∗ from Figure 2, which we refer

to as the coadjoint representation.

The dual of the adjoint representation and the coadjoint representation are isomorphic.

Indeed, define the map E : A→ A as

(7.3) E(a) =
∑
(f)

S−1
(
f ′ aS(f ′′)

)
where f is defined in (6.25). It is straightforward to verify from invertibility of f that E is

invertible, and from (6.27) that

(7.4) E∗ : (A∗, ρadj∗

A∗ ) −→ (A∗, ρLA∗)

is an isomorphism of A-modules.

We are now ready to show that (A∗, ρLA∗) can serve as the coend in RepA.

Proposition 7.1. Let A be a finite-dimensional quasi-Hopf algebra over a field k.

(1) The coend object (3.5) in RepA can be chosen to be the coadjoint representation L =

(A∗, ρLA∗), together with the dinatural family ι ≡ (ιM : M∗ ⊗ M → A∗) given by (see
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ρLA∗ :=

A∗

A A∗

ιM :=

A∗

M∗ M

Figure 2. The coend object L = A∗ for a quasi-Hopf algebra A. The diagrams

here are in vectk, i.e. the braidings are the usual flips of the vector spaces, etc.

Figure 2)

ιM : ϕ⊗m 7→
(
a 7→ ϕ(a.m)

)
, m ∈M, ϕ ∈M∗, a ∈ A .

(2) The unique morphism g : L → B from (3.1) is, for a dinatural transformation (B, φ),

g =
[
L = A∗

∼−→ A∗ ⊗ 1
id⊗ηA−−−→ A∗ ⊗ A φA−→ B

]
,

where ηA is the unit morphism of A and φA is evaluated on the regular representation.

In the case that A is a Hopf algebra, this proposition was proven in [Ly2, Sec. 3.3] and [Ke2,

Lem. 3]. The proof for the quasi-Hopf case is very similar and we reproduce it here for

completeness.

Proof of Proposition 7.1. We show that (L, ι) satisfies the universal property of the coend.

As part of the argument, we show that g is as stated in part (2).

• ιM is an A-module intertwiner: We use the identity

ιM(a . (ϕ⊗m)) =
(
h 7→

∑
(a)

ϕ
(
S(a′)ha′′.m

))
, h ∈ A .(7.5)
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Indeed, we have

(7.6)

A∗

A M∗ M

=

A∗

A M∗ M

=

A∗

A M∗ M

.

Then the intertwiner property follows from
∑

(a) ϕ(S(a′)(−)a′′.m) = ρLA∗(a ⊗ ϕ(− .m)) =

ρLA∗(a ⊗ ιM(ϕ ⊗m)). Pictorially, it can be seen easily by adding a zig-zag at the last string

of the last diagram in (7.6) and moving the coadjoint action of a on the other end.

• ιM is dinatural: We need to show that for all A-module maps f : M → N we have

ιN ◦ (id ⊗ f) = ιM ◦ (f ∗ ⊗ id) as maps N∗ ⊗M → A∗. Evaluating on ϕ ∈ N∗, m ∈ M and

a ∈ A gives [
ιN ◦ (id⊗ f)(ϕ⊗m)

]
(a) = ϕ(a.f(m)) = ϕ(f(a.m)) = (f ∗(ϕ))(a.m)

=
[
ιM ◦ (f ∗ ⊗ id)(ϕ⊗m)

]
(a) .(7.7)

• g from part (2) is an A-module map: For x ∈ A denote by Lx, Rx : A→ A the left and right

multiplication by x: Lx(a) = xa and Rx(a) = ax. Note that Rx is an A-module intertwiner

of A seen as a left module over itself. Since φ is dinatural, we have

(7.8) φA ◦ (id⊗Rx) = φA ◦ ((Rx)
∗ ⊗ id) .

The coadjoint action of a ∈ A is ρLA∗(a⊗−) =
(∑

(a) LS(a′) ◦ Ra′′
)∗

: A∗ → A∗, see Figure 2.

We compute, for ϕ ∈ A∗,

g(a.ϕ) =
∑
(a)

g(R∗a′′ ◦ L∗S(a′)(ϕ))
def. g
=
∑
(a)

φA
(
(R∗a′′ ◦ L∗S(a′)(ϕ))⊗ 1A

)
(7.9)

(7.8)
=
∑
(a)

φA
(
(L∗S(a′)(ϕ))⊗Ra′′(1A)

)
=
∑
(a)

φA
(
(L∗S(a′) ⊗ La′′)(ϕ⊗ 1A)

)
(∗)
= a.φA

(
ϕ⊗ 1A

) def. g
= a.g(ϕ) .

Here, (*) amounts to the observation that
∑

(a) L
∗
S(a′) ⊗ La′′ gives the action of a on A∗ ⊗A,

where A is the left regular module and A∗ is the corresponding dual module, together with

the fact that φA is an A-module intertwiner.

• g makes (3.1) commute: We need to show that for every A-module M , g ◦ ιM = φM .

Consider the map Rm : A → M , Rm(a) = a.m. This is an A-module intertwiner, for A the
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left regular module over itself. We compute, for ϕ ∈M∗ and m ∈M ,

g ◦ ιM(ϕ⊗m) = φA
(
ιM(ϕ⊗m)⊗ 1A

)
= φA

(
ϕ(−.m)⊗ 1A

)
(7.10)

= φA
(
(Rm)∗(ϕ)⊗ 1A

) (∗)
= φM

(
ϕ⊗ (Rm(1A))

)
= φM

(
ϕ⊗m

)
,

where (*) is dinaturality of φ.

• g is unique: Let h : L → B be an A-module map satisfying h ◦ ιM = φM for all A-

modules M . We need to show that h = g. But this is immediate if one chooses M = A.

Indeed, for all ϕ ∈ A∗ we have ιA(ϕ⊗ 1A) = ϕ and so

(7.11) h(ϕ) = h ◦ ιA(ϕ⊗ 1A) = φA(ϕ⊗ 1A) = g(ϕ) ,

by definition of g. �

We make a similar statement for an end Γ, recall the discussion in Section 4.4. This

statement is proven in [Sa, Lem. 5.4] and can also be verified by arguments analogous to

those in Proposition 7.1.

Proposition 7.2. Let A be a finite-dimensional quasi-Hopf algebra over a field k. The end

object Γ in RepA can be chosen to be the adjoint representation Γ = (A, ρadj
A ), together with

the dinatural family j ≡ (jM : A→M ⊗M∗) given by

(7.12) jM : a 7→
∑
i

(a.mi)⊗m∗i =

A

M M∗

,

where mi is a basis in M and m∗i is the dual basis.

7.2. Hopf structure and Hopf pairing on L. In this section we present explicit expres-

sions for the structure maps (3.15)–(3.19) and (3.20) which define a Hopf structure and a

Hopf pairing on the universal Hopf algebra L = A∗ in RepA.

To work with elements rather than with functionals, we dualise all structure morphisms.

We will use the notation 〈−,−〉 for the contraction of an element in A∗ with an element in

A, and of an element in A∗ ⊗ A∗ with an element in A⊗ A:

〈−,−〉 : A∗ ⊗ A→ k , 〈ϕ, a〉 = ϕ(a) ,(7.13)

〈−,−〉 : A∗ ⊗ A∗ ⊗ A⊗ A→ k , 〈ϕ⊗ ψ, a⊗ b〉 = ϕ(b)ψ(a) .

Note the order of arguments in the second contraction. The convention is such that 〈−,−〉 =

γ̃vectkA,A , i.e. (2.11) applied to the category of vector spaces. In terms of this bracket notation,

we define µ̂L : A→ A⊗ A, etc., as follows. For all a, b ∈ A and f, g ∈ A∗,〈
µL(f ⊗ g) , a

〉
=
〈
f ⊗ g , µ̂L(a)

〉
, µ̂L : A→ A⊗ A ,(7.14)
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∆L(f) , a⊗ b

〉
=
〈
f , ∆̂L(a⊗ b)

〉
, ∆̂L : A⊗ A→ A ,

ηL(1) =
(
a 7→ η̂L(a)

)
, η̂L : A→ k ,

εL(f) = f(ε̂L) , ε̂L ∈ A ,〈
SL(f) , a

〉
=
〈
f , ŜL(a)

〉
, ŜL : A→ A ,

ωL(f ⊗ g) =
〈
f ⊗ g , ω̂L

〉
, ω̂L ∈ A⊗ A .

Theorem 7.3. Let A be a finite-dimensional quasi-triangular quasi-Hopf algebra over a

field k. The Hopf algebra structure and Hopf pairing from Theorem 3.6 applied to the universal

Hopf algebra in RepA from Proposition 7.1 are given by the maps in (7.14) with

µ̂L(a) =
∑

(Φ),(Ψ),(Ψ̃),(R)

[
S(Φ2Ψ1R

′
2Ψ̃′3)⊗ S(Φ1Ψ̃1)

]
· f(7.15)

·∆(aΦ3) ·
[
(Ψ2R

′′
2Ψ̃′′3)⊗ (Ψ3R1Ψ̃2)

]
,

∆̂L(a⊗ b) =
∑
(D)

S(D1)bD2S(D3)aD4 ,

η̂L(a) = ε(β a) ,

ε̂L = α ,

ŜL(a) =
∑
(R)

S(aR1)ũR2 ,

ω̂L =
∑
(W )

S(W3)W4 ⊗ S(W1)W2 .

In these expressions, Ψ = Φ−1, Ψ̃ is another copy of Φ−1, f is the Drinfeld twist from (6.25),

ũ was given in (6.40), the elements D,W ∈ A⊗4 are defined as

D = (id⊗ id⊗∆)(Φ) · (1⊗ Φ−1) · (1⊗ β ⊗ 1⊗ 1) ,(7.16)

W = (1⊗α⊗ 1⊗α) · (1⊗ Φ−1) · (1⊗M ⊗ 1) · (1⊗ Φ) · (id⊗ id⊗∆)(Φ−1) ,

and M was defined in (6.17).

Proof. Let M,N ∈ RepA and m ∈M , n ∈ N , ϕ ∈M∗, ψ ∈ N∗. By (3.15) the multiplication

on L is determined by the equality X = Y with

X = µL ◦ (ιM ⊗ ιN)(ϕ⊗m⊗ ψ ⊗ n) ,(7.17)

Y = ιN⊗M ◦ (γN,M ⊗ id)
(

(id⊗ id⊗∆)(Φ) · (1⊗ Φ−1)

. (id⊗ τM,N∗N)
{(

1⊗ (id⊗∆)(R)
)
· (id⊗ id⊗∆)(Φ−1) . ϕ⊗m⊗ ψ ⊗ n

})
.

By abbreviating Ψ, Ψ̃ = Φ−1 we get

Y =
∑

(Φ),(Ψ),(Ψ̃),(R)

ιN⊗M ◦ (γN,M ⊗ id)
(

Φ1Ψ̃1 ⊗ Φ2Ψ1R
′
2Ψ̃′3 ⊗ Φ′3Ψ2R

′′
2Ψ̃′′3 ⊗ Φ′′3Ψ3R1Ψ̃2(7.18)
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. ϕ⊗ ψ ⊗ n⊗m
)
.

Note that for B ∈ A⊗4 we have

ιN⊗M ◦ (γN,M ⊗ id)(B .ϕ⊗ ψ ⊗ n⊗m)

=
(
a 7→

∑
(B)

(ψ ⊗ ϕ)
((
S(B2)⊗ S(B1)

)
· f ·∆(a) · (B3 ⊗B4) . n⊗m

))
.(7.19)

Indeed, with (6.28) we get

(7.20)

M∗ N∗
B

f

A∗

N M (NM)∗

NM

N M

=

B

f

A∗

M∗ N∗ N M

Thus (7.18) becomes, for a ∈ A,

Y (a) =
∑

(Φ),(Ψ),(Ψ̃),(R)

(ψ ⊗ ϕ)
{(
S(Φ2Ψ1R

′
2Ψ̃′3)⊗ S(Φ1Ψ̃1)

)
· f ·∆(aΦ3)(7.21)

·
(
Ψ2R

′′
2Ψ̃′′3 ⊗Ψ3R1Ψ̃2

)
. n⊗m

})
=
〈
f ⊗ g , µ̂L(a)

〉
,

where f, g ∈ A∗ are given by f = ϕ((−).m) and g = ψ((−).n). Since, with the same notation,

(ιM ⊗ ιN)(ϕ⊗m⊗ ψ ⊗ n) = f ⊗ g, from (7.17) we get X(a) =
〈
µL(f ⊗ g) , a

〉
. Altogether,

(7.22)
〈
µL(f ⊗ g) , a

〉
= X(a) = Y (a) =

〈
f ⊗ g , µ̂L(a)

〉
which proves the statement for µL.

The statements for the other maps can be shown similarly. �

Remark 7.4. We note that in the case A is a quasi-triangular Hopf algebra, the universal

Hopf algebra L in RepA has the following structural maps on L = A∗, using (7.14) and

applying Theorem 7.3:

µ̂L(a) =
∑

(a),(R)

S(R′2)a′R′′2 ⊗ a′′R1 , ∆̂L(a⊗ b) = b · a ,(7.23)

η̂L(a) = ε(a) , ε̂L = 1 ,
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ŜL(a) =
∑
(R)

S(u−1 aR1)R2 , ω̂L =
∑
(M)

S(M2)⊗M1 ,

where u =
∑

(R) S(R2)R1, see (6.38). The structure maps for the universal Hopf algebra have

also been explicitly computed in [LM, Sec. 4], [Ly2, Sec. 3.4] (in different conventions) and in

[Vi, Lem. 4.4]. The structure maps for H in [Vi, Lem. 4.4] are precisely those for A above

with the opposite µ̂L and ∆̂L.

7.3. Non-degeneracy of the Hopf pairing. Recall from Definitions 4.7 and 6.5 that a

finite-dimensional quasi-triangular quasi-Hopf algebra A over a field k is called factorisable if

ωL is non-degenerate. Non-degeneracy of ωL in turn by definition means that the morphism

DL : L → L∗ from (2.24) is invertible.

In the quasi-Hopf case, DL is an A-module map A∗ → A∗∗. We will describe DL in terms

of an element D̂L ∈ A⊗ A as, for ϕ ∈ A∗,

(7.24) DL(ϕ) = δvectA ◦
(
(id⊗ ϕ)(D̂L)

)
.

A short computation shows that in terms of ω̂L as given in Theorem 7.3 we have

(7.25) D̂L =
∑

(X),(ω̂L)

S(X ′2) (ω̂L)1X
′′
2 ⊗ S(X ′1) (ω̂L)2X

′′
1

with X as in (6.24). Substituting the explicit expression for ω̂L from Theorem 7.3 gives the

expression announced in Remark 6.6 (1).

7.4. Equivalent factorisability condition. In [BT] the authors also introduce a notion of

factorisability for quasi-triangular quasi-Hopf algebras. In this section we recall the definition

in [BT] and show that it is equivalent to Definition 6.5.

Let A be a finite-dimensional quasi-triangular quasi-Hopf algebra and consider the linear

map QBT : A∗ → A defined by (see [BT, Prop. 2.2 (i)] but note that their Φ is our Φ−1)

(7.26) QBT : φ 7→ (φ⊗ id)(MBT) .

The element MBT ∈ A⊗ A is defined as

(7.27) MBT =
∑

(R),(R̃),(Φ),(p),(q̃)

q̃1(Φ−1)1R2R̃1 p1 ⊗ q̃′2(Φ−1)2R1R̃2 p2S
(
q̃′′2(Φ−1)3

)
,

where R̃ is a copy of R, and

(7.28) p =
∑
(Φ)

Φ1 ⊗ Φ2βS(Φ3) , q̃ =
∑
(Φ)

S(Φ1)αΦ2 ⊗ Φ3 .

Recall the end Γ = (A, j) from Proposition 7.2 and the map DL,Γ defined by (4.17).

Lemma 7.5. QBT = DL,Γ.
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Proof. It is enough to show that for all X, Y ∈ RepA we have jY ◦QBT ◦ ιX = jY ◦DL,Γ ◦ ιX .

By definition, jY ◦ DL,Γ ◦ ιX = TX,Y , so that it remains to show jY ◦ QBT ◦ ιX = TX,Y . We

will verify this by computing TX,Y in (4.15) explicitly. Let

(7.29) Q = (1⊗α⊗ 1⊗ 1) · [(id⊗ id⊗∆)Φ] ·
(
id⊗ (Φ−1 · (M ⊗ 1) · Φ)

)
· (1⊗ 1⊗ β ⊗ 1)

then we obtain

(7.30) TX,Y =

Y Y ∗

Q

X∗ X

=

Y Y ∗

MBT

X∗ X

,

where MBT = (µ ⊗ µ) ◦ [S ⊗ id ⊗ id ⊗ S](Q) and a direct calculation shows that it equals

to (7.27), as the notation suggests. The morphism within the dotted frame in RHS of (7.30)

is then obviously the map QBT and therefore we finally have that TX,Y = jY ◦ QBT ◦ ιX . �

In [BT], a quasi-triangular quasi-Hopf algebra A is called factorisable if the map QBT

defined in (7.26) is an isomorphism. As an immediate consequence of Lemma 7.5 and Propo-

sition 4.11 we get:

Corollary 7.6. For a finite-dimensional quasi-triangular quasi-Hopf algebra A, the map QBT

from (7.26) is an isomorphism if and only if A is factorisable in the sense of Definition 6.5.

Remark 7.7. Consider the case that A is a quasi-triangular Hopf algebra and use the end

Γ = (A, j) from Proposition 7.2. In this case, the map DL,Γ defined by (4.17) is precisely

the Drinfeld map. Indeed, for Φ = 1⊗3 and α = β = 1, the expression for MBT in (7.27)

reduces to M = R21R and QBT from (7.26) (which is equal to DL,Γ by Lemma 7.5) becomes

the Drinfeld map, cf. Remark 6.6 (2). We also note that we have defined so far two maps from

A∗ to A – the map (δvectA )−1 ◦ DL in Remark 6.6 and the Drinfeld map DL,Γ. The difference

is that the first intertwines the coadjoint and its dual actions, while the second intertwines

the coadjoint and adjoint actions. Both can be used to test factorisability of A.

7.5. Integrals and cointegrals. Let A be a factorisable quasi-Hopf algebra over an alge-

braically closed field k (actually, we only need k to contain square roots).

From Proposition 4.10 we know that L has a unique-up-to-scalar two-sided integral ΛL :

1→ L. We will impose the normalisation ωL ◦ (ΛL⊗ΛL)◦λ−1
1 = id1, which makes ΛL unique

up to sign. Given a two-sided integral, we obtain a two-sided cointegral Λco
L : L → 1 by

(7.31) Λco
L := Ω(ΛL) ,
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where Ω was given in (4.10) (cf. Lemma 2.3). By construction, we have

(7.32) Λco
L ◦ ΛL = id1 .

There are no closed formulas for the integral or the cointegral. Instead one needs to compute

the spaces of solutions to the linear conditions (2.25). We will spell out these conditions for

A in terms of the structure maps given in Theorem 7.3.

Let Λ̂L ∈ A∗ and Λ̂co
L ∈ A be defined as, for a ∈ A, f ∈ A∗,

(7.33) ΛL(1) =
(
a 7→ Λ̂L(a)

)
, Λco

L (f) = f(Λ̂co
L ) .

Conditions (2.25) turn into the following linear relations on Λ̂L and Λ̂co
L , for all a ∈ A,

(id⊗ Λ̂L) ◦ µ̂L(a) = α · Λ̂L(a) = (Λ̂L ⊗ id) ◦ µ̂L(a) ,(7.34)

∆̂L(Λ̂co
L ⊗ a) = Λ̂co

L · ε(βa) = ∆̂L(a⊗ Λ̂co
L ) ,

where µ̂L and ∆̂L are introduced in (7.15). The normalisation condition is quadratic and

reads

(7.35) (Λ̂L ⊗ Λ̂L)(ω̂L) = 1 ,

and the relative normalisation of integral and cointegral is fixed by (7.32) to be Λ̂L(Λ̂co
L ) = 1.

A left (resp. right) integral for a quasi-Hopf algebra A is an element c ∈ A satisfying

a · c = ε(a)c (resp. c · a = ε(a)c) for all a ∈ A, see e.g. [BC]. Finite-dimensional quasi-Hopf

algebras possess a one-dimensional space of left and of right integrals [HN] (see also [PO] for

existence).

If one knows a non-zero left or right integral for A, then the following proposition provides

a shortcut for computing Λco
L .

Proposition 7.8. Let A be a finite-dimensional quasi-Hopf algebra over some field, and let

c ∈ A be left (resp. right) integral for A. Then 〈−, c〉 ∈ L∗ = A∗∗ is a left (resp. right)

cointegral for L, i.e. Λ̂co
L = c.

Proof. This is an immediate consequence of the explicit form of the structure maps of L given

in Theorem 7.3. The two conditions in the second line of (7.34) become

(7.36) left: ∆̂L(c⊗ a) = c · ε(βa) , right: ∆̂L(a⊗ c) = c · ε(βa) .

Now substitute the expression for ∆̂L in terms of D as given in (7.15). The left hand side in

each case in (7.36) then becomes

left: ∆̂L(c⊗ a) =
∑
(D)

ε(D1)ε(a)ε(D2)ε(D3)cD4 ,(7.37)

right: ∆̂L(a⊗ c) =
∑
(D)

S(D1)cε(D2)ε(D3)ε(a)ε(D4) ,(7.38)
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where we used ε ◦ S = ε, which holds for quasi-Hopf algebras by [Dr2, part 7 of remark on

p. 1425]. Substituting the explicit form of D from (7.16) and using the counitality condi-

tion (6.4) on Φ−1 we get for RHS of (7.37)

(7.39)
∑
(Φ)

ε(βa)c ε(Φ1)ε(Φ2)ε(Φ′3)Φ′′3 = ε(βa)c
{

(ε⊗ id) ◦∆
}(

(ε⊗ ε⊗ id)(Φ)
)

= ε(βa)c ,

where the counitality condition was used once more, and similarly for RHS of (7.38). This

shows that both the identities in (7.36) hold. �

In particular, for factorisable A we know by Proposition 4.10 that the coend L has a one-

dimensional space of two-sided integrals (and hence of cointegrals). The above proposition

hence shows that A has two-sided integrals, and a non-zero such two-sided integral c spans

the space of cointegrals of L.

7.6. Internal characters. Let A be a factorisable ribbon quasi-Hopf algebra over a field k.

Then RepA is in particular pivotal, and we can use the results of Section 5.2. In this section

we will give explicit expressions for the natural endomorphisms φV and SC(φV ) in terms of

elements of the centre of A. Recall from (5.22) that φV , and hence also SC(φV ), is an image

of the internal characters χV as defined in (5.21).

Let us identify χV with their images χV (1) ∈ A∗. A short calculation using (6.46) and the

definition of ιV in Figure 2 gives the linear forms χV which we call q-characters :

(7.40) χV (−) = TrV (κ · −) : A −→ k , where κ = u−1vS(β) .

Denote by ξ : Z(A)→ End(idRepA) the k-algebra isomorphism between the centre of A and

the natural endomorphisms of the identity functor on RepA. Explicitly, for all V ∈ RepA,

v ∈ V and z ∈ Z(A),

(7.41) (ξ(z)V )(v) = z.v .

We can use ξ to represent the S-transformation of φV in terms of a central element χχχV ∈ Z(A)

as ξ(χχχV ) = SRepA(φV ). A short calculation starting from (5.24) gives

(7.42) χχχV =
∑

(Φ),(Ψ),(M)

χV

(
S
(
Ψ2M2Φ2

)
αΨ3Φ3

)
Ψ1M1 Φ1 ,

where Ψ = Φ−1 and used (6.17). We obtain the following corollary to Theorem 5.6.

Corollary 7.9. Let the field k be algebraically closed and of characteristic zero. Then the

map [V ] 7→ χχχV is an injective ring-homomorphism Gr(RepA)→ Z(A).

The Verlinde-type formula (1.1) takes the form

(7.43) χχχU χχχV =
∑

W∈Irr(RepA)

N W
UV χχχW .
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By linear independence of the χχχW , this determines the structure constants N W
UV of Gr(RepA)

uniquely (for k as in the corollary). We stress that it is not necessary to compute the centre

of A to evaluate this formula, but one does need to know all simple A-modules U and be able

to compute their characters TrU(−).

For completeness we also give the central element φφφV ∈ Z(A) representing φV from (5.25)

via ξ(φφφV ) = φV :

(7.44) φφφV =
∑
(F )

F1 χV
(
F2

)
,

where

(7.45) F = ε(β)
∑

(Ψ),(Φ),(c)

Ψ1c
′Φ1 ⊗ S(Ψ2c

′′Φ2)αΨ3Φ3 and Ψ = Φ−1 .

During the calculation we used that Λ̂co
L = c is a two-sided integral (Proposition 7.8 and the

text above (7.31)) and so a · c = ε(a)c = c · a for all a ∈ A, together with counitality of Φ±1.

Remark 7.10. Let A be a finite-dimensional factorisable ribbon Hopf algebra over k. Recall

[Dr1] that the space qCh of q-characters of A is defined as the space of invariants in A∗

under the coadjoint action. For example, the linear forms (7.40), which now read χV =

TrV
(
u−1 v (−)

)
, are q-characters in this sense, justifying their name. The two families of

elements χχχV and φφφV simplify to

(7.46) χχχV =
∑
(M)

M1 TrV
(
u−1v S(M2)

) (∗)
= S−1 ◦

(
χV (−)⊗ id

)
(M)

and (recall that we found Λ̂co
L = c and here F = (id⊗ S) ◦∆(c))

(7.47) φφφV =
∑
(c)

c′TrV
(
u−1 v S(c′′)

) (∗∗)
= S−1 ◦

(
χV (−)⊗ id

)
◦∆(c) ,

where for (∗) we used the identity6 (S ⊗ S)(R) = R. For (∗∗) we used that S(c) = c as

follows from [Ra, Eqn. (2)], which reads in our case as S(a) =
∑

(c) Λ̂L(c′a)c′′, and therefore

∆op(c) = (S ⊗ S) ◦∆(c).

Another way to relate the central elements χχχV and φφφV to q-characters is as follows. The

(algebra) map S ◦ ξ−1 ◦ ψ−1 ◦ Ω from the space of q-characters to Z(A) is the well-known

Drinfeld mapping given by DA∗,A : φ(·) 7→ (φ ⊗ id)M , see [Dr1], while the map S ◦ ξ−1 ◦
ψ−1 ◦ ρ−1 : qCh → Z(A) is the Radford mapping given by φ(·) 7→ (φ ⊗ id)∆(c), see [Ra]

for its definition and properties. The central elements (7.46) and (7.47) are then images

of the q-characters χV (−) under the Drinfeld and Radford mappings (composed with S−1),

correspondingly.

6 This results in (id⊗S)(M) = τ ◦(id⊗S−1)(M) and then (id⊗φ)◦(id⊗S)(M) = (φ⊗id)◦(id⊗S−1)(M) =

S−1 ◦
(
(φ⊗ id)(M)

)
, for φ ∈ A∗.



SL(2,Z)-ACTION FOR RIBBON QUASI-HOPF ALGEBRAS 53

8. SL(2,Z)-action for ribbon quasi-Hopf algebras

In this section, we assume that A is a factorisable quasi-Hopf algebra and we express the

S- and T -transformations from (5.5) in RepA, and compute the resulting action on the

centre Z(A) of A. To start with, we evaluate the map Q from (5.1) in RepA. One finds, for

a, b ∈ A, f, g ∈ A∗,

(8.1)
〈
Q(f ⊗ g) , a⊗ b

〉
=
〈
f ⊗ g , Q̂(a⊗ b)

〉
with

Q̂(a⊗ b) =
(
S(X3)aX4

)
⊗
(
S(X1)bX2

)
,(8.2)

X = (id⊗ id⊗∆)(Φ) · (1⊗ Φ−1) · (1⊗M ⊗ 1) · (1⊗ Φ) · (id⊗ id⊗∆)(Φ−1) .

Then the S- and T -transformations from (5.5) take the form, for a ∈ A, f ∈ A∗,〈
S(f) , a

〉
=
〈
Q(f ⊗ ΛL) , a⊗α

〉
,(8.3) 〈

T(f) , a
〉

=
〈
f , v−1a

〉
.

Our next aim is to evaluate the action of the S- and T -generators on End(idC) as given

in (5.14) in the case C = RepA. To do so, we use the isomorphism ξ from (7.41) and will

give the corresponding action on elements of Z(A) instead. The result is:

Theorem 8.1. The S- and T -transformations on Z(A) are given by the following linear maps

Z(A)→ Z(A): for z ∈ Z(A),

SZ(z) =
∑

Ψ,(ω̂L)

Ψ1 β S(Ψ2) (ω̂L)1 Ψ3 Λ̂L

(
∆̂L
(
(ω̂L)2 ⊗αz

))
,(8.4)

TZ(z) = v−1z ,

where Ψ = Φ−1, and ∆̂L and ω̂L are defined in (7.15).

Proof. We compute the ingredients of (5.14). Let ϕ ∈ End(idC) be the natural transformation

which acts by a central element z ∈ Z(A), i.e. ξ(z) = ϕ. Then

(8.5)

ψ(ϕ)

X∗ X

RepA

:=

ϕ

X∗ X
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or equivalently as a diagram in vectk

(8.6)

ψ(ϕ)

X∗ X

vectk

:=
α

z

X∗ X

that is, ψ(ϕ) = 〈−,αz〉 ∈ A∗∗. Let r ∈ HomA(L,1) and s ∈ HomA(1,L), and write r = 〈−, r̃〉
for some r̃ ∈ A. The other maps in (5.14) are given by

(8.7) ρ(r) =
r

ΛL

∆L

vectk

= ∆̂L

r

ΛL

= Λ̂L
(
∆̂L(−⊗ r̃)

)
,

(8.8) Ω(s) =
ωL

L

s

vectk

=
ω̂L

L

s

= 〈−, (id⊗ s)(ω̂L)〉 ,

(8.9)

ψ−1(r)X =

Ψ
β

r

X

X
vectk

=

Ψ

r̃

β

X

X

=
∑
(Ψ)

Ψ1 β S(Ψ2) r̃Ψ3 . (−) ,

where Ψ = Φ−1. Now it is easy to see that (5.14) reduces to (8.4). �

Recall that in Section 7.6 we introduced the special central elements χχχV and φφφV that

are related to the internal characters χV . As a corollary of Theorem 8.4 and by definition

ξ(χχχV ) = SRepA(φV ), we have the following S-transformation of these elements.

Corollary 8.2. χχχV = SZ(φφφV ) and φφφV ∗ = S2
Z(φφφV ).

Next we give the S-transformation on A as Ŝ : A→ A, using (8.3),

(8.10) 〈S(f), a〉 = 〈f, Ŝ(a)〉 ,
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for any f ∈ A∗ and a ∈ A. We easily get

(8.11) Ŝ(a) = (Λ̂L ⊗ id)
[
Q̂(a⊗α)

]
=
∑
(X)

Λ̂L

(
S(X3)aX4

)
S(X1)αX2

or equivalently, using the relation (5.16) we have

(8.12) Ŝ(a) =
∑

(Φ),(ω̂L)

Λ̂L

(
∆̂L
(
S(Φ′3) aΦ′′3 ⊗ S(Φ′2)(ω̂L)1Φ′′2

))
S(Φ′1)(ω̂L)2Φ′′1 .

For T̂, we obviously have T̂(a) = v−1a. Following (5.7) and the definition in (8.10), Ŝ and T̂

satisfy

(ŜT̂)3 = λ Ŝ2 , Ŝ2 = Ŝ−1
L , λ ∈ k× ,(8.13)

with the antipode ŜL as in Theorem 7.3. We note then the S-transformation (8.10) with (8.12)

simplifies on linear forms f ∈ C(1,L), or on the invariants f̂ := f(1) of the coadjoint action

(recall that S : L → L is an intertwiner of the coadjoint action of A on L = A∗ and thus S

acts on the space invariants):

(8.14) S(f̂)(a) = f̂
(
Ŝ(a)

)
=
∑
(ω̂L)

Λ̂L

(
∆̂L
(
a⊗ (ω̂L)1

))
f̂
(
(ω̂L)2

)
, a ∈ A ,

where we used the counitality of Φ. The two projective SL(2,Z) actions, on Z(A) in (8.4)

and on C(1,L) in (8.14), are related by conjugation with the isomorphism ρ ◦ ψ ◦ ξ between

the centre Z(A) and the space of coadjoint invariants. (Note that the action (8.14) agrees

with the one from the categorical formula (5.18)).

Similarly, we have a projective SL(2,Z) representation on the space C(L,1) of coinvariants

of the coadjoint action that is identified by δvectA with the subspace α · Z(A) ⊂ A. Indeed,

by (8.6) the image of the isomorphism ψ ◦ ξ : Z(A)→ C(L,1) is δvectA (α · Z(A)). In general,

α · Z(A) is different from the centre Z(A) and from the space of invariants of the adjoint

action, which is β · Z(A) (in the Hopf algebra case, the three spaces are identical). The S-

transformation acts on α·Z(A) by restricting Ŝ to it. When evaluated on αz, the result (8.12)

simplifies to

(8.15) Ŝ(αz) =
∑
(ω̂L)

Λ̂L

(
∆̂L
(
αz ⊗ (ω̂L)1

))
(ω̂L)2 , z ∈ Z(A) ,

where we again used the counitality of Φ. By construction, Ŝ commutes with the Aop-action

on A given by ρ(b) : a 7→
∑

(b) S(b′)ab′′ 7 and thus Ŝ acts on the spaces of invariants of this

action, which is indeed α · Z(A).

7 Note the different position of the antipode S here with respect to the adjoint action.
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Remark 8.3. If A is a factorisable Hopf algebra, recalling Remark 7.4 we have the S-

transformation (8.11) (or equivalently (8.12)) on A as

(8.16) Ŝ(a) =
∑
(M)

Λ̂L
(
S(M2)a

)
M1 =

∑
(M)

Λ̂L
(
M1a

)
S−1(M2) , a ∈ A ,

where we used (S ⊗ S)(M) = τA,A(M), while SZ from (8.4) becomes

(8.17) SZ(z) =
∑
(M)

Λ̂L
(
zM1

)
S(M2) , z ∈ Z(A) .

When Ŝ is restricted to Z(A) the two formulas become equal: SZ(z) = S2
(
Ŝ(z)

)
, but S2

is identity on the centre as S2(a) = uau−1. We note that (8.17) agrees with the S-

transformation obtained in [Ke1, Sec. 2] 8, which is a slight rewriting of the “quantum Fourier”

S-transformation originally obtained in [LM].

Appendix A. Dinatural transformations

We recall here the concept of dinatural transformations between two functors. Let C and D
be any categories and let F : Cop × C → D and G : C × Cop → D be two functors. The next

definition is a slight modification of the one in [McL, Ch. IX.4] – the order of categories for

the second functor is different.

Definition A.1. A dinatural transformation from the functor F to the functor G is a family

of morphisms φ ≡ (φU : F (U,U)→ G(U,U))U∈C in D, written φ : F
..−→ G, that makes the

diagram

F (V, V )
φV // G(V, V )

G(id,f)

''
F (V, U)

F (f,id) ''

F (id,f)
77

G(V, U)

F (U,U)
φU // G(U,U)

G(f,id)

77

commute for all U, V ∈ C and f ∈ C(U, V ).

For coends and ends, we consider the cases where one of the functors, F orG, is a “constant”

functor: e.g. G : U × V 7→ B for all U, V ∈ C and an object B ∈ D. Definition A.1 then

reduces to the following one.

8Note that Λ̂L : A → k is an intertwiner for the Aop-action on A by ρ(b) : a 7→
∑

(b) S(b′)ab′′. Therefore,

the right integral condition in RHS of (7.34) (the one in the context of the coends) simplifies to the standard

right-cointegral condition for a Hopf algebra: (Λ̂L ⊗ id) ◦∆(a) = Λ̂L(a)1. (But the LHS of (7.34) does not

simplify to the standard left-cointegral condition for a Hopf algebra.) The right (co)integral µD used in [Ke1,

Section 2] thus coincides with our Λ̂L (possibly up to a sign), as the normalisation is also the same.
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Definition A.2.

(1) A dinatural transformation from the functor F to an object B ∈ D is a family of mor-

phisms φ ≡ (φU : F (U,U)→ B)U∈C in D, written φ : F
..−→ B, that makes the diagram

F (V, U)

F (f,id)

��

F (id,f)
// F (V, V )

φV
��

F (U,U)
φU // B

commutative for all U, V ∈ C and f ∈ C(U, V ).

(2) A dinatural transformation from an object B ∈ D to the functor G is a family of mor-

phisms φ ≡ (φU : B → G(U,U))U∈C in D that makes the diagram

B

φU
��

φV // G(V, V )

G(id,f)

��
G(U,U)

G(f,id)
// G(V, U)

commutative for all U, V ∈ C and f ∈ C(U, V ).

Appendix B. Proof of Proposition 3.9

We first prove that the two coalgebra structures are equal. Recall that the coproduct for

the universal Hopf algebra (L, ϕ) is determined by the defining relation (2.29) involving the

element from Nat(id, id⊗ (L ⊗ L)) – the right-hand side of (2.29) – while the coproduct for

the coend (L, ι) is given by the defining relation (3.17) involving the element from Din((−)∗⊗
(−),L⊗ L). By Corollary 3.8 and Lemma 3.7, and the universality property of the coend L
we have the commutative diagram (where all arrows are bijections)

(B.1) C(L, V )
ϕV //

(−)◦ι ((

Nat(id, id⊗ V )

Din((−)∗ ⊗ (−), V )

ζV

OO

We use this diagram for V = L⊗L to compare the coproducts on (L, ι) and on (L, ϕ) – this

is equivalent to comparing the dinatural transformation on RHS of (3.17) with the image of

RHS of (2.29) under the bijection ζ−1
L⊗L. We begin with rewriting the map X

ι̃X−→ X ⊗ L
in terms of ι, recall the definition (2.28). Applying the diagram (B.1) for V = L we get
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ι̃ = ϕL(id) = ζL(ι) or graphically

(B.2) ι̃X :=

X L

ιX

X

Then, RHS of (2.29) is

(B.3) ϕL⊗L(∆L)X =

X L L

ιX

ιX

X

Applying ζ−1
L⊗L on it, recall (3.23), we get then indeed RHS of (3.17) or the dinatural trans-

formation defining the coproduct on the coend (L, ι) in Figure 1. For the counit maps, we

apply ζ−1
1 on RHS of (2.30) and get indeed RHS of (3.18). Similarly for the antipode S

map (though, the algebra structure is discussed below), we apply ζ−1
L on RHS of (2.35) and

get indeed RHS of (3.19), or the corresponding diagram in Figure 1, after an elementary

calculation using naturality of the braiding.

To compare the algebra structures, we use a direct calculation instead of the “double”

analogue of the diagram (B.1). Recall that the multiplication for (L, ϕ) is defined in (2.34)

by the equality ϕ2
L(µL)X,Y = ι̃X⊗Y , where the map ϕ2

V is defined in (2.33). In order to

show the equality of the multiplications on (L, ι) and (L, ϕ), we compute the image of µL
from (3.15) (or graphically in Figure 1) under the map ϕ2

L and show that it is equal to ι̃X⊗Y .
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We have

(B.4) ϕ2
L(µL)X,Y =

X Y L

µL

ιX ιY

X Y

=

X Y L

µL

ιX ιY

X Y

where we used naturality of the braiding. Using then the defining equality for µL in Figure 1,

we can replace the part of the diagram inside the dashed square by RHS of (3.15) that gives

(after an elementary graphical calculus)

(B.5) ϕ2
L(µL)X,Y =

X Y L

ιY⊗X

(Y ⊗X)∗ Y ⊗X

γY,X id

X Y

=

X Y L

ιX⊗Y

idX⊗Y

X ⊗ Y

,

where in the last equality we used the dinaturality property (3.9) of ιY⊗X in order to move

the braiding from right to left, and then we also used the explicit diagram (2.11) for the

isomorphism γY,X , and the zig-zag identity to simplify the diagram. We get thus indeed

ϕ2
L(µL)X,Y = ι̃X⊗Y , recall (B.2), and therefore the two multiplications are equal. The unit

maps ηL are compared in a similar way. Finally, for the Hopf pairing ωL we calculate

ϕ2
1(ωL)X,Y along the lines in (B.4) using RHS of (3.21) for the dashed region and simplify it

up to RHS of (2.37), as claimed.
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