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Abstract Urban delivery optimization is mainly based on the classical Travel-
ing Salesman Problem (TSP). Time-Dependent TSP (TD-TSP) is an extension
of the TSP wherein the cost of an edge depends on the departure time from
its source node. It is particularly relevant in real urban traffic environments,
as the actual travel speeds vary according to the time of the day. By decom-
posing the time horizon into equal-sized time steps, and associating a travel
time to each time-step of each edge, we first examine the relationship between
the length of the time-step and the spatio-temporal features of the data-set,
which describe the amount of information degradation in the data-set along
both dimensions. We also study the effect of this spatio-temporal granularity
on the quality of the TSP and the TD-TSP solutions. Our benchmark data-set
is produced from a realistic traffic flow micro-simulation of the city of Lyon.
Four time-step lengths, ranging from six to sixty minutes, and several numbers
of deliveries, ranging from ten to thirty, are considered for two exact solvers,
namely dynamic programming and an integer linear programming solver.
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1 Introduction

Freight tour optimization consists in minimizing the time to visit a given set
of locations to pick-up or deliver goods. This problem is usually modeled as
a directed graph where vertices are the locations1 and edges correspond to
shortest paths between each pair of vertices. Edges are weighted by travel times
between the two incident locations. Then, the optimal tour can be calculated
as the shortest route that visits each vertex of the graph exactly once. It
corresponds to the classical definition of travelling salesman problem (TSP)
and has been widely studied in the past.

Classically, edge weights are assumed to be constant. This means that
travel times are constant, whatever the hour of the day. It turns out that
this supposition is far from the reality and is a poor representation because
it implies that traffic conditions remain also constant even if congestion may
appear during peak hours. Consequently, actual travel times between locations
vary along the day. Also shortest paths (i.e., successions of road links) between
locations may change along the day. To fill this lack of realism in the classi-
cal TSP, cost functions that define edge weights must be adapted to traffic
dynamics: they become time-dependent. Determining the optimal freight tour
with a realistic traffic dynamic description is thus related to solve the time-
dependent version of the TSP problem (TD-TSP problem), which takes into
account variations of travel times during the day [6, 10,11].

A natural question is: What is the effect of integrating time-dependency
to travel between places in the optimization model? Fig. 1 shows through a
simple example how a sole change of time-step durations from 6 to 12 minutes
unveil different tours with different durations. An issue which is amplified for
complex road networks of thousands of links and for whole day time horizons.
Fleischmann et al. [9] compare tour durations yield by constant travel time to
those based on 5 and 10 minutes time-steps, and found that static TSP under-
estimate the total travel time by over 10%. We further explore the reliability
and quality of static TSP based tours, compared and evaluated in finer time
granularity costs, addressing the crucial question of when it is necessary to
exploit time-dependent costs for urban freight deliveries.

A second question is: Which level of variations must be accounted for
in TD-TSP? To the best authors knowledge, only few attempts exist in the
literature [8, 9]. These papers aim to compare constant travel time versus
piece-wise-constant time-dependent travel times. Moreover, the variations of
the travel times may change either the order of the places to visit but also
the fastest routes between places. It is important to notice that considering
more variations of travel times increases the size of the TSP graphs. Similarly,
considering space variations of the speed of the links of a route between two
locations to visit also extends the size of the graph. As a consequence, it will
increase exponentially the calculation time because TSP is an NP-hard prob-
lem. To fix ideas, the size of the problem is slightly different when considering

1 And the initial and final warehouses.
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Fig. 1: Illustration of the impact of time-step granularities on the computed
tours. Left: With two time-steps of 6 minutes, such that costs of (0, 3) and
(1, 3) increase between the first and the second time-step due to congestion,
the best tour is 〈0, 3, 1, 2, 0〉 and edges (0, 3) and (3, 1) are traversed before
becoming congested. Right: With one time-step of 12 minutes, such that costs
of edges (0, 3) and (1, 3) are averaged over the two 6-minute time-steps, the
best tour is 〈0, 1, 2, 3, 0〉.

constant travel times (one value between each location for the whole horizon
of optimization) and piece-wise constant travel times (one value per time pe-
riod between each location for the whole horizon of optimization). The same
remark holds for the space scale: the size of the problem changes if one speed
value per link is considered or if links with the same speed are gathered. Be-
sides, there is also major differences between considering a priori travel time
estimations (TSP and TD-TSP) or real-time estimations (D-TSP).

Consequently, the way of modeling and estimating travel times is crucial
to determine optimal urban freight tour. With this in mind, it is thus ap-
pealing to determine the convenient and efficient space and temporal scales of
travel times modeling. A trade-off between accounting for the traffic dynam-
ics, guaranteeing an efficient computational time, and finding a satisfactory
optimal solution must be found.

In this context, the main contribution of the paper is to focus on a cru-
cial question, that is rarely addressed by the literature: What is the effect
of integrating travel time variations in the optimization model? To this end,
we propose to use a micro-simulation software as a proxy of the reality and
to compare the quality of solutions found with a TSP model and a TD-TSP
model. It makes it possible to provide to the community a benchmark data-set
of time-dependent TSP graphs to test and compare algorithms and calculated
optimal tours. The associated instances correspond to a real transportation
network where travel times and shortest paths between locations to visit are
time-dependent. Different time-scale and spatial coverage of the traffic condi-
tions can be defined, leading to different estimations of the travel times. Effects
of the spatio-temporal granularity of the observations can thus be analyzed.

The organization of the paper is as follows. The next section describes the
TD-TSP, and the exact solving approaches used in the paper. In Section 3,
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we introduce a new benchmark for the TD-TSP that has been built by using
recent techniques and simulation models originating from traffic flow theory.
Finally, Section 4 reports the first experimental results involving both optimal
tours of static and TD versions of the TSP.

2 The TD-TSP problem

Description. Introduced in 1992 by Malandraki and Daskin [16], the TD-TSP
aims to find the least-duration Hamiltonian circuit, i.e., visiting each node
exactly once, similarly as the TSP. The difference is that the traversal cost cij
of each edge (i, j) varies over time, and is a function of the departure time t
from i. Thus, it is denoted ctij . Time-dependant TSP is a generalization of the
TSP, which is NP-hard [12]. In this study, we consider complete directed graphs
of delivery addresses, which are built from the road transportation network.
The traversal cost ctij in our case is modeled as a step-wise function, which
assumes that travel times are constant during each time-step. This model is
actually well suited for traffic data, since it fits the usual scheme of travel time
estimation.

We denote n the number of vertices, V the set of all vertices, and 0 ∈ V the
depot from which the tour begins. Given a path P = 〈v1, . . . , vk〉, a starting
time t0, and a vertex vi ∈ P , the arrival time on vi is denoted at(vi, t0, P ) and
is recursively defined by:

at(v1, t0, P ) = t0

∀i ∈ [2, k], at(vi, t0, P ) = at(vi−1, t0, P ) + d(vi−1) + cat(vi−1,t0,P )+d(vi−1)
vi−1,vi

,

where d(vi) is the duration associated to vertex vi. The time-span associated
with the path P and a start time t0 is denoted ts(t0, P ) and is given by :

ts(t0, P ) = at(vk, t0, P )−
k∑

i=1

d(vi)− t0.

The goal of the TD-TSP is to find a tour P = 〈v0, . . . , vn〉 such that (i) P
starts from and ends on vertex 0 (i.e., v0 = vn = 0); (ii) {v0, . . . , vn−1} is a
permutation of V ; and (iii) the time-span of P when leaving from v0 at time
t0 (i.e., ts(t0, P )) is minimal. Finally, the following three steps are required to
determine the optimal freight tour:

(i) Estimation of the road travel times f(t, k) for each road link k, and each
time-step ∆t starting at t (see Section 3 for more details).

(ii) Calculation of the shortest path for each couple of locations i and j
and every time-step ∆t, using a time-dependent variation of the Dijkstra
algorithm. ctij will take the value of the associated duration.

(iii) Determination of the optimal freight tours using an optimization algo-
rithm (see the next paragraph).
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Solving approaches. For solving the TD-TSP, we focus on exact methods, i.e.,
Integer Linear Programming (ILP), Constraint Programming (CP) and Dy-
namic Programming (DP). When there are no time-window constraints (i.e.,
the vehicle is not constrained to arrive to each location i within a pre-defined
interval [li, ui]), which is our case, existing ILP [1, 2, 5, 20] and CP [17] ap-
proaches do not scale well, and none of them is able to solve our instances
with n = 30 vertices within a reasonable amount of time when the number of
time-steps exceeds 32. DP on the other hand does find the optimal solution
(and prove optimality), in less than 0.5 second for n ≤ 20 and less than 1000
seconds for n = 30 vertices3. The DP approach is a straightforward extension
of the DP algorithm for the TSP, and it is based on the following Bellman
equation :{

p(vi, S) = ct00vi , S = ∅,
p(vi, S) = minvj∈S p(vj , S \ {vj}) + d(vj) + c

p(vj ,S\{vj})+d(vj)
vjvi , S 6= ∅,

where p(vi, S) is the earliest arrival time of a path that starts from vertex 0
at time t0, visits each vertex of S ⊆ V exactly once, and finishes on vertex vi.
The time complexity of this algorithm is O(n2 · 2n), and its space complexity
is O(n · 2n). We use DP for solving TD-TSP. For the static case however, we
use an efficient and basic ILP approach, i.e., a Branch&Cut procedure wherein
sub-tours are eliminated starting with those with the smallest cardinality [19].
This approach is able to find the optimal solution in less than 0.4 second for
n = 30.

3 Description of the benchmark

Motivation. One of the main objectives of this study is to provide to the
research community a benchmark data-set with the following goals in mind:
(i) a data-set designed to test, evaluate and compare performance of various
TSP solvers, (ii) accounting for different spatio-temporal granularities from the
perfect knowledge to a realistic time and space coverage, and (iii) accounting
also for different levels of travel time variations, i.e., different time-steps to be
considered.

Spatio-temporal features of the benchmark. To obtain full access of ground
data, we decided to use a dynamic microscopic simulator of traffic flows, called
SYMUVIA [3], on a sub-part of the Lyon transportation network, shown in
Fig. 2. This software can simulate the whole complexity of the urban traffic
flow by taking into account different classes of vehicles, individual driving
behaviors, lane-changing phenomenons, intersections, etc. It uses also a car-
following law based on Newell’s model [18] and its extensions [13, 14]. Even if

2 We thank Vu et al. [20] for sharing their source code.
3 All experiments were performed on an Intel(R) Xeon(R) Platinum 8175M CPU @

2.50GHz processor with 32 GB memory machine.
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Table 1: Description of the four data-sets of the benchmark.

simulation is only a proxy of the real world, it makes it possible to have access
to the finest level of details and to emulate every possible measurements of
traffic dynamic: individual travel times, link speeds, loop detector data, etc.
Several traffic scenarios of the day can be replicated simply by changing the
random seed input of the simulator.

Table 1 describes the four data-sets generated in our benchmark. The data-
setD4 has been obtained according to the previous paragraph procedure, when
considering a sensor placed on each link of the network. The data-set D3 fol-
lows similar pattern as D4 with the same random seed input of D4, except
that sensors in this case only cover the actual spatial position found in the
urban transportation network of Lyon city, which are placed by the agglom-
eration of Lyon city [4]. This partial spatial cover only concerns 7.35% links
of the target network. It is also shown in Fig. 2. The travel times of the other
links are generated by interpolation, taking the value of the closest (Euclidean
distance) sensor. On other hand, D1 and D2 data-sets tend to capture the
temporal trend linked to the daily demand, thus travel-time costs of several
traffic scenarios are averaged, exactly 10. Then, we perform a temporal trend
filtering via an adequate moving average filter. The spatial sensor cover of the
data-set D1 (resp. D2) is similar to the data-set D3 (resp. D4).

Fig. 3 shows a view of the 4 data-sets when considering an instance of
four Origin-Destination (O-D) addresses, while Table 2 displays the Euclidean
distances between the data-sets Di (with i ∈ {1, 2, 3, 4}) and D4 for the time-
step l = 6mn. Therefore, D1 is the farthest from D4, followed by D3 then
D2.

Estimation of time-dependent travel times of roads. We use the following con-
sistent spatio-temporal mean formulation to calculate the travel time f(k, t)
for every road link k of the network and every time-step ∆t starting at t:

f(k, t) =
lk

Vk(t)
and Vk(t) =

Qk(t)

Kk(t)
,



On spatio-temporal granularity of optimal delivery tours 7

Fig. 2: The Lyon road network considered in the study, and the actual positions
of sensors placed by the agglomeration of Lyon city (in yellow).

D1 D2 D3 D4
n = 10 9 072.71 3 546.0 8 228.26 0.0
n = 20 18 120.9 7 270.3 16 180.9 0.0
n = 30 27 675.6 11 110.6 25 282.4 0.0

Table 2: Euclidean distances between the data-sets Di and D4 given for each n

and Di by
∑

instance

(∑
s

∑
d

∑
k

(
cksd(Di)− cksd(D4)

)2)
/(number instances).

where lk is the length of link k, Qk is the spatio-temporal mean of the flow in
link k at time t and Kk is the spatio-temporal mean of the density in link k
at time t, calculated according to definitions of [7] :

Qk(t) =

∑
r dr

lk∆t
, Kk(t) =

∑
r τr

lk∆t
,

where dr and τr are respectively the distance traveled and the time spent
by vehicle r within the link k during time t and t + ∆t. It is important to
notice that those definitions are fully consistent with the dynamic of traffic
flow because it weights accurately the different traffic conditions that can be
observed within a road link [15], on the contrary of classical loop detector
data. Moreover, outputs of micro-simulation give easily access to the values of
dr and τr.

Description of the benchmark instances. Three increasing numbers of deliv-
eries n ∈ {10, 20, 30} are considered. For each value of n, we have generated
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Fig. 3: An instance of travel costs between four O-D delivery addresses, which
are shown in the top map, and computed according to D1, D2, D3 and D4
data-sets.

30 instances by randomly selecting n urban addresses from the city of Lyon.
For each set of addresses, we have build 5 time-dependent cost functions cor-
responding to 5 time-step lengths ∆t = l ∈ {6, 12, 24, 60, 720} expressed in
minutes. l = 720 corresponds to the constant costs, since our time horizon
[7:00, 19:00] is of 12 hours. We consider that all tours start at time t0 = 7:00
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and cannot finish after 19:00. A fixed stop duration of 6 minutes is associated
to each address. The same sets of addresses are used for the 4 data-sets of the
benchmark. Hence, our new benchmark is composed of 3 ∗ 30 ∗ 5 ∗ 4 = 1800
instances that will be publicly available.

4 Experimental analysis: First results

In this section, we present an overview of the first results obtained when
comparing static TSP and TD-TSP yield solutions. Let TDiSl denote the
optimal tour calculated based on travel-time costs of the data-set Di, with
i ∈ {1, 2, 3, 4}, and the time-step l ∈ {6, 12, 24, 60, 720}. To allow a fair and
realistic comparison, we evaluate all optimal tours using D4S6 costs. Once
TDiSl is found, its time-span using D4S6 costs, denoted as tsD4S6(TDiSl), is
computed. This will allow us to compare our delivery tours in the same basis
and in the best approximation of real traffic conditions, since D4 is considered
to be the ground true data, and l = 6mn is the smallest time-step we consider.

Temporal degradation and the size of time steps. The gap in percentage be-
tween the static TDiS720 and the time-dependent TDiSl optimal tours, which
is defined as:

tsD4S6(TDiS720)− tsD4S6(TDiSl)

tsD4S6(TDiSl)
× 100,

for l ∈ {6, 12, 24, 60} and i ∈ {1, 2, 3, 4}, is evaluated in Fig. 4. The distribu-
tions of Fig. 4 show that when the costs of evaluation are the same as those
used for optimization, i.e., the case of D4S6 costs, the gap is always positive,
which is indeed expected since tsD4S6(TD4S6) is the optimization’s evaluation.
The crucial observation here is that this gap increases with larger values of
n. When enlarging to the cases of D4Sl costs, we observe that the gaps tend
to decrease more, the wider the time-step l is. Hence, it is worth optimizing
tours with time-dependent costs, since the evaluation tsD4S6(TDiSl) is getting
lower for finer time-steps l.

Comparing cases of temporal degradation amounts to compare tours based
on D1 to D3 data-set, and those based on D2 to D4 data-set. In the case of
a partial spatial network cover (D1 and D3 data-sets), the observed trend
is that having a full temporal visibility (D3 data-set) contributes to slightly
lowering the gap in the negative direction, thus favoring static tours, as to
the partial temporal visibility situation (D1 data-set). However, the opposite
happens in case of a full spatial cover of the network. D4 leads to larger gaps,
thus it suggests a more accurate tour evaluation than that of D2.

Fig. 5 further examines the quality of static and time-dependent opti-
mal tours using tsD4S6( . ) evaluation function. It is worth to notice that,
when n = 10, static tours are better than or equivalent to optimal TD-TSP
tours, for over 60% of the cases, in every DiSl costs, with i ∈ {1, 2, 3, 4} and
l ∈ {6, 12, 24, 60}, except for the case of D4S6 (where evaluation and opti-
mization costs correspond). Thus, tours yield by constant travel costs are more
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Fig. 4: Distribution of the gap (in percentage) between the static
tsD4S6(TDiS720) and the time-dependent tsD4S6(TDiSl) optimal tours for
l ∈ {6, 12, 24, 60}, i ∈ {1, 2, 3, 4}, and n = {10, 20, 30}.

appealing for small deliveries, especially when we don’t have a full temporal
and spatial visibility of the network (data-sets D1, D2 and D3).

Spatial degradation and the size of time steps. In Fig. 6, we focus on data-sets
wherein a full temporal predictive model is assumed, i.e., D3 and D4. Fig.
6 shows that accounting only for the actual cover of sensors (D3 data-set)
induces an over-estimation of the time-spans for the optimal tours, in such a
manner that static tours of D4 are way better than the l = 6mn time-step
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Fig. 5: Allocation of the following cases: in dark (resp. white) color, the TD
optimal tour tsD4S6(TDiSl) is better (resp. worse) than the static optimal tour
tsD4S6(TDiS720), for i ∈ {1, 2, 3, 4} and l ∈ {6, 12, 24, 60}, while in gray color
both tours correspond. The result is shown for n={10, 20, 30}.

Fig. 6: Distributions of tsD4S6(TD3Sl) and tsD4S6(TD4Sl), for l ∈
{6, 12, 24, 60, 720} and n = 30.

based tours of D3: tsD4S6(TD4S720) < tsD4S6(TD3S6). Already in Fig. 3, we
have noticed that D3 data-set displays high variations in terms of travel times,
which is suggesting a more congested network than what the actual D4 costs
would imply. Actually, sensors are much often placed in congested areas of
urban networks, which is leading to a biased and rather a worst-case scenario
when estimating travel times (provided that the estimation method of travel
times is exact). This prompts us to ask the following question of how to better
place sensors in urban road networks with the aim of capturing a truthful
picture of the traffic flow.
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5. Cordeau, J., Ghiani, G., Guerriero, E.: Analysis and branch-and-cut algorithm for
the time-dependent travelling salesman problem. Transportation Science 48(1), 46–
58 (2014)

6. Donati, A.V., Montemanni, R., Casagrande, N., Rizzoli, A.E., Gambardella, L.M.: Time
dependent vehicle routing problem with a multi ant colony system. European Journal
of Operational Research 185(3), 1174–1191 (2008). DOI 10.1016/j.ejor.2006.06.047

7. Edie, L.C.: Discussion of traffic stream measurements and definitions. Port of New York
Authority (1963)

8. Figliozzi, M.A.: The time dependent vehicle routing problem with time windows: Bench-
mark problems, an efficient solution algorithm, and solution characteristics. Transporta-
tion Research Part E: Logistics and Transportation Review 48(3), 616–636 (2012). DOI
10.1016/j.tre.2011.11.006

9. Fleischmann, B., Gietz, M., Gnutzmann, S.: Time-varying travel times in vehicle rout-
ing. Transportation Science 38(2), 160–173 (2004). DOI 10.1287/trsc.1030.0062

10. Gendreau, M., Ghiani, G., Guerriero, E.: Time-dependent routing problems: A review.
Computers & Operations Research 64, 189–197 (2015). DOI 10.1016/j.cor.2015.06.001

11. Gouveia, L., Voß, S.: A classification of formulations for the (time-dependent) traveling
salesman problem. European Journal of Operational Research 83(1), 69–82 (1995).
DOI 10.1016/0377-2217(93)e0238-s

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer
computations, pp. 85–103. Springer (1972)

13. Laval, J.A., Leclercq, L.: Microscopic modeling of the relaxation phenomenon using
a macroscopic lane-changing model. Transportation Research Part B: Methodological
42(6), 511–522 (2008)

14. Leclercq, L.: Bounded acceleration close to fixed and moving bottlenecks. Transporta-
tion Research Part B: Methodological 41(3), 309–319 (2007)

15. Leclercq, L., Chiabaut, N., Trinquier, B.: Macroscopic fundamental diagrams: A cross-
comparison of estimation methods. Transportation Research Part B: Methodological
62, 1–12 (2014)

16. Malandraki, C., Daskin, M.S.: Time dependent vehicle routing problems: Formulations,
properties and heuristic algorithms. Transportation Science 26(3), 185–200 (1992)

17. Melgarejo, P.A., Laborie, P., Solnon, C.: A time-dependent no-overlap constraint: Ap-
plication to urban delivery problems. In: Integration of AI and OR Techniques in
Constraint Programming - 12th International Conference, CPAIOR 2015, Barcelona,
Spain, May 18-22, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9075,
pp. 1–17. Springer (2015)

18. Newell, G.F.: A simplified car-following theory: a lower order model. Transportation
Research Part B: Methodological 36(3), 195–205 (2002)
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