
HAL Id: hal-02147263
https://hal.science/hal-02147263v2

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual metrics. A mathematical definition for a
comprehensive approach of geographical distances

Benoît Kloeckner, Alain L’Hostis, Thomas Richard

To cite this version:
Benoît Kloeckner, Alain L’Hostis, Thomas Richard. Contextual metrics. A mathematical def-
inition for a comprehensive approach of geographical distances. Geographical Analysis, 2020,
�10.1111/gean.12260�. �hal-02147263v2�

https://hal.science/hal-02147263v2
https://hal.archives-ouvertes.fr


Contextual metrics
A mathematical definition for a comprehensive

approach of geographical distances

Benoît R. Kloeckner1, Alain L’Hostis2, and Thomas Richard1

1Université Paris-Est, Laboratoire d’Analyse et de Mathématiques
Appliquées (UMR 8050), UPEM, UPEC, CNRS, F-94010, Créteil,

France
2LVMT, Univ Gustave Eiffel, IFSTTAR, Ecole des Ponts, F-77454

Marne-la-Vallée, France

September 24, 2020

Abstract
Our goal is to establish a mathematical framework for the description of

geographical distance in a comprehensive way. Geographical distance always
refer to potential or realized movement between places, and these displace-
ments obey the least effort rule. While this optimization of effort is well
known to imply the Triangle inequality in many situation, breaks in move-
ment generate a paradox: effort optimization, taking into account the need to
rest, results in apparent violations of the Triangle Inequality. In order to solve
this issue, we introduce contextual metrics that consider space but also any
contextual information relevant to travel, such as resources used for moving.
Our approach permits to build a subjective space where distances are affected
by the characteristics of the individual on the move. Contextual metrics frame
the optimization problem in a space enriched by the context that the traveler
has to take into account, making apparent that the violation of the Triangle
Inequality in case of break was only an artefact of a model lacking crucial
information. The range of geographical situations that can be modelled with
this framework underline the level of generalization that can be expected from
this approach.
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1 Introduction
Distance is a central concept for both geography and geometry. In geography, our
focus, distance is generated by the necessary separation of geographic entities: all
geographic objects can’t occupy the same place (Isnard et al. 1981). If the “central
problem of geography is to place interacting objects as near to each other as possible
when the definition of distance is chosen which minimizes movement” (Bunge 1962,
p. 200), then distance definition is a critical task for the geographer. Three modes
of management of geographic distances, at least since the neolithic period, have
been observed: co-presence, mobility and telecommunication (Lévy 2009). Hence
transport is essential for understanding geographical distances.

Tobler’s First Law of geography (TFL), “everything is related to everything else,
but near things are more related than distant things” (Tobler 1970), has slowly
made its way in geography (Sui 2004; Miller 2004b) and is now recognized as a
“near universally respected reflection” in the discipline (Anselin and Li 2020, p. 13).
It has been discussed how much relevant it remained in a shrinking world, where
places are brought closer by new means of transportation and by increasingly effi-
cient telecommunication systems, but its relevance seems to have rather increased
– reduced distances where indeed followed by increased interactions (Kirsch 1995;
Ahmed and Miller 2007). To what extent does TFL conveys a definition of geo-
graphical distances? If we are to understand how different locations are related, a
key point according to TFL is to understand how near or far they are from each
other. But even when focusing on mobility, near and far should not be understood
in a purely physical, as the crow flies, sense: two locations linked by an expressway
should entertain a stronger relation with each other than two locations nearer in
physical space, but separated by rough ground. It is thus the usual understanding
of TFL that nearness is to be measured in ease of travel. One small additional step
leads us to define distances by the difficulty in relating two locations. TFL applied
to mobility is then reduced to the statement that we do more what we can easily
do; whether any potential movement will actually take place or not is guided by the
expected ratio of benefit over cost; and the way in which the movement will occur
(choice of path, of transport mean) will be guided by attempting minimization of
the cost (Zipf 1949; Warntz 1967; Wu and Miller 2001; Geertman and Eck 1995).
Therefore, in order to understand movements in a geographical space it is necessary
to consider more than the physical lengths, and by distance we will mean a disutility
of arbitrary nature associated to movement. Moreover, in order to gain deeper un-
derstanding of movement, one has to take into account every element that influences
the incurred disutility, as they may affect whether and how the movement will take
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place.
Our intention is to establish a mathematical framework suitable for the descrip-

tion of geographical distances related to movement in space and produced by trans-
port means, measured in arbitrary units and taking into account any relevant context.

The geography of distances has been the focus of many geographical and sev-
eral spatial economy contributions. A related problem is the cartography of time-
distances (Shepard 1962; Marchand 1973; Kruskal and Wish 1978; G.M. Hyman and
Mayhew 2004; Axhausen et al. 2008; Shimizu and Inoue 2009; Ficzere, Ultmann, and
Török 2014; Dusek and Szalkai 2017). Contributions in this field develop practical
solutions that minimize or control the stress of the cartographic representation or use
differential geometry (Angel and Geoffrey Hyman 1976), but do not introduce new
mathematical definitions of distances. In transport studies and in the literature on
the measurement of accessibility, we find references to distances measurement that
involve routing (Ritsema van Eck and de Jong 1999; Kim and Kwan 2003; Dela-
fontaine, Neutens, and Weghe 2012), with time dependant graphs (Chalmet, Francis,
and Saunders 1982), or including transit schedules routing (O’Sullivan, Morrison, and
Shearer 2000; Lozano and Storchi 2001; Nuzzolo, Russo, and Crisalli 2001; Müller-
Hannemann et al. 2007; Lei and Church 2010; Ma and Lebacque 2013; W. Zeng et
al. 2014; Bast et al. 2016). Nevertheless, this literature focuses on the methods and
algorithms aimed at generating high quality distance datasets and associated maps,
but do not elaborate on the mathematical nature of these distances. Most of these
works take inspiration from the time geography framework (Hägerstrand 1970). In
the time geography stream we find developments in geometry focusing on the shapes
needed in this framework, with path, prisms (Kuijpers, Miller, and Othman 2017),
bundles and other spatial objects (Miller 2005), but, again, not on the mathematics
of distance.

The set of approaches the closest to our intention have concentrated on the de-
velopment of a mathematical distance framework suitable for the computation of
transport costs, in the context of spatial economy (Smith 1989; Huriot, Smith, and
Thisse 1989). These contributions have provided a theoretical foundation for the
development of geographical distance measurement on networks (Dean 1997; Ahmed
and Miller 2007). Our own focus, on the geometry of geographical distances, differs
from Smith (1989) and Huriot, Smith, and Thisse (1989) in the sense that it cares
more for geographical and cartographic issues while also considering spatial economy
costs.

An additional important feature of the current work, and actually its initial moti-
vation, is theoretical and concerns the Triangle Inequality. It has often been consid-
ered irrelevant to certain geographical distances, but we shall show that the triangular
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inequality holds in one form or another universally, in a very wide framework, since
it follows logically from the minimization process. We close a critic of the critics of
the Triangular Inequality opened in L’Hostis (2016), by showing that last remaining
case where it seemed not to hold is in fact a case where distances are ill-defined,
precisely because they depend on a context.

A context will be information to be added to the location and that will influence
the available choices of movement from this location and their costs. Examples of
contexts are numerous: available budget, fuel gauge level, accumulated fatigue, date
and time of day, etc. Instead of considering movement solely into physical space, we
will recast it into an enriched space whose elements are called states and compound
location and context; in particular, this enables us to express distance to a location
not only in term of the starting location, but also in term of the context in which
the traveler finds herself or himself.

In appendix A, we shall develop a more detailed framework based on elementary
trips that are composed into paths in the enriched space. The important point is
that each elementary trip can change the context (spend some money, or fuel, add
some fatigue, shift the time of day, etc.), thus potentially influencing all subsequent
parts of the journey.

The two facets of the enriched space, geometry and context, do not play sym-
metric roles. The geometry is immutable, at least at the timescale involved in the
movement, while the context will usually evolve as the movement proceeds. The ge-
ometry only takes into account places (starting location and target location), while
context denotes all other movement-related circumstances.

Our framework being flexible, contexts can also be used to model differences
between travelers (e.g. differences in wealth or in preferences, i.e. differences that
are intrinsic to the travelers and not related to their locations, and thus are ignored
in traditional models of geographic distances). Beyond a purely physical approach of
space, what we model is closer to space as it is experienced by the traveler : different
travelers, with different constraints and incentives, will make different choices and
this means that they will each have their own “set of states”, with possibly only the
spatial component in common. Through this subjective component, our approach of
geographical distance makes a link to the domains of behavioral geography (Golledge
1997; Mark et al. 1999), and of the psychological and economic literature on travel
behavior (Zahavi 1976; Mokhtarian and Salomon 2001; Acker, Wee, and Witlox
2010). In our framework, distance, as the solution of an optimization problem,
is not universal: it actually depends on the constraints – linked to the context –
under which minimization occurs. In this sense we follow the views – inspired by
Poincaré’s reflections (1908, p. 116) – of modern human geographers (Blaut 1961;

4



Gatrell 1983; Bailly 1985; Couclelis 1999). This approach moves away from an
absolute – Newtonian and Kantian – conception of space and supports a more relative
and subjective conception.

A related work is the Geographical Measurement Framework proposed by Miller
and Wentz (2003) introducing geographic attributes that are attached to locations
(stock) or to couples of locations (flows); these are spatial attributes. Our approach
differs because our context is related to movement, to distances measurement, and
not directly attached to space.

2 Breaks and the triangle inequality
In the next section, we shall introduce contextual metrics,1 which are metric-like
functions defined on an enriched space modeling both physical space and a variety
of possible factors influencing travel. To motivate and explain the need for this
enrichment, let us discuss how the notion of break has been considered incorrectly
as an impediment to the universal validity of the triangular inequality (L’Hostis
2016; L’Hostis 2017; L’Hostis 2020). The breaks in itineraries, that are necessary to
relaunch movement, do not entail the idea of sub-optimality in distances that the
triangle inequality violation suggest. In particular Huriot, Smith, and Thisse (1989,
p. 313) admit that their proposed minimum cost distance may violate the triangle
inequality. While they do not give an explicit example, it is plausible that what they
have in mind is close to example 2.1 below.

One could develop a semi-metric structure that assumes a violation of the Triangle
Inequality, possibly replaced by a less demanding inequality (Wilson 1931; Huriot,
Smith, and Thisse 1989), even though this would entail losing major geometrical
properties, the inability to use the spatial analytical techniques of Geography (Ahmed
and Miller 2007), and entering abstract spaces (Wilson 1932, p. 517). However, our
main motivation to develop a framework where we keep the Triangle Inequality is
that it represent more accurately the very concept of distance as the least possible
amount of effort needed to go from one location to another.

As extensively shown by L’Hostis (2016), several authors attach the idea of a
human as an effort minimizer (Zipf 1949) to cost and “not just to distances” (Mon-
tello 1991, p. 113). We defend here an opposite view and propose to root the idea
of optimization into the definition of geographical distance and its mathematical

1We shall use the word metric for the functions considered as a whole, and the word distance for
individual measurements. So, if 𝑑 : 𝑋 × 𝑋 → [0, +∞) is a metric and 𝑝, 𝑞 ∈ 𝑋 are two locations,
the number 𝑑(𝑝, 𝑞) shall be called the distance from 𝑝 to 𝑞.
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𝐴 𝑀 𝐵

City Motel City
8 h 8 h

Figure 1: Two cities, a midway motel and the length of two paths 𝐴𝑀 and 𝑀𝐵

formalization. We refute the idea that geographical distance measurement could
eventually be suboptimal. Departing from the point of view of Huriot, Smith, and
Thisse (1989, p. 313), we claim that as soon as distances are well-defined through
an optimization process, the triangle inequality is satisfied. Apparent violations of
the triangular inequality are either a lack of optimization, as in the “two errors”
debunked by L’Hostis (2016), or a lack of well-definiteness as we will explain below.
The reinterpretation of the following simple example described by L’Hostis (2016) is
at the core of our approach.

Example 2.1. The motel case Assume, as on figure 1, two cities 𝐴, 𝐵 are con-
nected by a single road with a motel 𝑀 in between; to travel by car between 𝐴 and
𝑀 , or between 𝑀 and 𝐵 takes 8 hours. Assume further that one is not able or
allowed to drive for more than 8 hours in a row, and that after 8 hours of driving
an 8 hours rest is needed. In a time-geography framework, the motel is a space-time
anchor (Kuijpers, Miller, Neutens, et al. 2010) that compels the presence for an 8
hours period of time.

It has been claimed that this is a counter-example to the triangular inequality
(L’Hostis 2016): the distance (in travel time) from 𝐴 to 𝐵 would be 24 hours (twice 8
hours of driving and 8 hours of rest in between), larger than the sum of the distance
from 𝐴 to 𝑀 and the distance from 𝑀 to 𝐵 (both 8 hours). While L’Hostis has
proposed as a solution to relax the triangular inequality, we argue that the problem
here actually does not lie in the triangular inequality, but in the fact that distances
(travel times) are not well-defined out of context: for example the distance from 𝐴 to
𝑀 can be either 16h or 8h, depending on the necessity to consider the break time or
not. Both measurement can make sense in a geographical context. For instance the
time duration of long car trips provided by online routing services2 usually do not
include rest time, which may be avoided if two drivers take turns along the journey.
Going back to our example, imagine the motel manager has to go to 𝐴 fetch some
commodities: neglecting the time involved in logistics, after her 8 hours drive to 𝐴
she cannot drive back straight away. She thus stands in 𝐴 with no way to be at
𝑀 until 16 hours later. The travel time between any two points in fact depends on
whether the traveler is rested or tired: there is a context to be taken into account.

2For instance: https://maps.openrouteservice.org/

6

https://maps.openrouteservice.org/


𝐴 𝑀 𝐵

Rested (𝑟)

Tired (𝑡)

8 h 8 h

8 h 8 h

Figure 2: Two cities, a midway motel, and two contexts. Each arrow takes 8 hours.

More precisely, one can model the situation by a set of 6 couples, or states, where
the context is written for cleaner notation in exponent of the location:

{𝐴𝑟, 𝐴𝑡, 𝑀 𝑟, 𝑀 𝑡, 𝐵𝑟, 𝐵𝑡} ≃ {𝐴, 𝑀, 𝐵} × {𝑟, 𝑡},

encoding the six possible combinations of a location and a context (𝑟 for rested, 𝑡
for tired) of the traveler, as in figure 2. Each of the following actions take 8 hours:
rest while staying in place, travel from a location to a neighboring one; traveling is
only possible when rested and causes tiredness. Now the minimal length of a path
between two states does satisfy the triangle inequality.

By enriching the space we see the initial model, where the triangle inequality
seemed not to hold, as the mere shadow of a more accurate representation of the
situation at hand. The apparent violation of the triangle inequality is revealed as
an undeterminacy caused by important information being left out. Modeling much
more general situations where non-spatial information, i.e. a context, influence the
length of travel is the goal of the framework we are about to develop.

3 Contextual metrics
Definition 3.1. Let 𝑋 be a set, which shall represent the geographical space; ele-
ments of 𝑋 are called locations. Let 𝐶 be a set called the set of contexts. A pair in
𝑋 × 𝐶 corresponding to location 𝑝 and context 𝑐 will be called a state and denoted
by 𝑝𝑐;3 it compounds the information on the location 𝑝 and the context 𝑐.

3The usual mathematical notation would be (p,c), but a lighter notation seemed better and
confusion with taking power is unlikely.
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𝑝𝑐

𝑞𝑏

𝑟𝑎

Figure 3: A triangle in the state space: each vertex is a state, i.e. a pair
(locationcontext), and each edge is a path.

A contextual metric on 𝑋 (with context set 𝐶) is a function

𝑑 : (𝑋 × 𝐶)2 → [0, +∞]

satisfying the following axioms:

i. (Identity) for all 𝑝𝑐 ∈ 𝑋 × 𝐶, 𝑑(𝑝𝑐, 𝑝𝑐) = 0,

ii. (Separation In Space) for all 𝑝, 𝑞 ∈ 𝑋, if inf𝑐,𝑏∈𝐶 𝑑(𝑝𝑐, 𝑞𝑏) = 0 then 𝑝 = 𝑞,

iii. (Triangle Inequality) for all 𝑝𝑐, 𝑞𝑏, 𝑟𝑎 ∈ 𝑋 × 𝐶,

𝑑(𝑝𝑐, 𝑞𝑏) ≤ 𝑑(𝑝𝑐, 𝑟𝑎) + 𝑑(𝑟𝑎, 𝑞𝑏),

The number 𝑑(𝑝𝑐, 𝑞𝑏) shall be called the contextual distance between the two states
𝑝𝑐 and 𝑞𝑏, so as to distinguish with the function 𝑑 as a whole; we may use the term
“distance function” to denote functions that play a similar role to, but may not
satisfy the properties of, a metric or a contextual metric. While a non-contextual
distance is measured between two points in space, a contextual distance is measured
between two states, i.e. between two pairs of a location and a context. A crucial point
of differentiation between the contextual and the non-contextual distance resides in
the fact the addition of two measurements must take into account the context: the
Triangle Inequality is only assumed when the ending context of the first term is equal
to the starting context of the second term.

The geographical interpretation is that the contextual distance 𝑑(𝑝𝑐, 𝑞𝑏) is meant
to express the least possible disutility (e.g. least possible length traveled, time spent,
monetary cost, etc.) needed to be endured when starting at location 𝑝 with context
𝑐, to attain location 𝑞 with context 𝑏. We will often speak of “length” instead of
disutility, as we want to think about the enriched space geometrically, but it should
be remembered that it can measured in various units.

A contextual metric is very similar to a metric on an “enriched space” 𝑋 × 𝐶,
with the following differences:
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• we dropped symmetry altogether since contexts will often represent asymmet-
rical constraints, as in Example 2.1,

• separation is only in space, it could be costless to change the context in some
ways,

• we allow the value +∞ since some states could be inaccessible (e.g. when the
context is an available budget and travel costs money, one cannot raise one’s
remaining budgets by traveling).

Note that given we have no symmetry, the order of the arguments matter: it might
happen that 𝑑(𝑝𝑐, 𝑞𝑏) > 𝑑(𝑝𝑐, 𝑟𝑎) + 𝑑(𝑞𝑏, 𝑟𝑎). An example is given by the motel case
2.1: we have 𝑑(𝐴𝑟, 𝐵𝑟) = 32 h but 𝑑(𝐴𝑟, 𝑀 𝑡) + 𝑑(𝐵𝑟, 𝑀 𝑡) = 16 h.

From a contextual metric, one can construct several metric-like quantities on the
geographical space 𝑋 itself, by taking extrema. They will be used in the subsequent
examples to underline the properties of the contextual distance. The specific (𝑑𝑐,𝑏),
semi-specific (𝑑𝑐,* and 𝑑*,𝑏), minimal and maximal distance functions defined by

𝑑𝑐,𝑏(𝑝, 𝑞) = 𝑑(𝑝𝑐, 𝑞𝑏) 𝑑𝑐,*(𝑝, 𝑞) = inf
𝑏∈𝐶

𝑑(𝑝𝑐, 𝑞𝑏) 𝑑*,𝑏(𝑝, 𝑞) = inf
𝑐∈𝐶

𝑑(𝑝𝑐, 𝑞𝑏)

𝑑min(𝑝, 𝑞) = inf
𝑐,𝑏∈𝐶

𝑑(𝑝𝑐, 𝑞𝑏) 𝑑max(𝑝, 𝑞) = sup
𝑐∈𝐶

𝑑𝑐(𝑝, 𝑞)

represent the least possible length of a traveling from location 𝑝 to location 𝑞, respec-
tively when constraining both the starting context and ending contexts (𝑑𝑐,𝑏), when
constraining only one of them and disregarding the other (𝑑𝑐,* and 𝑑*,𝑏), in the most
favorable contexts at both ends (𝑑min), and finally in the worst case for the starting
context, but without constraint on the arriving context (𝑑max).

Denoting by 𝑝* the set {𝑝} × 𝐶 of all states with location 𝑝, we thus have
𝑑min(𝑝, 𝑞) = 𝑑(𝑝*, 𝑞*) in the usual mathematical sense of distance between sets. In
the motel example 2.1, what had originally been considered as the distance between
two locations is in our framework their minimal distance: it corresponds to a best-
case scenario and will in general not satisfy the Triangle Inequality. This is easily
understood: that 𝑑min(𝑝, 𝑟) is small means that there exist some pair of states in 𝑝*

and 𝑟* that are close to each other; and that 𝑑min(𝑟, 𝑞) is small means that there exist
some pair of states in 𝑟* and 𝑞* that are close to each other; but if the states in 𝑟*

do not match in the two pairs, it might be that all states of 𝑝* are far away from all
states of 𝑞*.

A simple verification shows that 𝑑𝑐,*, 𝑑*,𝑏, 𝑑min and 𝑑max satisfy the Identity and
Separation property of usual metrics (e.g. ∀𝑝, 𝑞 ∈ 𝑋: 𝑑max(𝑝, 𝑞) = 0 if and only if
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𝑝 = 𝑞), while 𝑑𝑐,𝑏 has the Separation property but might not satisfy the Identity
property. Symmetry is not to be expected in general for either of 𝑑𝑐,𝑏, 𝑑𝑐,*, 𝑑*,𝑏, 𝑑min
or 𝑑max, but can happen (e.g. in Example 2.1, 𝑑min and 𝑑max are symmetric even
though 𝑑 is not). The same can be said about finiteness: in many cases we will see
that 𝑑𝑐,𝑏, 𝑑𝑐,*, 𝑑min and 𝑑max take only finite values, but this is not a general rule.

We have the following simple result showing that 𝑑max is somewhat close to an
actual metric, and we call it the maximal quasimetric.

Theorem 3.2. Let 𝑑 be a contextual metric on a space 𝑋 with set of contexts 𝐶. Its
maximal quasimetric 𝑑max satisfies the Triangle Inequality:

∀𝑝, 𝑞, 𝑟 ∈ 𝑋, 𝑑max(𝑝, 𝑞) ≤ 𝑑max(𝑝, 𝑟) + 𝑑max(𝑟, 𝑞).

Note that given we have no symmetry, again the order of the arguments matter:
it might happen that 𝑑max(𝑝, 𝑞) > 𝑑max(𝑝, 𝑟) + 𝑑max(𝑞, 𝑟).

Proof. Let 𝑝, 𝑞, 𝑟 be locations and consider any 𝜀 > 0. By definition of the least upper
bound, there exist 𝑐 ∈ 𝐶 such that 𝑑max(𝑝, 𝑞) ≤ 𝑑𝑐(𝑝, 𝑞) + 𝜀. Then, there exist 𝑎 ∈ 𝐶
such that 𝑑𝑐(𝑝𝑟) ≥ 𝑑(𝑝𝑐), 𝑟𝑎) − 𝜀 and last 𝑏 ∈ 𝐶 such that 𝑑𝑎(𝑟, 𝑞) ≥ 𝑑(𝑟𝑎, 𝑞𝑏) − 𝜀.
Using these inequalities, the definitions of 𝑑𝑐 and 𝑑max and the Triangle Inequality
of 𝑑, we have:

𝑑max(𝑝, 𝑞) ≤ 𝑑𝑐(𝑝, 𝑞) + 𝜀

≤ 𝑑(𝑝𝑐, 𝑞𝑏) + 𝜀

≤ 𝑑(𝑝𝑐, 𝑟𝑎) + 𝑑(𝑟𝑎, 𝑞𝑏) + 𝜀

≤ 𝑑𝑐(𝑝, 𝑟) + 𝑑𝑎(𝑟, 𝑞) + 3𝜀

≤ 𝑑max(𝑝, 𝑟) + 𝑑max(𝑟, 𝑞) + 3𝜀.

Letting 𝜀 go to zero, in the limit we get 𝑑max(𝑝, 𝑞) ≤ 𝑑max(𝑝, 𝑟) + 𝑑max(𝑟, 𝑞).

Remark 3.3 (Contextual network). In many situations, for example the motel ex-
ample discussed above 2.1 (Figure 2), it is convenient not to specify explicitly the
whole contextual metric, but only the lengths of a set of “elementary movements”, or
arcs, forming a (contextual) network (the same remark applies to classical metrics).
We shall give a detailed explanation of this formalism in Appendix A, but let us give
here enough information to use it in simple cases below.

An arc will be defined by a starting state, and ending state, and a “length”, or
cost (measured in an arbitrary unit: it could be an actual length or a duration or a
monetary cost or any other additive disutility); the notation 𝛼 : 𝑝𝑐 → 𝑞𝑏 shall mean
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that 𝛼 is an arc starting at location 𝑝 in context 𝑐 and ending at location 𝑞 in context
𝑏. Its length shall be denoted by ℓ(𝛼). A finite sequence of arcs such that the ending
state of each of them is equal to the starting state of the next shall be called a path,
denoted as 𝛾 = 𝛼1𝛼2 . . . 𝛼𝑘, and we extend the length by additivity: ℓ(𝛾) = ∑︀

𝑖 ℓ(𝛼𝑖).
The starting state of 𝛾 is the starting state 𝑝𝑐 of 𝛼1 and its ending state is the ending
state 𝑞𝑏 of 𝛼𝑘; we write 𝛾 : 𝑝𝑐 ; 𝑞𝑏. Given a set of arcs so defined, we define the
associated contextual metric by

𝑑(𝑝𝑐, 𝑞𝑏) = inf
𝛾:𝑝𝑐;𝑞𝑏

ℓ(𝛾).

Similarly, we can describe many classical metric spaces by a network of arcs, modeling
elementary trips, with endpoints in 𝑋 instead of 𝑋 × 𝐶. In Appendix A, and prove
that under natural conditions the function 𝑑 defined in this way is indeed a contextual
metric (see Theorem A.11).

4 The unifying power of contextual metrics
While we introduced contextual metric with the motivation to better understand
breaks in movement, it turns out they also provide a unified framework to model a
variety of situations. First, of course, a distance on a space 𝑑 yields a contextual
distance by taking 𝐶 a singleton, so that we only gain in generality. The following
examples are meant to be crude and simple illustrations of this unifying power. We
then hypothesize that contextual metrics are a suitable mathematical definition for
the study of all geographical distances.

Example 4.1 (The simple motel case and variants). Let us revisit the motel example
2.1. We shall take 𝑋 = {𝐴, 𝐵, 𝑀} and 𝐶 = {𝑟, 𝑡} (𝑟 for “rested” and 𝑡 for “tired”).
Travels are composed from two types of elementary arcs: 𝛼𝐼𝐽 : 𝐼𝑟 → 𝐽 𝑡 for the trip
from location 𝐼 to the adjacent location 𝐽 and 𝛽𝐼 : 𝐼 𝑡 → 𝐼𝑟 for resting at location
𝐼; all arcs have length 8 hours. We then observe that neither 𝑑min nor 𝑑𝑟,* satisfy
the Triangle Inequality; however the contextual metric 𝑑 itself satisfies the Triangle
Inequality, and so does 𝑑max.

Assume more generally that we are given a metric space (𝑋, 𝑑) modeling driving
times: the elements of 𝑋 are cities, and 𝑑(𝐼, 𝐽) is the minimal driving time from 𝐼 to
𝐽 . Assume we want to take into account a legislation that imposes a resting time of
duration 𝑃 > 0 after driving for a time 𝐷 > 0. This situation can be observed in the
freight road transport with driving rules for lorry drivers (Chapelon 2006). 𝐷 is the
amount of fatigue in hours of driving that makes a break necessary or mandatory;
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in the case of freight road transport this level is fixed by professional rules, while in
the domain of individual road transport this level are indicated by good practice. to
take into account such constraints it suffices to introduce 𝐶 = [0, 𝐷], a context 𝑐 ∈ 𝐶
representing a upper bound of the fatigue in hours of driving since the last rest; that
is, being in the state 𝐼𝑐 means that we stand at 𝐼 and have not driven for more
than 𝑐 hours since the last rest. Taking a upper bound allows for more flexibility:
when one seeks to attain a location 𝐽 with fatigue 𝑏, attaining 𝐽 with lower fatigue
is even better. Then the minimal time needed to get from 𝐼𝑐 to 𝐽 𝑏, given the resting
constraints, is

𝑑(𝐼𝑐, 𝐽 𝑏) = 𝑑(𝐼, 𝐽) + 𝑘𝐼𝐽𝑃 where 𝑘𝐼𝐽 =
⎡⎢⎢⎢𝑐 + 𝑑(𝐼, 𝐽) − 𝑏

𝐷

⎤⎥⎥⎥.

(Here 𝑘𝐼𝐽 represent the number of breaks needed.) The function 𝑑 is easily checked
to be a contextual metric on 𝑋 × 𝐶. We remark that here, whenever 𝑑 is symmetric,
𝑑min and 𝑑max are both symmetric too.

A more complicated variant is obtained when rest is only possible at a location,
not in between; or worse, resting is only possible at some locations. This situation is
closer to the observed practices of lorry driving especially on expressways where stop
is only allowed in dedicated service areas. A contextual metric can be constructed in
a similar way as above, but the computation of contextual distances now needs the
full contextual data: we cannot recover it from the initial distances only. Note that
in some cases we can get non-symmetric contextual metrics. For example, service
areas that are only accessible from one side of a motorway can break the symmetry.

The location of break points, or stations, is tightly related to the spatial patterns
of trips and represents a highly relevant feature of geographical spaces. The cara-
vanserais, playing the role of halting places, where the major infrastructure of the
Silk Road (Williams 2014). The need for the first break for Parisian travelers to the
south of France has fueled the economic specialization of Burgundy in the touris-
tic sector around hotels and restaurants that shaped the reputation of the region
(Bavoux 2009). The availability of – and the market served by – petrol stations on
expressways is directly linked to the consumption of fuel by vehicles on the trunk
lines. The location of charging stations is a key factor for the development of the
use electric vehicles (Tu et al. 2016). These examples show that a suitable frame-
work caring for rest and energy reloading for movement sustaining, analyzed with
the contextual distance, is of significant value for spatial analysis.

Example 4.2 (Multimodality and intermodality). Services such as Open Route
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Service4 provide computation of minimal travel times, depending on the mean of
transportation. This correspond simply to a family of metrics (𝑑𝑇 )𝑇 ∈𝒯 where 𝒯 is
the set of transportation means. We can include this in our framework by taking 𝒯
as context set and defining the contextual metric by

𝑑(𝑝𝑇 , 𝑞𝑆) =
⎧⎨⎩𝑑𝑇 (𝑝, 𝑞) if 𝑇 = 𝑆

∞ otherwise.

whenever 𝑝, 𝑞 ∈ 𝑋 (the set of locations one can click on the map) and 𝑇, 𝑆 ∈ 𝒯 .
Then 𝑑min gives between any two places the time needed using the most efficient
mean of transportation; it can violate the Triangle Inequality: if the most efficient
means of transportation from 𝑝 to 𝑟 and from 𝑟 to 𝑞 are different, it can be that all
means of transportation yield a travel time above 𝑑min(𝑝, 𝑟) + 𝑑min(𝑟, 𝑞).

If we want to account for possible changes in mean of transportation, at least
in some locations (e.g. take a rental bike at a station, enter the subway, etc.), it
suffices to add arcs at these locations that correspond to such changes, and redefine
𝑑 allowing to combine travels through a given mean of transportation and change
thereof. These new arcs should usually be given a non-zero length, corresponding to
the time needed to operate the change.

Example 4.3 (Public transport timetables). This next example models travel using
scheduled trips between various stations of a public transportation system, such as
flights between airports, or trains or buses between stations. Our space 𝑋 will consist
of finitely many stations, while our context set 𝐶 will be a subset of R, considered
as a time variable. Our network 𝑁 will contain two kinds of arcs: 𝑁 = 𝑇 ∪ 𝑊 where

• each scheduled trip will correspond to an arc 𝑓 ∈ 𝑇 ; we denote by 𝑠𝑋(𝑓) and
𝑒𝑋(𝑓) the departure and arrival stations of the flight service and by 𝑠𝐶(𝑓) and
𝑒𝐶(𝑓) the departure and arrival time of the trip (with of course 𝑠𝐶(𝑓) < 𝑒𝐶(𝑓)).

• for every station 𝑥 ∈ 𝑋 and each couple (𝑡1, 𝑡2) ∈ R2 such that 𝑡1 ≤ 𝑡2, there
is an arc 𝑤𝑥,𝑡1,𝑡2 : 𝑥𝑡1 → 𝑥𝑡2 which models waiting at station 𝑥 from time 𝑡1 to
𝑡2. We will denote by 𝑊 the set of arcs coming from waiting time.

Last, we shall consider a length function ℓ : 𝑇 ∪ 𝑊 → [0, +∞) representing the
quantity the traveler is willing to minimize, e.g. total time of travel. We extend it
to paths additively and define the contextual metric 𝑑 by minimization, as explained
in Remark 3.3 and in greater details in Appendix A.

4https://maps.openrouteservice.org/
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As in the previous case, asymmetry already arises from the network itself : our
definition of 𝑁 ensures that every path 𝛾 : 𝑥𝑡1

1 ; 𝑥𝑡2
2 satisfies 𝑡1 < 𝑡2. Hence for

every two airports 𝑥1 and 𝑥2 and any two times 𝑡1 and 𝑡2 such that 𝑡1 > 𝑡2, the
contextual distance 𝑑(𝑥𝑡1

1 , 𝑥𝑡2
2 ) will be infinite for every choice of length function ℓ

whereas 𝑑(𝑥𝑡2
2 , 𝑥𝑡1

1 ) can be finite. Hence except in very degenerate cases the contextual
metric will not be symmetric. The semi-specific distance function 𝑑𝑡,* need not be
symmetric either, since the flights from 𝐴 to 𝐵 and 𝐵 to 𝐴 need not be synchronized.
Even 𝑑min and 𝑑max need not be symmetric, since the waiting time at connections
can be different for the return trip.

If we consider the length function ℓ corresponding to the duration of the trip,
we immediately get 𝑑(𝑥𝑡1

1 , 𝑥𝑡2
2 ) = 𝑡2 − 𝑡1 whenever there exist a path 𝑥𝑡1

1 ; 𝑥𝑡2
2 ,

𝑑(𝑥𝑡1
1 , 𝑥𝑡2

2 ) = ∞ otherwise: the context being tied to the disutility, there is some
redundancy. In this example:

• the semi-specific distance 𝑑𝑡1,*(𝑥1, 𝑥2) will be 𝑇 −𝑡1 where 𝑇 is the first possible
arrival time of a trip from 𝑥1 to 𝑥2 which leaves 𝑥1 after time 𝑡1 (if no such trip
exists, 𝑑𝑡1,*(𝑥1, 𝑥2) = +∞),

• the semi-specific distance 𝑑*,𝑡2(𝑥1, 𝑥2) will be 𝑡2 −𝑇 where 𝑇 is the last possible
departure time of a trip from 𝑥1 to 𝑥2 which attain 𝑥2 before time 𝑡2 (if no
such trip exist, 𝑑*,𝑡2(𝑥1, 𝑥2) = +∞),

• the minimal distance 𝑑min(𝑥1, 𝑥2) will be equal to the infimum of the duration
of a trip from 𝑥1 to 𝑥2 (and will usually not satisfy the Triangle Inequality),

• the maximal quasimetric will have properties which depend a lot on the con-
textual network: in particular if for every flight 𝑓 ∈ 𝐹 , 𝑠𝐶(𝑓) ≥ 0 (no trip
starts before time 0), taking 𝐶 = R would yield 𝑑max(𝑥1, 𝑥2) = +∞ whenever
𝑥1 and 𝑥2 are different. Here the modeling choices are important to obtain
relevant distances.

Let us be more specific and consider 3 airports 𝑥, 𝑦 and 𝑧 represented in 4 such
that :

• there is a flight from 𝑥 to 𝑦 taking off at 10 and landing at 11.

• there is a flight from 𝑦 to 𝑧 taking off at 12 and landing at 13.

• there is a flight from 𝑥 to 𝑧 taking off at 12 and landing at 14.
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𝑥 𝑦 𝑧

𝑡 = 10

𝑡 = 11

𝑡 = 12

𝑡 = 13

𝑡 = 14

Figure 4: Representation of the contextual network from example 4.3. The space
𝑋 is represented horizontally while the context (here time) is represented vertically.
Any subsegment of the vertical solid arrows is a valid arc in the network, while the
dashed arcs cannot be subdivided.

Here the space 𝑋 is {𝑥, 𝑦, 𝑧}, the context is 𝐶 = [9, 15] considered as a time variable
and the network 𝑁 is built from the timetable as described above. In this example :

𝑑min(𝑥, 𝑧) = 2, 𝑑max(𝑥, 𝑧) = +∞

𝑑𝑡,*(𝑥, 𝑧) =

⎧⎪⎪⎨⎪⎪⎩
13 − 𝑡 if 𝑡 ≤ 10
14 − 𝑡 if 10 < 𝑡 ≤ 12
+∞ if 12 < 𝑡.

𝑑*,𝑡(𝑥, 𝑧) =

⎧⎪⎪⎨⎪⎪⎩
+∞ if 𝑡 ≤ 13
𝑡 − 10 if 13 < 𝑡 ≤ 14
𝑡 − 12 if 14 < 𝑡.

The appearance of infinite distance should not be treated as a weakness of the ex-
ample : it carries information. The infiniteness of 𝑑𝑡,*(𝑥, 𝑧) for 𝑡 > 12 shows that 𝑧
is not reachable if the trip starts later than time 𝑡 = 12.

Now if we assume the same flights take off every day, and change 𝐶 = R, we get:

𝑑min(𝑥, 𝑧) = 2 𝑑max(𝑥, 𝑧) = 23

𝑑𝑡,*(𝑥, 𝑧) =
⎧⎨⎩13 − 𝑡 if 𝑡 ∈ (−12, 10]

14 − 𝑡 if 𝑡 ∈ (10, 12]

𝑑*,𝑡(𝑥, 𝑧) =
⎧⎨⎩𝑡 − 10 if 𝑡 ∈ [13, 14)

𝑡 − 12 if 𝑡 ∈ [14, 37)
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and 𝑑𝑡,*, 𝑑*,𝑡 are periodic in 𝑡, of period 24.
The computation of 𝑑𝑡1,*(𝑥1, 𝑥2) and 𝑑*,𝑡2(𝑥1, 𝑥2) for a real public transportation

network, defined as time-dependant networks, is an important problem in practice
and a very active field of research, see Müller-Hannemann et al. (2007) for timetable
algorithms and Hall (1986), Delling et al. (2009), and Bast et al. (2016) for routing
algorithms in time-dependant graphs. The semi-specific distances cover the main
problems posed by time-dependant graphs. Note that two approaches can be found
in this field: in the time extended approach the problem of computing 𝑑𝑡1,*(𝑥1, 𝑥2)
is tackled by choosing shortest path in the static graph whose vertices are states 𝑥𝑡𝑖

𝑖 ,
while in the time dependent approach the underlying graph has fixed vertices 𝑥 but
dynamic edges which appear and disappear as time progresses according to available
trips. In our framework they corresponds to considering either the contextual metric
on the space 𝑋 × R of all states or the semi-specific distance function on the space
𝑋.

The length function we have presented here only takes into account the travel
time, but the flexibility of our framework allows to take into account various criteria.
One can for instance take as a length function the total price of the trip by assigning
to each arcs in 𝑊 a length of 0 and each arc in 𝑇 the price of the ticket. One
can also penalize connections by assigning to each possible trip 𝛼 ∈ 𝑇 a length
ℓ(𝛼) = 𝑒𝐶(𝛼) − 𝑠𝐶(𝛼) + 𝑝 where 𝑝 is a fixed penalty.
Example 4.4 (Minimizing duration under a constrained budget, or vice-versa).
Another important situation is when one has a maximal available budget for one’s
travel, but still tries to minimize the total duration given this constraint. Then,
𝑋 being as usual the space to be considered, and 𝑁 be a non-contextual set of
possible elementary trips (be it flights or train trips, etc.) with as before functions
𝑠, 𝑒 : 𝑁0 → 𝑋 indicating starting and ending locations, length function ℓ : 𝑁 →
[0, +∞) representing the duration of each trip, and here an additional cost function
$ : 𝑁 → [0, +∞). One can then set 𝐶 = [0, +∞), a context 𝑐 ∈ 𝐶 representing the
remaining available budget, and

𝑁̃ = {𝛼̃𝑐 : 𝛼 ∈ 𝑁, 𝑐 ∈ 𝐶, 𝑐 − $(𝛼) ≥ 0},

with the understanding that 𝛼̃𝑐 : 𝑠(𝛼)𝑐 → 𝑒(𝛼)𝑐−$(𝛼). We set ℓ̃(𝛼̃𝑐) = ℓ(𝛼) and define
from it the contextual metric 𝑑 as before. The quantity of interest is 𝑑𝑏,*(𝑝, 𝑞) where
𝑏 ∈ 𝐶 is the given budget constraint, 𝑝 the starting location and 𝑞 the destination. A
thorough analysis of such a model is conducted in Section 5, where it is shown that
the monetary constraint can influence not only the distance (here, time of travel),
but also the shortest paths and the shape of isochrones: context actually matters to
how we move.
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Of course, one could want to minimize price under a time constraint. This is
achieved by exchanging the roles of ℓ and $, which makes no theoretical difference
at all in our framework.

Remark 4.5 (Contextual distances for time geography). The above example directly
implements key principles of time-geography; let us elaborate briefly on several link-
ages between our framework and time-geography.

Actually, the context-free framework of Section A.1 can be represented in the
space-time cube (Kraak 2003; Anwar, Wei Zeng, and Arisona 2014) whenever the
considered “length” is the duration of trips. The space-time is then given by the
product 𝑋 × [0, +∞), with the second factor representing the time-length of paths.

Then, the addition of contexts makes it possible to introduce constraining or
enabling quantities or properties in any number and of any nature. We thus obtain
a “space-context-time” 𝑋 × 𝐶 × [0, +∞) with a non-spatial factor 𝐶 × [0, +∞) in
which the last factor [0, +∞) has a prominent role: it encodes the quantity one seeks
to minimize. Note that in the case where length is actually physical length of trips,
it still makes sense to separate the factor [0, +∞) from the space 𝑋, as the latter will
give the distances as the crow flies while the former will give the distance actually
traveled, through the transportation network.

In example 4.4, the cost constraint is added, making 𝑋 × 𝐶 × [0, +∞) a “space-
cost-time” cube. We may represent it in 3D by simplifying the space 𝑋 to a 1𝐷
representation. The possibilities are endless, and in particular we insist that time
may not always be the quantity to be minimized (so even in a simple context-free
framework, one could use a “space-cost” cube).

5 Context affects all aspects of movement:
a simple toll expressway model

We now introduce and analyse a theoretical geographical model with interesting
features. It will show that a cost budget constraint can be encoded in our framework,
and that taking context into account can influence movement significantly in the
travelled length, in its possibility and in its shape.

Consider a straight toll expressway in an otherwise homogeneous and isotropic
geographic space, assuming that movement on the expressway is twice as fast as
outside it and that a toll proportional to the length drove on the expressway is due
for using it. In this model we will consider paths that minimize the time spent,
under the constraint of a monetary budget. This situation can be modeled in our
framework as follows.
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The space is 𝑋 = R2 and we assume the expressway follows the horizontal axis
{(𝑥, 0) : 𝑥 ∈ R}. The set of contexts is 𝐶 = [0, ∞), a value 𝛽 ∈ 𝐶 representing
the available budget in monetary units for the toll (from now on, “budget” without
specification shall refer to monetary budget). The network is decomposed as 𝑁 =
𝐸 ∪ 𝐻 where 𝐸 represents movement not using the expressway and 𝐻 movement
along the expressway; we can set 𝐸 = {𝛼𝐸,𝛽

𝑝,𝑞 : 𝑝, 𝑞 ∈ 𝑋, 𝛽 ∈ R} where 𝛼𝐸,𝛽
𝑝𝑞 represents

the straight arc from 𝑝 to 𝑞 (we could include all differentiable arcs, but this would
not change anything relevant) traveled with a starting monetary budget 𝛽 (which will
also be the ending budget), and 𝐻 = {𝛼𝐻,𝛽

𝑥0,𝑥1 : 𝑥0, 𝑥1 ∈ R, 𝛽 ≥ |𝑥1 − 𝑥0|} where 𝛼𝐻,𝛽
𝑥0,𝑥1

represents the straight horizontal arc from (𝑥0, 0) to (𝑥1, 0) using the expressway,
again with starting budget 𝛽 (here the ending budget will be lower due to the toll).
Then assuming unit speed outside the expressway, we set (using ‖·‖ to denote the
Euclidean norm):

𝑠(𝛼𝐸,𝛽
𝑝,𝑞 ) = 𝑝𝛽 𝑒(𝛼𝐸,𝛽

𝑝,𝑞 ) = 𝑞𝛽 ℓ(𝛼𝐸,𝛽
𝑝,𝑞 ) = ‖𝑝 − 𝑞‖

𝑠(𝛼𝐻,𝛽
𝑥0,𝑥1) = (𝑥0, 0)𝛽 𝑒(𝛼𝐻,𝛽

𝑥0,𝑥1) = (𝑥1, 0)𝛽−|𝑥1−𝑥0| ℓ(𝛼𝐻,𝛽
𝑥0,𝑥1) = 1

2 |𝑥1 − 𝑥0|

where ℓ measures the time needed to travel the given arc. On the expressway the
computed length in time is half that of a similar path in the rest of space. This
example shows how our framework can be used to model a monetary budget con-
straint: use the context to encode the available budget, add as many arcs as needed
to include the available budget and the various travel options, use the function 𝑒 to
encode the cost of an arc, and in 𝑁 forbid any arc that cannot be paid for. This
produces a subjective space, a space modelled from the point of view of an individual
endowed of a given monetary budget.

Let us now analyze this model. For simplicity, we consider a fixed starting point
𝐴 = (0, 1). The details of computations are not given, but they are all straightfor-
ward. First neglecting the budget constraint, to compute the distance between 𝐴
and a point 𝐵 = (𝑥, 𝑦) one has to compare the straight segment [𝐴, 𝐵], of time cost
‖𝐵 − 𝐴‖ =

√︁
𝑥2 + (𝑦 − 1)2, with the quickest path using the expressway. The path

going from 𝐴 to (𝑥0, 0), then taking the expressway to (𝑥1, 0), then going straight to
𝐵 has total time cost√︁

𝑥2
0 + 1 + 1

2 |𝑥1 − 𝑥0| +
√︁

(𝑥 − 𝑥1)2 + 𝑦2.

Let us assume 𝑥 ≥ 0 (the other case following by symmetry), in which case it is clear
that one should take 𝑥0 ≤ 𝑥1, both in the interval [0, 𝑥]. Then differentiating with
respect to any of the 𝑥𝑖, one sees that the optimal choice is to enter and leave the
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Figure 5: Optimal expressway use from 𝐴 to 𝐵 (top: unlimited budget, bottom:
limited budget 𝛽).

expressway with a 60° angle, see figure 5. In other words, as soon as 𝑥 is large enough
one should take 𝑥0 = 1/

√
3 and 𝑥1 = 𝑥 − |𝑦|/

√
3. Here “large enough” means larger

than (1 + |𝑦|)/
√

3 in order to have 𝑥1 > 𝑥0; for smaller 𝑥, taking the expressway is
easily seen to be longer than going straight from 𝐴 to 𝐵. Then, we conclude:

Lemma 5.1. Whenever |𝑥| > (1 + 𝑦)/
√

3 and 𝛽 ≥ |𝑥| − (1 + 𝑦)/
√

3, the optimal
path has time cost

𝑑𝛽,*(𝐴, 𝐵) = 𝑑min(𝐴, 𝐵) = min
(︂√︁

𝑥2 + (𝑦 − 1)2,
3(1 + |𝑦|)

2
√

3
+ 𝑥

2

)︂
.

Moreover, if the minimum is realized by its first argument, then the straight segment
[𝐴, 𝐵] is optimal; if the minimum is realized by its second argument, then the path
using the expressway pictured in figure 5 (top) is optimal. If both arguments are
equal, then both paths are optimal.

From this, it is easy to draw the isochrones from 𝐴; they are made of up to
two circular arcs and four straight segments, see the left part of Figure 6; only the
right side is shown given symmetry. This picture is similar to von Thunen’s model
of agricultural land use around a market city where a river takes the place of the
expressway (Tobler 1993). This analysis is also consistent with the developments of
the Von Thünen model with a road added to the homogeneous plain (O’Kelly 1989).
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Figure 6: Isochrones from 𝐴 = (1, 0) (left: large budget, right: limited budget 𝛽 = 3).

Now, let us take into account the budget limitation, in the regime where it matters
i.e. 𝛽 < 𝑥 − (1 + 𝑦)/

√
3 (again assuming by symmetry 𝑥 ≥ 0). Then the optimal

expressway path is not available, as one is restricted to drive the expressway for a
length at most 𝛽. If 𝐵 = (𝑥, 𝑦) is such that even without budget constraint, the
optimal paths is a straight Euclidean line, then the same must be true with a budget
constraint. Assume now otherwise i.e. assume that driving the expressway was
optimal without budget constraint; then using the expressway may or may not be
optimal under the budget constraint. Let us thus first determine the optimal path
among those using the expressway; the most time-effective way to proceed is then to
spend all the budget, i.e. drive it for a length 𝛽. The last question is to determine
where to enter and leave the expressway, and a differentiation argument shows that
one should make the only choice making the entering and leaving angles equal. From
there, one gets a new formula for the semi-specific contextual distance (no longer
equal to the minimal contextual distance, since the budget constraint has kicked in).

Lemma 5.2. Whenever |𝑥| > (1 + 𝑦)/
√

3 and 𝛽 ≤ |𝑥| − (1 + 𝑦)/
√

3, the optimal
path has time cost

𝑑𝛽(𝐴, 𝐵) = min
(︂√︁

𝑥2 + (𝑦 − 1)2,
√︁

(1 + |𝑦|)2 + (𝑥 − 𝛽)2 + 𝛽

2

)︂
.
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Figure 7: Isochrone from 𝐴 for time 𝑡 = 4, with varying budget 𝛽 from 0 (circle) to
8 (circle + triangle).

Moreover, if the minimum is realized by its first argument, then the straight segment
[𝐴, 𝐵] is optimal; if the minimum is realized by its second argument, then the path
using the expressway pictured in figure 5 (bottom) is optimal. If both arguments are
equal, then both paths are optimal.

One can draw the isochrones given the budget constraint; for budget 𝛽 = 3 they
are shown in the right picture of figure 6. To see more clearly how budget influences
isochrones, see figure 7. We see that constraining budget makes the picture depart
from von Thunen’s modified by the river, and erodes the benefits of the expressway.

The drawing of isochrones above made apparent the obvious fact that a budget
constraint change the region that can be attained in a given time. In particular,
the time budget introduced by Zahavi (1976) gives access to a different variety of
places depending on one’s monetary budget allowing different transport options;
more generally, a change of context (e.g. a more constrained monetary budget) may
result in a change of the time needed to execute the given movement, and may
therefore result in the movement not being executed (e.g. when the time required
to move is too long). Context matters, and the analysis of accessibility could gain
in precision and relevance by taking it into account. Let us point out, in this very
simple example, other ways in which context is shown to influence all aspects of
movement.
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Figure 8: The region that is brought closer to 𝐴 = (0, 1) by the expressway (left:
unlimited budget; right: limiting budget 𝛽 = 1).

First, one can draw the region of all destinations for which the movement is
influenced by the presence of the expressway (assuming the starting point is at 𝐴).
This is pictured in figure 8 for unlimited budget (left) and limiting budget 𝛽 = 1
(right). We see that a budget constraint limits the impact of the expressway not
only in travel time, but also in the destinations it helps reaching at all. Figure 9
shows how the influence of the expressway increases with available budget.

But there is more: a change of context can also result in a discontinuous change
in how the movement is executed. Consider indeed the case of a traveler determined
to go from the point 𝐴 = (0, 1) to a fixed destination 𝐵 = (𝑥, 𝑦) with 𝑦 > 0, assuming
that 𝐵 lies in the region where taking the expressway can be beneficial (i.e. in the
shaded area above the expressway in figure 8, left). Now consider an available budget
𝛽 varying from +∞ to 0 continuously; when 𝛽 is very large, the time-optimal path
uses the expressway and the needed time for the travel does not at first depend on
𝛽. When 𝛽 goes under the threshold 𝛽1 = |𝑥| − (1 + 𝑦)/

√
3, the travel cannot use

the expressway to full efficiency anymore and the time of travel starts increasing;
but for now the optimal path varies continuously with 𝛽, with the angle 𝜃 at which
the expressway is entered decreasing from 60°(figure 5). When 𝛽 reaches the second
threshold 𝛽2 defined as the solution of the equation√︁

𝑥2 + (𝑦 − 1)2 =
√︁

(1 + |𝑦|)2 + (𝑥 − 𝛽)2 + 𝛽

2 ,
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Figure 9: Comparison of the regions that are brought closer to 𝐴 = (0, 1) by the
expressway, when budget varies from .1 to 5 by increments of .7. Note that while the
lower light grey region is brought closer to 𝐴 as soon as the budget is positive, the
amount of time gained is sensitive to the budget, especially in its rightmost part.

expressway

A

B

60° 60°

Figure 10: Comparison of the optimal paths from 𝐴 to 𝐵. Solid blue: 𝛽 ≥ 𝛽1; dotted
blue: 𝛽 ∈ (𝛽2, 𝛽1); dashed red: 𝛽 < 𝛽2; dashed red and dash-dotted purple: 𝛽 = 𝛽2.
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there are two optimal paths: the first is by taking the expressway for a length 𝛽 = 𝛽2,
and the other is a single straight line. When 𝛽 > 𝛽2, the single optimal path is close
to the first one, but as soon as 𝛽 < 𝛽2, only the straight line is optimal (figure 10).
There is therefore a discontinuity in the optimal path at 𝛽 = 𝛽2, even though the
time needed to go from 𝐴 to 𝐵 varies continuously.

Avallon

10 km

N

Avallon

Auxerre

10 km

N

Figure 11: real life example – isochrones of 10 to 60 minutes driving, computed and
rendered with OpenRouteService from Avallon (Yonne, France) with toll avoided
(left) or accepted (right). In the toll case, in the north-west, the relatively high
density of entrances to the expressway in the vicinity of the agglomeration of Auxerre
make the fast infrastructure behave like a spatially continuous access road, as in our
simplified example. By contrast, in the south-east, the discrete nature of the access
to the expressway is visible through the discontinuous shape of the isochrone.

6 Conclusion
Our main contribution is the introduction of contextual metrics as a suitable frame-
work to define geographical distances in a comprehensive way. While the values
taken by a classical metric represent the least possible amount of displacement, or
travel time, or more generally disutility, needed to go from one location to another,
contextual metrics take moreover into account any contextual information relevant
to travel, be they resources used for – or related to – movement or any other con-
straints. In our view, geographical distance is not exclusively a matter of geometry,
it is also indissolubly related to – potential or actual – physical movement in geo-
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graphical space; every element entering the decision process guiding this movement
needs to be taken into account in order to gain deeper understanding of it.

In appendix A, we shall provide a comprehensive framework that derives a dis-
tance or a contextual distance from a transportation network, with the novel property
of accounting for both continuous and discrete networks on the same space. This
shows more precisely how the Triangle Inequality is not an arbitrary assumption,
but follows from first principles: a metric defined from optimized path necessarily
respects the Triangle Inequality.

That it is a consequence of optimization explains why the Triangle Inequality lies
at the heart of the concept of a metric. However breaks in movement, when they are
made necessary i.e. by fatigue, an empty tank or legislation, do not contradict the
principle of optimization, but induce apparent violation of the Triangle Inequality.
Contextual metrics unravels this paradox, by framing the optimization problem in
a space enriched by the context that the traveler has to take into account, making
apparent that the violation of the Triangle Inequality was only an artefact of a model
lacking crucial information. In the aim to reconcile the principle of optimization and
the Triangle Inequality in the case of the break, we introduce and develop the idea of
contextual distance, and we explore the different situations that can be modelled with
this framework. The range of geographical situations tested underline the level of
generalization that can be expected from this approach. Contextual distance seems
hence suitable for describing all kinds of geographical distances.

Since contextual metrics respect the triangle inequality, they can be used within
the context of spatial analysis in geography; they allow to consider altogether, in a
geometrical framework, subjective aspects and objective aspects of space, movement
and choices. We moreover proposed several quantities derived from contextual met-
rics (minimum, semi-specific and maximum distances between locations) that enrich
the concept of geographical space.

As several of our examples show, contextual distances are a suitable way to in-
troduce (among others) temporal constraints in the computation of geographical
distances. The idea that time geography (Hägerstrand 1970) has exerted a strong
influence on geography is quite consensual among scholars (Miller 2004a; Yuan 2009;
Shaw and Yu 2009), even more if we consider the rarity of the expression of the
opposing view (Merriman 2012). While time geography is focused on the interaction
of space and time, its scope is broader: “In this way, the life paths become captured
within a net of constraints, some of which are imposed by physiological and physical
necessities and some imposed by private and common decisions. Constraints can
become imposed by society and interact against the will of the individual.” (Häger-
strand 1970) In this perspective, our approach can be seen as a progress toward the
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goal of bringing together the elements that drive movement. The flexibility of con-
textual distance makes them potentially useful in time geography, e.g. by considering
monetary cost distances on the time-space to model the fact that moving at higher
speed often comes at a higher cost, but also opens the possibility to extend concepts
of time-geography beyond their current reach, e.g. by considering a cost-time-space
accounting for an additional third quantity, see Remark 4.5.

To better show the relevance of this approach, in Section 5 we illustrate by a more
substantial example how deeply the context affects various aspects of movement. The
example is still pretty crude: we consider an expressway that allows for faster driving
in exchange for a toll, in an otherwise homogeneous and isotropic flat landscape.
Nonetheless, we show that the context (here, available budget) influences not only
the time of travel from a point to another, but also the shape of isochrones and
of shortest paths. We even show discontinuities in the shape of shortest paths:
arbitrarily small changes in the available budget can make the shape of shortest paths
“jump” from one shape to another, even though our model is continuous (continuous
space, continuous time, and continuous toll). This demonstrates that changes in
movement induced by the context alone, without modification in space or network,
can be quite dramatic. With an additional time constraint added, the context may
influence whether going from one point to another would be possible at all. We thus
see that context has an effect on whether and how movement takes place. This model
expresses a form of subjective space in the sense that the characteristics attached to
the individual – formalized in the context – directly affect the optimum paths and
hence geographical distances and the accessible geographical space.

Future works could examine the Triangle Inequality empirically. Time, kilome-
tres and cost distances by various transport modes could be measured, and then
tested regarding Triangle Inequality. The investigation could consider these datasets
as contextual distances, adjusting contextual and non-contextual parameters, and
test whether this mathematical framework allows to better understand the geometry
of geographic spaces. In this direction, our affirmation that the Triangle Inequality
is always satisfied opens more questions than it closes: first, in some spaces the Tri-
angle Inequality is almost an equality for most triple of points while in other spaces
a much stronger inequality is almost always true; this could be used as a geometric
property classifying geographical spaces. Are there geographical spaces which seem
very different from a geographic perspective but which share such geometric proper-
ties? On the contrary, are there geographical spaces that are thought of as close to
each other, but in fact have very different geometric behavior in this respect?

Moreover, one could consider other inequalities, possibly involving more than
three points. One could for example classify spaces by the constraints its geometry
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entails for the 6-tuple(︁
𝑑(𝑝, 𝑞), 𝑑(𝑝, 𝑟), 𝑑(𝑝, 𝑠), 𝑑(𝑞, 𝑟), 𝑑(𝑞, 𝑠), 𝑑(𝑟, 𝑠)

)︁
when (𝑝, 𝑞, 𝑟, 𝑠) runs over all 4-tuples of point in the given space. Searching various
sets of geometric inequalities that, when verified by a given space, ensures the planar
representation of this space up to some reasonable error would also be an interesting
endeavour: it would inform map designer by telling them when no good map can
exists, or rather how bad they must be, in a variety of contexts far beyond the
mapping of Earth with its geometric distance. These findings could prove valuable
in the domain of the representation of time-distances, where stress control is a key
issue.

A Path optimization and (contextual) metrics
In this appendix, we explore in more detail the property of the metric-like functions
obtained from minimizing the total cost (measured in a arbitrary unit) of paths in a
network of arcs, first in the classical, context-free case, then in the contextual case.
Compared with Huriot, Smith, and Thisse (1989), we shall give a more abstract
representation of these paths in order for this model to better fit several common
situations to be found in geographical spaces.

First, this model shall be usable to describe both continuous spaces and discrete
spaces; e.g. road trips may be described, depending on scale or the chosen level of
simplification, by continuous paths on the physical space, or by discrete paths on the
graph defined by the road network.

Second this model shall be suitable to include, in a continuous space, plane flights
or train trips, for which continuous paths are ill-suited: indeed passengers cannot
step out of the plane or the flight during the trip, and even if the flight passes
right above their very house, or the train track right next to it, they will have to
end the trip and use another mean of transportation to go back home: “While in
the air, [the flyer] is imprisoned in a narrow time-space tube without openings and
he does not therefore effectively exist in the geographic locations over which he is
flying.” (Hägerstrand 1970) In a sense, even though physically planes and train
do follow continuous curves, for all transportation matters the trips they permit
are best described by discrete data: times and locations of departure and arrival.
Additionally, this choice to accommodate for discrete and continuous trips in the
same model will make it possible to work with only the locations that can be starting
points or destinations of trips, which a mid-air point somewhere on a plane trajectory
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is not. We thus avoid the addition to the space of such irrelevant points, which would
be implied in some situations by the use of only continuous trajectories.

A.1 Networks and cost functions: the classical case
Again, we are given a set 𝑋 called the space, whose elements are called locations; and
in the modeling process one should only include in 𝑋 those places where people could
go to or get from; in particular, 𝑋 might not represent the whole of the “physical
space” that is being modeled.

A network on 𝑋 is a set 𝑁 together with two functions 𝑠, 𝑒 : 𝑁 → 𝑋; elements
of 𝑁 are called arcs, and given an arc 𝛼 the locations 𝑠(𝛼) and 𝑒(𝛼) are called
its starting point and endpoint respectively. In the modeling process, one should
include in 𝑁 either all possible trips, or a set of elementary trips that will be enough
to recover all of them by concatenation (see next paragraph). It is possible to define
several arcs that correspond to the same displacement in the physical space, in order
to account for other differences (e.g. traveling along a given fixed road by car, or on
foot, or by bike could be modeled by defining three distinct arcs).

Both the space and the network can have finitely or infinitely many elements.
For theoretical purposes it is important to allow even uncountable sets, in order to
allow continuous spaces (see for instance Beguin and Thisse (1979, p. 333)). Of
course, for any practical computation in continuous model one will make a discrete
approximation, composed of finitely many locations and arcs.

Given a network 𝑁 on a space 𝑋, a path 𝛾 from 𝑝 ∈ 𝑋 to 𝑞 ∈ 𝑋 is a finite word
with letters in 𝑁 (i.e. an ordered tuple of arbitrary length, written 𝛾 = 𝛼1𝛼2 · · · 𝛼𝑘 for
some 𝑘 ∈ N and some 𝛼𝑖 ∈ 𝑁), such that 𝑠(𝛼1) = 𝑝, 𝑒(𝛼𝑘) = 𝑞 and 𝑒(𝛼𝑖) = 𝑠(𝛼𝑖+1) for
all 𝑖 ∈ {1, 2, . . . , 𝑘 −1}. We also include as paths the trivial paths ∅𝑝 for each 𝑝 ∈ 𝑋,
which start and end at 𝑝 and are empty words (this necessitate to include the point
𝑝 in the data describing the path, which is unnecessary for non-empty paths). Given
two paths 𝛾 = 𝛼1 . . . 𝛼𝑘 and 𝜂 = 𝛽1 . . . 𝛽ℓ such that 𝑒(𝛼𝑘) = 𝑠(𝛽1), we define their
concatenation as the path 𝛾 * 𝜂 := 𝛼1 . . . 𝛼𝑘𝛽1 . . . 𝛽ℓ. A path is thus a concatenation
of arcs, and represents a trip possibly made of a combination of elementary trips.
The set of paths shall be denoted by 𝑁*, and we shall write 𝛾 : 𝑝 ; 𝑞 to express
that 𝛾 is a path from 𝑝 to 𝑞. Note that despite the notation, 𝑁* depends on 𝑠, 𝑒 as
much as it depends on 𝑁 .

A length function on a network 𝑁 is simply a function ℓ : 𝑁 → (0, +∞) (we
could have included the value 0, but this would have made the introduction of an
additional adjective necessary later on). We immediately extend the function ℓ to a
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function defined on 𝑁*, still denoted by ℓ, by

ℓ(𝛼1 . . . 𝛼𝑘) =
𝑘∑︁

𝑖=1
ℓ(𝛼𝑖) (1)

with the usual convention that an empty sum is zero, i.e. ℓ(∅𝑝) = 0 for all 𝑝 ∈ 𝑋.
(Another equivalent way to formalize the same framework would be to consider a
function ℓ : 𝑁* → [0, +∞) asked to be additive, i.e. ℓ(𝛾 * 𝜂) = ℓ(𝛾) + ℓ(𝜂) for all
paths 𝛾, 𝜂). The quasimetric on 𝑋 defined by (𝑁, ℓ) is then set as

𝑑(𝑝, 𝑞) = inf
𝛾:𝑝;𝑞

ℓ(𝛾). (2)

Note that this is not necessarily a metric unless we make additional assumptions; it
can even take the value +∞, whenever there are no paths from 𝑝 to 𝑞.

The term length function should be taken with a grain of salt: ℓ could be about
any effort or disutility function (length, travel time, monetary cost, etc.) In some
cases, it could be argued that disutility should be allowed to be sub-additive; the
reader can check that most of the properties below would not be altered by this
relaxation. In any case, sub-additive disutility can always be modeled in the present
framework by adding an arc for each trip combination that allows for some savings.

A.2 Properties of quasimetrics defined by a network
We will now explore assumptions that ensure the various axioms defining a met-
ric. The most troublesome is distinguishability, more precisely that different points
should be at positive distance from each other. The following example shows what
could go wrong.

Example A.1. Take 𝑋 = {𝑝, 𝑞}, 𝑁 = {𝛼𝑖 : 𝑖 ≥ 1} with 𝑠(𝛼𝑖) = 𝑝, 𝑒(𝛼𝑖) = 𝑞, and
ℓ(𝛼𝑖) = 1/𝑖 (we could enlarge 𝑁 to get symmetry and finiteness of the distance but
this would mostly obscure the point). Then we have an infinite sequence of paths
(each consisting of only one arc, 𝛼𝑖) from 𝑝 to 𝑞, of length 1/𝑖. Since this goes to
zero as 𝑖 goes to infinity, we get 𝑑(𝑝, 𝑞) = 0.

Example A.2. Let us give a second example that feels less ad hoc. Take 𝑋 = [0, 1],
𝑁 = {𝛼𝑞

𝑝 : (𝑝, 𝑞) ∈ [0, 1] × [0, 1]} with 𝑠(𝛼𝑞
𝑝) = 𝑝, 𝑒(𝛼𝑞

𝑝) = 𝑞 (we have one arc for
each possible pair of starting and ending points) and ℓ(𝛼𝑞

𝑝) = |𝑝 − 𝑞|2. Then for each
𝑛 ∈ N, the path

𝛾𝑛 := 𝛼
1/𝑛
0 𝛼

2/𝑛
1/𝑛 · · · 𝛼1

(𝑛−1)/𝑛

goes from 0 to 1 and has length ℓ(𝛾𝑛) = 𝑛 × (1/𝑛)2 = 1/𝑛. It follows 𝑑(0, 1) = 0.
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(Note that in both examples, the distance can only be approximated by the
length of path, there are no given path linking the given points whose length is their
distance. This phenomenon can occur even in cases where all axioms of a metric
hold true.)

This leads us to the following definition:

Definition A.3. We say that the length function is non-degenerate when there exist
a function 𝑚 : {(𝑝, 𝑞) : 𝑝, 𝑞 ∈ 𝑋, 𝑝 ̸= 𝑞} → (0, +∞) such that for all 𝑝 ̸= 𝑞 ∈ 𝑋 and
all 𝛾 : 𝑝 ; 𝑞 we have ℓ(𝛾) > 𝑚(𝑝, 𝑞).

This is somewhat trivial as it is tuned to exactly ensure distinguishability, but
is still an operational definition as it leads one to find a lower bounding function
𝑚, which in most cases of interest shall be easy to either find or at least prove into
existence. There are two particularly simple cases ensuring non-degeneracy.

Proposition A.4. Let 𝑋 be a space and 𝑁 be a network on 𝑋.

i. If for all 𝑝, 𝑞 ∈ 𝑋 the set {𝛾 : 𝑝 ; 𝑞} of paths from 𝑝 to 𝑞 is finite, then every
length function is non-degenerate.

ii. Let ℓ be a length function such that for some 𝜀 > 0, for all arc 𝛼 it holds
ℓ(𝛼) ≥ 𝜀. Then ℓ is non-degenerate.

Proof. Note that a length function ℓ is assumed to be positive on each arc, and is
thus positive on each non-trivial path. When {𝛾 : 𝑝 → 𝑞} is finite, one can take
𝑚(𝑝, 𝑞) = min𝛾:𝑝;𝑞 ℓ(𝛾) which is positive as soon as 𝑝 ̸= 𝑞.

The second case actually assumes inf𝑁 ℓ ≥ 𝜀 > 0, which implies that each non-
trivial path has length at least 𝜀: one can then take 𝑚(𝑝, 𝑞) ≡ 𝜀.

Theorem A.5. Let 𝑋 be a space endowed with a network 𝑁 and a length function
ℓ, and denote by 𝑑 the corresponding metric, as defined by (2).

i. (Finiteness) For all 𝑝, 𝑞 ∈ 𝑋, we have 𝑑(𝑝, 𝑞) < +∞ if and only if there exists
𝛾 : 𝑝 ; 𝑞.

ii. (Symmetry) If for all arc 𝛼 there exist an arc 𝛼′ such that 𝑠(𝛼′) = 𝑒(𝛼),
𝑒(𝛼′) = 𝑠(𝛼) and ℓ(𝛼′) = ℓ(𝛼), then 𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) for all 𝑝, 𝑞 ∈ 𝑋.

iii. (Triangle inequality) 𝑑(𝑝, 𝑟) ≤ 𝑑(𝑝, 𝑞) + 𝑑(𝑞, 𝑟) for all 𝑝, 𝑞, 𝑟 ∈ 𝑋.

iv. (Distinguishability) The property (𝑑(𝑝, 𝑞) = 0 if and only if 𝑝 = 𝑞) holds if and
only if ℓ is non-degenerate.
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In particular, assuming that every pair of locations is linked by a path, that each
arc has a reverse arc of the same length (case of a symmetric network), and that the
length function is non-degenerate ensures that 𝑑 is a metric. While among the three
axioms defining a metric, the Triangle inequality is probably the one most discussed,
we see as in Huriot, Smith, and Thisse (1989) that it is the one that needs the less
hypotheses: it follows from the optimization of paths used in the defining equation
(2).

Proof. The first point follows from the fact that ℓ does not take the value +∞, so
that 𝑑(𝑝, 𝑞) = +∞ if and only if the infimum defining it is over the empty set.

To prove the second point we consider 𝑝, 𝑞 ∈ 𝑋 and prove 𝑑(𝑞, 𝑝) ≤ 𝑑(𝑝, 𝑞);
equality follows by exchanging the roles of 𝑝 and 𝑞. If 𝑑(𝑝, 𝑞) = +∞, this is obvious.
Otherwise, given any 𝜀 > 0 there exist a path 𝛾 = 𝛼1𝛼2 · · · 𝛼𝑘 from 𝑝 to 𝑞 with
ℓ(𝛾) ≤ 𝑑(𝑝, 𝑞) + 𝜀. Then, using the notation 𝛼′

𝑖 for the reverse arc of 𝛼𝑖 provided by
the hypothesis, 𝛾′ := 𝛼′

𝑘𝛼′
𝑘−1 · · · 𝛼′

1 is a path from 𝑞 to 𝑝 and

ℓ(𝛾′) =
𝑘∑︁

𝑖=1
ℓ(𝛼′

𝑘−𝑖) =
𝑘∑︁

𝑖=1
ℓ(𝛼𝑘𝑖

) = ℓ(𝛾) ≤ 𝑑(𝑝, 𝑞) + 𝜀.

Letting 𝜀 go to zero, it follows 𝑑(𝑞, 𝑝) ≤ 𝑑(𝑝, 𝑞).
To prove the third point, let 𝑝, 𝑞, 𝑟 ∈ 𝑋. If there is no path from 𝑝 to 𝑞 or no

path from 𝑞 to 𝑟, then the right-hand side is +∞ and the inequality is trivially true.
Assume otherwise and let 𝜀 > 0 be arbitrary. There exists paths 𝛾1 : 𝑝 ; 𝑞 and
𝛾2 : 𝑞 ; 𝑟 such that ℓ(𝛾1) ≤ 𝑑(𝑝, 𝑞) + 𝜀 and ℓ(𝛾2) ≤ 𝑑(𝑞, 𝑟) + 𝜀. Then 𝛾1 * 𝛾2 : 𝑝 ; 𝑟
so that

𝑑(𝑝, 𝑟) ≤ ℓ(𝛾1 * 𝛾2) = ℓ(𝛾1) + ℓ(𝛾2) ≤ 𝑑(𝑝, 𝑞) + 𝑑(𝑞, 𝑟) + 2𝜀.

Letting 𝜀 go to zero, we get the triangular inequality.
Concerning the fourth and last point, note that we always have 𝑑(𝑝, 𝑝) = 0 since

the empty path ∅𝑝 has by definition length 0. Assume now that ℓ is non-degenerate
and let 𝑚 a function as given in Definition A.3; then whenever 𝑝 ̸= 𝑞 ∈ 𝑋, for all
𝛾 : 𝑝 ; 𝑞 we have ℓ(𝛾) ≥ 𝑚(𝑝, 𝑞), so that 𝑑(𝑝, 𝑞) ≥ 𝑚(𝑝, 𝑞) > 0. Conversely, if
𝑝 ̸= 𝑞 =⇒ 𝑑(𝑝, 𝑞) > 0, then letting 𝑚(𝑝, 𝑞) = 𝑑(𝑝, 𝑞) yields non-degeneracy of ℓ.

A.3 Examples
Let us give a few examples showing how the above framework can be used to model
various geographically relevant situations.
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𝑝

𝑞

𝑟

𝑠

4

2

3

6

2

1

Figure 12: Four cities linked by six roads with time measurements from Haggett
(2001, p. 341)

Example A.6 (Haggett’s four cities, the usual graph case). Let us start with a
discrete example. We choose the widely known example of Haggett (2001, p. 341):
𝑋 = {𝑝, 𝑞, 𝑟, 𝑠} is a set of four cities, linked two by two by six roads that can
be traveled in times given in figure 12. These connections can be modeled in our
framework by a network of twelve arcs 𝑁 = {𝛼𝑖𝑗 : 𝑖, 𝑗 ∈ 𝑋} (including both directions
for each road) with 𝑠(𝛼𝑖𝑗) = 𝑖 and 𝑒(𝛼𝑖𝑗) = 𝑗; and by the length function (expressed
in the unit of one hour)

ℓ(𝛼𝑝𝑞) = ℓ(𝛼𝑞𝑝) = 4 ℓ(𝛼𝑝𝑟) = ℓ(𝛼𝑟𝑝) = 2 ℓ(𝛼𝑝𝑠) = ℓ(𝛼𝑠𝑝) = 1
ℓ(𝛼𝑞𝑟) = ℓ(𝛼𝑟𝑞) = 2 ℓ(𝛼𝑞𝑠) = ℓ(𝛼𝑠𝑞) = 6 ℓ(𝛼𝑟𝑠) = ℓ(𝛼𝑠𝑟) = 3.

Up to now, the model fits exactly Haggett’s example. However, considering paths
we see that what we call the distance becomes quite different; in particular, the road
𝛼𝑞𝑠 becomes irrelevant as the paths 𝛾1 := 𝛼𝑞𝑟𝛼𝑟𝑠 and 𝛾2 := 𝛼𝑞𝑝𝛼𝑝𝑠 each have cost
5, less than the cost 6 of the direct arc 𝛼𝑞𝑠. This translates the fact that a traveler
can go from 𝑞 to 𝑠 in only five hours, by avoiding the direct road. As underlined by
L’Hostis (2016), optimization ensures the validity of the triangular inequality.

More generally, any graph with positive labels on its edges can be translated
into the present framework, and the distance is the usual path-minimizing distance
(actually, this case is a very classical framework in graph theory).

Example A.7 (Paths on continuous surface). Let us now show how the above frame-
work can be used to model a continuous space. Let 𝑋 be a domain of the plane R2

(endowed with its canonical scalar product), meant to represent a region that is small
enough to neglect the curvature of Earth. Assume that we are to model e.g. bird
or pedestrian movement and that the region is homogeneous, without obstacles or
roads facilitating certain trips compared to other.

Then it makes sense to consider as arcs all continuously differentiable curves
𝛼 : [𝑇0, 𝑇1] → 𝑋 (where 𝑇0 < 𝑇1 ∈ R), with 𝑠(𝛼) = 𝛼(𝑇0) and 𝑒(𝛼) = 𝛼(𝑇1), and to
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take the classical length function

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
‖𝛼′(𝑡)‖ d𝑡

Then paths can be identified with continuous, piecewise continuously differentiable
curves in an obvious way. Note that if we preferred to have “length” be physically
homogeneous to a time, we could have written

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅‖𝛼′(𝑡)‖ d𝑡

where 𝑅 is the inverse of the speed of the modeled traveler. This number can be
factored into a global scale for our model, and we disregard this consideration for
now.

If 𝑋 is convex, then the quasimetric obtained by optimizing the length of curves
coincides with the Euclidean metric: 𝑑(𝑝, 𝑞) = ‖𝑝 − 𝑞‖, and the unique shortest path
from 𝑝 to 𝑞 is the line segment between these points (parameterized in any one-to-one
way). Note that convexity of 𝑋 is necessary for this statement to hold: for example
in an annulus formed by a large disk with a smaller disk removed, pairs of points
separated by the “hole” cannot be joined by a line segment and their distance is
greater than the Euclidean one.

Even without convexity, it is well-known and easy to check that 𝑑 is a metric if
and only if 𝑋 is connected by continuous, piecewise continuously differentiable paths
(otherwise, only the finiteness fails). In particular, non-degeneracy is easily proven
by taking 𝑚(𝑝, 𝑞) = ‖𝑞 − 𝑝‖.

Example A.8 (Path on a non-homogeneous surface). More general situations can
be modeled in a similar way than in Example A.7, for example by introducing inho-
mogeneity in the formula of the cost of an arc

ℓ(𝛼) =
∫︁ 𝑇1

𝑇0
𝑅(𝛼𝑡)‖𝛼′(𝑡)‖ d𝑡

where 𝑅 : 𝑋 → (0, +∞) represent the inverse of the maximal speed at which one
can travel at the point, which can be constrained e.g. by the roughness of the terrain
or, as in (Angel and Geoffrey Hyman 1976), by traffic congestion (in mathematics,
this is called a conformal change of Riemannian metric). We shall denote by 𝑑𝑅 the
induced quasimetric (which is a metric in many cases, e.g. whenever there exist some
𝜀 > 0 such that 𝑅(𝑝) ≥ 𝜀). Such a situation is easily pictured using shades of gray
to represent 𝑅, travel being more difficult in darker regions than in lighter ones. In
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the domain of geographical cartography, a similar representation of distances takes
the form of cost-of-passage surface or cost surface (Angel and Geoffrey Hyman 1976;
Beguin and Thisse 1979; Collischonn and Pilar 2000; Miller and Wentz 2003; White
and Barber 2012). Related representations include Bunge proposing a crumpled
space model to describe a marsh area difficult to cross surrounding a road (1962,
p. 271). Representations with the same aim of describing different geographical
time-distances use graphs in two (Plassard and Routhier 1987; Tobler 1997) or three
dimensions (Mathis 1990; Mathis, Polombo, and L’Hostis 1993; L’Hostis 2009). One
could also model general surfaces with Riemannian metrics (i.e. metrics which,
at a very local scale, are Euclidean up to order 1 approximations); but note that
the marvelous uniformization theorem from the early xxth century shows that any
such surface which is homeomorphic to a domain in the plane, can be represented
by a distance 𝑑𝑅 obtained as above isometrically (i.e. in a way that distances are
perfectly preserved). In particular, any part 𝑌 of the earth that is not the whole can
be represented in the plane by a map 𝜙 : 𝑌 → 𝑋 ⊂ R2, and a function 𝑅 can be
chosen, in a way that 𝑑𝑅(𝜙(𝑝), 𝜙(𝑞)) is exactly equal to the shortest path distance
in 𝑌 between 𝑝 and 𝑞. For a detailed historical and mathematical account of the
uniformization theorem, the reader can consult de Saint-Gervais (2016).

Example A.9 (Mixing continuous and discrete spaces). The above examples are all
classical in the geometry of metric spaces, and the only advantage of our framework
seems to unify the discrete and continuous models. Let us now give an example,
relevant in geography, that mixes both continuous and discrete aspects, and that we
claim is quite satisfactorily modeled in our framework.

Let again 𝑋 be a domain in R2, convex say, and assume we have two ways to
travel in 𝑋: by car, where the constraints of the road network are assumed to be
negligible, so that we modeled car travel as in Example A.7; and by plane, with
exactly two airports located at 𝑎1, 𝑎2 ∈ 𝑋, with a fast two-ways connection between
them.

The network 𝑁 shall now be the union of the set 𝑁𝑔 of all continuously differen-
tiable arcs on 𝑋 in the one hand, and of the set of the two connexions between the
airports 𝑁𝑓 = {𝛼𝑓 :12, 𝛼𝑓 :21} (𝑔 stands for “ground” and 𝑓 for “flight”). The starting
and endpoints of arcs in 𝑁𝑔 are defined as usual, while the endpoints of the two arcs
of 𝑁𝑓 are defined by 𝑠(𝛼𝑓 :12) = 𝑒(𝛼𝑓 :21) = 𝑎1 and 𝑠(𝛼𝑓 :21) = 𝑒(𝛼𝑓 :12) = 𝑎2.

The length function is given for 𝛼 ∈ 𝑁𝑔 by the physically homogeneous formula
of Example A.7

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅‖𝛼′(𝑡)‖ d𝑡

where 𝑅 is the inverse of the speed of ground travel; and assuming both aerial
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connexions take the same time 𝑇𝑓 , ℓ(𝛼𝑓 :12) = ℓ(𝛼𝑓 :21) = 𝑇𝑓 .
Now, applying the framework above defines paths that can combine car trips

with flights, and enable to construct the underlying optimized quasimetric. Here,
provided 𝑅 > 0 and 𝑇𝑓 > 0, it is a metric and shortest paths are either line segments,
or combination of one or two line segments and one flight.

Of course, more complicated situations with more airports, more connexions (not
necessarily between all possible pairs of airports), possibly varying ground travel
difficulty, can be modeled in the same way. One can also model alternative ground
transportation means by taking 𝑁𝑔 = 𝑁𝑔𝑏 ∪ 𝑁𝑔𝑐 where 𝑁𝑔𝑏 and 𝑁𝑔𝑐 are two disjoint
copies of the set of continuously differentiable curves, the first ones corresponding to
bike trips and the second ones corresponding to car trips. Then one sets

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅𝑏‖𝛼′(𝑡)‖ d𝑡 ∀𝛼 ∈ 𝑁𝑔𝑏

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅𝑐‖𝛼′(𝑡)‖ d𝑡 ∀𝛼 ∈ 𝑁𝑔𝑐

where 𝑅𝑏 is the inverse of the biking speed, and 𝑅𝑐 is the inverse of the driving speed.
As such, if we make the reasonable assumption 𝑅𝑏 > 𝑅𝑐, the introduction of biking
does not change the distance as it is a slower mean of transport than car (this is a
case where introducing context would be useful to model possible unavailability of a
car for some agents). But if one turns 𝑅𝑏 and 𝑅𝑐 into functions, with 𝑅𝑏(𝑝) < 𝑅𝑐(𝑝)
when 𝑝 lies in some regions, or if one changes the formula of the cost function to
take into account the economical and environmental cost of CO2 emissions, then this
enriched model becomes relevant.

Note that compared to Smith (1989), the present approach does notably not
include axiom N3 (subpath closure) of Smith’s definition 3.1: arcs need not be re-
strictable into subarcs, and this better represent flights or any other trips that cannot
in practice be decomposed, such as train trips – one cannot jump off train between
stations. On the other hand, Smith’s path networks are particular cases of our
definition of networks.

A.4 Contextual networks and distances
We shall now combine networks and contexts. We start as in Section 3 with a set of
states 𝑋 × 𝐶 where 𝑋 is a set called the space, whose elements are locations, and 𝐶
is the context set; an element 𝑝𝑐 of 𝑋 × 𝐶 is called a state, it compounds the data
of the location and the context. As before, 𝑋 should contain only those points of
the physical space that are meaningful locations; 𝐶 should be made rich enough to
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model all elements of context that are relevant to the movement (affecting e.g. its
length or its mere possibility).

A.4.1 Contextual networks

Contextual networks will be defined almost exactly as networks, but on the set of
states. We still repeat the definitions as the different roles played by 𝑋 and 𝐶 will
have an importance in the modeling process and in the interpretation. The case of
a singleton 𝐶 = {𝑐0} will correspond to the above framework, while in example 2.1
we could take 𝐶 = {𝑟, 𝑡} (𝑟 for “rested”, 𝑡 for “tired”). 𝐶 can be a product space, to
take into account several variables (fuel or battery gauge, accumulated fatigue, CO2
budget, available visas, etc.)

A contextual network on 𝑋 with context set 𝐶 is a network 𝑁 on the set of states
𝑋 × 𝐶, i.e. 𝑁 is a set endowed with two functions: 𝑠, 𝑒 : 𝑁 → 𝑋 × 𝐶. Elements of
𝑁 are still called arcs: given an arc 𝛼 we call 𝑠(𝛼) and 𝑒(𝛼) its starting state and
endstate; we write 𝑠𝑋 , 𝑒𝑋 : 𝑁 → 𝑋 and 𝑠𝐶 , 𝑒𝐶 : 𝑁 → 𝐶 the functions defined by

𝑠(𝛼) = 𝑠𝑋(𝛼)𝑠𝐶(𝛼) and 𝑒(𝛼) = 𝑒𝑋(𝛼)𝑒𝐶(𝛼) ∀𝛼 ∈ 𝑁,

in other words, 𝑠𝑋(𝛼) and 𝑒𝑋(𝛼) are the starting point and endpoint of the arc 𝛼,
while 𝑠𝐶(𝛼) and 𝑒𝐶(𝛼) are its starting and ending contexts. As before, several arcs
can be used to describe trips corresponding to the same displacement in the physical
space; actually, most of the time a lot of different arcs will be needed for each
movement in the physical space to take into account the starting context. Even for
a given movement and a given starting context, several arcs can be used, e.g. one for
fast driving and another for slow driving (with different ending contexts, notably in
term of fuel consumption and fatigue). The difference between 𝑠𝐶(𝛼) and 𝑒𝐶(𝛼) will
model the change in context incurred by travelling along the arc 𝛼; the abundance
of arcs with a certain starting context will model the variety of movements available
given the context, so that our framework can be used to model e.g. cost constraints
from the user perspective, see examples below.

Given a contextual network 𝑁 on a space 𝑋 with context 𝐶, a path 𝛾 from
𝑝𝑐 ∈ 𝑋 × 𝐶 to 𝑞𝑏 ∈ 𝑋 × 𝐶 is a finite word 𝛼1𝛼2 . . . 𝛼𝑘 with letters in 𝑁 such that
𝑠(𝛼1) = 𝑝𝑐, 𝑒(𝛼𝑘) = 𝑞𝑏 and 𝑒(𝛼𝑖) = 𝑠(𝛼𝑖+1) for each 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}. We write
𝛾 : 𝑝𝑐 ; 𝑞𝑏 to express that 𝛾 is some path from 𝑝𝑐 to 𝑞𝑏, but we may want to forget
some information by speaking of a path from 𝑝 to 𝑞, writing 𝛾 : 𝑝* ; 𝑞*; or of a path
from 𝑝𝑐 to 𝑞 by writing 𝛾 : 𝑝𝑐 ; 𝑞*. The set of paths is again denoted by 𝑁*, and
includes a trivial path ∅𝑝𝑐 : 𝑝𝑐 → 𝑝𝑐 for each state 𝑝𝑐. Two paths 𝛾 : 𝑝𝑐 ; 𝑞𝑏 and
𝜂 : 𝑝′𝑐′

; 𝑞′𝑏′ are chainable if 𝑝′𝑐′ = 𝑞𝑏 (i.e. 𝑝′ = 𝑞 and 𝑐′ = 𝑏), and the concatenation
of two chainable paths is a path denoted by 𝛾 · 𝜂.
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A length function on a contextual network 𝑁 is a function ℓ : 𝑁 → [0, +∞) such
that ℓ(𝛼) > 0 whenever 𝑠𝑋(𝛼) ̸= 𝑒𝑋(𝛼) (we allow zero-cost arcs, as long as they do
not entail movement but only change of context). We extend it to a function on 𝑁*,
still denoted by ℓ, by

ℓ(𝛼1 · · · 𝛼𝑘) =
𝑘∑︁

𝑖=1
ℓ(𝛼𝑖)

with again the convention ℓ(∅𝑝𝑐) = 0.

A.4.2 Contextual distances

Given a space 𝑋, a context set 𝐶, a contextual network 𝑁 and a length function ℓ,
we define an associated contextual quasimetric by

𝑑(𝑝𝑐, 𝑞𝑏) = inf
𝛾:𝑝𝑐;𝑞𝑏

ℓ(𝛾).

This is not always a contextual metric, and as in the context-free case we introduce
the following definition to ensure separation.

Definition A.10. We say that the contextual length function is non-degenerate
when there exist a function 𝑚 : {(𝑝, 𝑞) : 𝑝, 𝑞 ∈ 𝑋, 𝑝 ̸= 𝑞} → (0, +∞) such that for all
𝑝 ̸= 𝑞 ∈ 𝑋, all 𝑐, 𝑏 ∈ 𝐶 and all 𝛾 : 𝑝* ; 𝑞* we have ℓ(𝛾) > 𝑚(𝑝, 𝑞).

With this at hand, we have the following neat relation between contextual net-
works and contextual metrics.

Theorem A.11. For all contextual data (𝑋, 𝐶, 𝑁, ℓ) the associated contextual quasi-
metric has the Identity and Triangle Inequality properties. If in addition ℓ is non-
degenerate, then 𝑑 has the Separation In Space property, and is thus a contextual
metric.

Proof. The Identity property follows from the inclusion of empty paths ∅𝑝𝑐 . The
Triangle Inequality follows exactly as in Theorem A.5 from optimization. When
ℓ is non-degenerate, we get immediately Separation In Space: whenever 𝑝 ̸= 𝑞,
inf𝑐,𝑏 𝑑(𝑝𝑐, 𝑞𝑏) = inf𝛾:𝑝*;𝑞* ℓ(𝛾) ≥ 𝑚(𝑝, 𝑞) > 0.

We can phrase the semi-specific and minimal distance functions and the maximal
quasimetric in term of 𝑁 and ℓ consistently with their definition from 𝑑:

𝑑𝑐,*(𝑝, 𝑞) = inf
𝛾:𝑝𝑐;𝑞*

ℓ(𝛾) 𝑑*,𝑏(𝑝, 𝑞) = inf
𝛾:𝑝*;𝑞𝑏

ℓ(𝛾)

𝑑min(𝑝, 𝑞) = inf
𝛾:𝑝*;𝑞*

ℓ(𝛾) 𝑑max(𝑝, 𝑞) = sup
𝑐

inf
𝛾:𝑝𝑐;𝑞*

ℓ(𝛾).
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