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Summary

Metabolic control in Escherichia coli is a complex

process involving multilevel regulatory systems but

the involvement of post-transcriptional regulation is

uncertain. The post-transcriptional factor CsrA is

stated as being the only regulator essential for the

use of glycolytic substrates. A dozen enzymes in the

central carbon metabolism (CCM) have been reported

as potentially controlled by CsrA, but its impact on

the CCM functioning has not been demonstrated.

Here, a multiscale analysis was performed in a wild-

type strain and its isogenic mutant attenuated for

CsrA (including growth parameters, gene expression

levels, metabolite pools, abundance of enzymes and

fluxes). Data integration and regulation analysis

showed a coordinated control of the expression of

glycolytic enzymes. This also revealed the imbalance

of metabolite pools in the csrA mutant upper glycoly-

sis, before the phosphofructokinase PfkA step. This

imbalance is associated with a glucose–phosphate

stress. Restoring PfkA activity in the csrA mutant

strain suppressed this stress and increased the

mutant growth rate on glucose. Thus, the carbon

storage regulator system is essential for the effective

functioning of the upper glycolysis mainly through

its control of PfkA. This work demonstrates the piv-

otal role of post-transcriptional regulation to shape

the carbon metabolism.

Introduction

The central carbon metabolism (CCM) supplies bio-

precursors and energy in most living cells including the

gram negative bacterium Escherichia coli. The intercon-

nected pathways composing the CCM include glycolysis,

gluconeogenesis, the tricarboxylic acid cycle (TCA

cycle) and pentose phosphate pathways (PPP) (Holms,

1996). Carbon and energy fluxes in the CCM are highly

regulated in a complex, multilevel network with many

control loops (Heinemann and Sauer, 2010; Kotte et al.,

2010; Enjalbert et al., 2011; Shimizu, 2014). In contrast

to transcriptional and post-translational controls, the

occurrence of post-transcriptional control (i.e., regulation

of RNA stability and translation) remains poorly charac-

terized in E. coli.

A post-transcriptional regulatory system considered to

control various metabolic pathways is carbon storage

regulator (CSR). The main component of the CSR sys-

tem is the essential global regulator CsrA. This protein

prevents the translation of target mRNA by binding near

the ribosome binding site, thereby inhibiting translation

and/or facilitating mRNA decay (Timmermans and Van

Melderen, 2010; Seyll and Van Melderen, 2013; Duss

et al., 2014). CsrA can also mediate gene activation by

stabilizing target transcripts, but the demonstration of

such mechanisms is still rare in the literature (Wei et al.,

2001; Yakhnin et al., 2013). The post-transcriptional reg-

ulatory system CSR has been directly demonstrated to

be involved in the regulation of a wide range of physio-

logical processes including biofilm formation, peptide

uptake, motility, virulence and carbohydrate storage
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(Timmermans and Van Melderen, 2010; Romeo et al.,

2013).

The CSR system is also supposed to regulate CCM

pathways. Several works (performed with different

approaches, conditions and strains) have reported that

CSR system is a potential regulator of a dozen targets

in the CCM (positive effect for Pgi, PfkA, TpiA, Eno,

PykF and Acs, and negative control for Pgm, GlgA,

GlgB, GlgC, PfkB, Fbp, Pck and Pps) (Romeo et al.,

1993; Sabnis et al., 1995; Yang et al., 1996; Wei et al.,

2000; McKee et al., 2012). Moreover, the CSR system

is regarded as essential for growth on glycolytic media

(Altier et al., 2000; Timmermans and Van Melderen,

2009). This is a surprising property, given that other

global or pleiotropic regulators such as RelA/SpoT, Crp-

cAMP or RpoS are not essential (Adams and McLean,

1999; Nguyen et al., 2011; Sabourin and Beckwith,

1975). The origins of this essentiality are unclear (Tim-

mermans and Van Melderen, 2009; Revelles et al.,

2013). Taking as a whole, several clues supposed that

the CCM is regulated by the CSR system but the physi-

ological consequences of CSR-mediated regulations on

the bacterial metabolism have not been characterized

yet. It remains to be determined which of the multiple

targets of CSR in the CCM are important for the cell

physiology and if CSR could contribute in any extent to

the coordination of these targets.

Here, we assessed the influence of CsrA on the CCM

through a multilevel investigation (including growth

parameters, gene expression levels, metabolite pools,

enzyme activities and fluxes). These investigations were

performed in a mutant strain with an attenuated CsrA

protein and its isogenic wild type. The use of these

datasets combined with modelling and experimental

confirmations enabled us to demonstrate the crucial role

of the CSR system in the control of the phosphofructoki-

nase expression and its consequences on the upper

part of the glycolysis. This work highlights for the first

time the major role of post-transcriptional regulation in

the correct tuning of the central carbon metabolism.

Results

The csrA51 strain displayed a growth defect associated

with a low glucose uptake rate

To assess the influence of CsrA on the CCM, the behavior

of strain E. coli MG1655 on glucose in various media was

compared to its isogenic csrA51 mutant strain. This strain

is carrying an attenuated but viable variant of CsrA (dele-

tion of the last 10 amino acids of the protein; see Experi-

mental procedures). The construction and its resulting

phenotypes on motility, biofilm production and glycogen

content have been validated elsewhere (Esquerr�e et al.,

submitted). As expected (Romeo et al., 1993; Sabnis

et al., 1995), we confirmed that the mutation did not

significantly affect the growth rate on rich LB medium

in an Erlenmeyer flask (maximum growth rates

l 5 1.26 6 0.07 h21 for the csrA51 strain and

1.38 6 0.07 h21 for the wild type; Table 1). Due to the

essentiality of csrA for growth on glucose, this carbon

source is expected to negatively affect growth of the

csrA51 strain. Addition of glucose to the Lysogeny broth

(LB) reduced the maximum growth rate of the csrA51

strain to l 5 0.96 6 0.18 h21 while it increased the wild-

type (WT) maximum growth rate to l 5 1.52 6 0.04 h21.

The negative influence of glucose on the mutant was also

assessed by growing both strains on M9 minimal medium

with glucose as the sole carbon source. The cultures were

performed in well-controlled conditions in bioreactors

(controlled oxygenation, temperature and pH; see Experi-

mental procedures). In these conditions, the csrA51 strain

grew significantly more slowly than the WT strain with a

maximum growth rate reduced to 54% of that of the WT

strain (Table 1). Likewise, the specific consumption rate of

glucose was 37% lower in the csrA51 strain than in the

Table 1. Macrophenotypic parameters for wild-type and csrA51 strains during exponential growth. Parameter values (mean 6 SD) are issued

from three independent replicates as described in the Experimental procedures. Maximal growth rates, glucose-specific uptake rates, acetate

and biomass yield, glycogen content and specific CO2 production rates have been calculated during the exponential phase.

Medium Parameter WT csrA51 Ratio

LB Growth rate (h21) 1.38 6 0.07 1.26 6 0.07 0.92a

LB glucose Growth rate (h21) 1.52 6 0.04 0.96 6 0.18 0.63b

M9 glucose Growth rate (h21) 0.57 6 0.02 0.31 6 0.02 0.54b

M9 glucose Glucose consumption rate (mmolGLC�h21�gDW21) 8.4 6 0.1 5.3 6 0.3 0.63b

M9 glucose Acetate yield (mmolACE �mmol21
GLC) 0.31 6 0.02 0.02 6 0.01 0.06b

M9 glucose Glycogen content (gglucose�gDW21) 0.037 6 0.003 0.252 6 0.011 6.80c

M9 glucose CO2 production rate (mmolCO2�h21�gDW21) 13.3 6 0.50 8.9 6 0.2 0.67b

M9 glucose Biomass yield (CmolBiomass�Cmol21
GLC) 0.46 6 0.02 0.49 6 0.02 1.05a

a. Similar values.
b. Lower values in the csrA51 strain.
c. Higher values in the csrA51 strain.
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wild type. In both strains, acetate accumulated throughout

the exponential phase but in the csrA51 strain, acetate

accumulation was reduced to 6% of that observed in the

WT strain (Table 1). This confirms a previous result

obtained in a strain with a reduced CsrA availability

obtained by overexpressing csrB, a gene encoding a small

RNA able to sequestrate csrA (McKee et al., 2012). Aside

from acetate, no fermentation products accumulated in

the mutant, as demonstrated by total organic carbon

assays (supporting information S1). As expected from the

literature (Yang et al., 1996), glycogen content is 6.8 times

higher in the csrA51 strain than in the wild type. CO2 was

also quantified in the gas phase where the production of

CO2 was demonstrated to be lower in the csrA51 strain

than in the WT (Table 1). Finally, the biomass yield from

glucose consumption is similar in both the WTand csrA51

strains. This suggests that the growth defect of the csrA51

strain on glucose is not related to a decrease in the effi-

ciency of biomass synthesis but rather to a reduction in

the rate of glucose consumption.

CSR impact on CCM fluxes

The reduction of growth rate and glucose uptake rate in

the csrA51 strain should provoke a uniform decrease of

the fluxes in the CCM. Beside this quantitative change,

the csrA51 mutation could also affect the flux partition

through the local control of CSR-putative targets. There-

fore, we determined the intracellular distribution of fluxes

in the wild-type and csrA51 strains by integrating uptake

and secretion rates, as well as the biomass and glyco-

gen production rates into a genome-scale reconstruction

of the E. coli genome (Feist et al., 2007). Since the gly-

cogen content was found stable during the whole expo-

nential phase of both strains (data not shown), the

glycogen production rate was set up as a linear function

of the growth rate. The biomass reaction was set to the

measured growth rate. Constraints related to thermody-

namics and to the composition of the growth medium

were imposed (see Experimental procedures and sup-

porting information S2 and S3). Metabolic flux analysis

was performed, using as objective the minimization of

the discrepancies between the predicted and measured

fluxes (Antoniewicz, 2015). We further analysed the opti-

mal solutions by flux variability analysis (Mahadevan and

Schilling, 2003), to determine the minimum and maximum

flux values satisfying the constraints and consistent with

the measurements. This allowed restricting the possible

values of intracellular fluxes to very tight intervals (Fig. 1

and Supporting Information S2 for details). In the csrA51

strain, fluxes globally decreased in the CCM consistently

with the decrease of glucose uptake rate. However, this

decrease is not uniform with a higher diminution for the

glycolytic flux compared to the TCA fluxes. Interestingly,

Fig. 1. Comparison of metabolic fluxes determined by FVA. A set of flux intervals was obtained for each strain from the integration of the
three biological replicates (see Experimental procedures for details). The colour code matches the entity pathway (blue for the glycogen
synthesis pathway, orange for the glycolysis pathway, pink for the pentose phosphate pathway, green for the TCA cycle. GLGC, glucose 1-
phosphate adenyltransferase flux; PGM, phosphoglucomutase flux; PGI, phosphoglucose isomerase flux; PFK, phosphofructokinase flux; TPI,
triose phosphate isomerase flux; PYK, pyruvate kinase flux; ENO, enolase flux; FBP, fructose biphosphatase flux; PPS, phosphoenolpyruvate
flux; G6PDH, glucose 6-phosphate dehydrogenase flux; ICDH, isocitrate dehydrogenase flux; SUCD, 2-oxoglutarate decarboxylase flux; MDH,
malate dehydrogenase flux; PCK, phosphoenolpyruvate carboxykinase flux; ACS, acetyl-coenzymeA synthetase flux; ACK/PTA, phosphate
acetyltransferase and acetate kinase flux.
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the observed flux variations are constant inside both of

these pathways. The strongest decrease was observed

for the glucose-6-phosphate dehydrogenase flux (i.e., the

first step towards the pentose phosphate pathway). Unlike

in the CCM, higher fluxes were calculated in the glycogen

synthesis pathway in the csrA51 strain. We conclude that

the phenotypic differences observed between both strains

in Table 1 are associated with important flux reshaping.

CSR impact on CCM gene expression

The phenotypes and fluxes are deeply impacted in the

csrA51 strain. This is very likely to result from differential

gene expression in the csrA51 mutant. There is ample

information about the effect of CSR on the CCM gene

expression in the literature. However, this information is

fractionated (and sometimes contradictory) as it is

issued from works performed with a variety of measure-

ment approaches, genetic backgrounds and growth con-

ditions. We therefore re-investigated, for consistency,

the impact of CSR on the gene expression levels during

the exponential growth on M9 supplemented with glu-

cose (Fig. 2). Higher expression of the glgC and pgm

genes (both involved in glycogen biosynthesis) was

found in the csrA51 strain consistent with previous

works (Romeo et al., 1993; Liu et al., 1995; Sabnis

et al., 1995). All the glycolytic genes were significantly

less expressed in the mutant (ptsG, pgi, pfkA, tpi, eno

and pyk), while gluconeogenic genes (fbp, pps) pre-

sented nonsignificant variations. For the genes related

to the TCA, strong up-regulation was detected for pckA

while low or nonsignificant changes were observed for

icd, sucA, sdh, mdh, aceA and aceB. In the acetate

metabolic pathways, acs gene expression was up-

regulated in the csrA51 strain, while the expression of

pta and ackA did not change significantly. Since these

expression ratios have been obtained in the same

experimental conditions, it is now possible to identify

which genes are the most impacted by CsrA mutation.

The highest impacts were observed for glgC and pgm

(glycogen pathways), pckA (TCA pathways), acs (ace-

tate metabolism) and pfkA (glycolysis pathway). To con-

clude, in the csrA51 strain, the uniform down-regulation

of glycolytic genes as well as the strong up-regulation of

the genes involved in glycogen synthesis is consistent

with the flux distribution described above.

Fig. 2. Comparison of mRNA contents in the CCM between the wild type and the csrA51 strains. mRNA data are issued from three
independent replicates for the csrA51 strain and its isogenic wild type (mean 6 SD). The displayed values correspond to the log2 of the ratio
of the csrA51 strain to its isogenic wild type (with propagation of uncertainty). The asterisk represents significant ratio (P value <5%
determined by t-test). The colour code matches the entity pathway (blue for the glycogen synthesis pathway, orange for the glycolysis
pathway and gluconeogenesis pathways, pink for the pentose phosphate pathway, green for the TCA cycle and light brown for acetate
metabolism pathway). glgC, glucose 1-phosphate adenyltransferase mRNA; pgm, phosphoglucomutase mRNA; ptsG, glucose PTS permease
PtsG subunit mRNA; pgi, phosphoglucose isomerase mRNA; pfkA, phosphofructokinase A mRNA; tpi, triose phosphate isomerase mRNA;
eno, enolase mRNA; pyk, pyruvate kinase mRNA; fbp, fructose biphosphatase mRNA; pps, phosphoenolpyruvate synthetase mRNA; zwf,
glucose 6-phosphate dehydrogenase mRNA; icd, isocitrate dehydrogenase mRNA; sucA, 2-oxoglutarate decarboxylase mRNA; sdh, succinate
dehydrogenase mRNA; mdh, malate dehydrogenase mRNA; aceA, isocitrate lyase mRNA; aceB, malate synthase mRNA; pck,
phosphoenolpyruvate carboxykinase mRNA; acs, acetyl-coenzymeA synthetase mRNA; pta, phosphate acetyltransferase mRNA; ackA,
acetate kinase mRNA.
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CSR impact on CCM enzymatic levels and metabolite
pools

Besides its control on gene expression, CsrA is also

known to modify translation level by interfering with the

ribosome fixation. We therefore investigated if enzymatic

levels follow differential gene expressions in the CCM

(Fig. 3). As for their transcripts, the amount of glyco-

genic enzymes GlgC and Pgm was increased in the

csrA51 mutant while the glycolytic enzyme levels

decreased. Abundances of the enzymes related to the

TCA (AceA, AceB and PckA) were significantly

enhanced in the CsrA mutant. Therefore, most of the

observed enzyme level modifications were in good

agreement with gene expression results.

We then investigated if the observed impacts on pro-

tein level could indirectly result from the growth rate

reduction of the csrA51 strain in regard to the wild-type

strain. This was answered by using the data set from

Esquerr�e et al. (2014) and by comparing enzymatic lev-

els in the wild type in chemostatic growth at 0.3 h21

(i.e., the csrA51 growth rate) to the wild-type maximal

growth rate on M9 glucose (0.6 h21). This revealed that

decreasing the growth rate in the wild type increased

levels of enzymes related to the TCA (AceA, AceB and

Pck) like previously observed in the mutant. In contrast,

glycogenic and glycolytic levels are mostly not affected

by the growth rate reduction.

The huge impact of CsrA on the CCM is expected to

modify the metabolite pools. We therefore investigated

the concentrations of metabolites in both the csrA51

mutant and the wild-type strains (Fig. 4). Glycogen con-

tent and the concentration of its precursor (ADP-glu-

cose) were, respectively, 7 and 5 times higher in the

csrA51 strain. Likewise, metabolite pools from the upper

glycolysis (G6P and F6P) were 2.5 times higher in the

csrA51 cells. Metabolite pools of the pentose phosphate

pathway (6PG, S7P and R5P) increased from 1.5 to 7

times in the csrA51 strain. In contrast, no significant dif-

ference was found in metabolite pools downstream of

F6P in the glycolytic pathway (FBP, 2,3PG and PEP) or

in the TCA, except for the fumarate pool, which was sig-

nificantly reduced in the csrA51 strain.

Again, we investigated if the differential metabolite

concentrations could results from the reduced growth

rate in the csrA51 strain (Fig. 4). This revealed that the

lower metabolite pools observed in the TCA cycle of the

mutant could be explained by the growth reduction while

the over-accumulation of metabolites in the upper glycol-

ysis was more directly related to the mutation. These

results strengthened that the core function of CSR in

the CCM is the regulation of upper glycolysis activities

to regulate the metabolic pools and glycogen produc-

tion. This accumulation of metabolites was concentrated

before the phosphofructokinase step, suggesting a key

role of this particular enzyme.

Fig. 3. Comparison of enzymatic levels in the CCM between the wild type and the csrA51 strains or at different growth rates. Enzymatic
levels are issued from three independent replicates for the csrA51 strain and its isogenic wild type (mean 6 SD). The displayed values
correspond to the log2 of the ratio of the csrA51 strain to its isogenic wild type (with propagation of uncertainty). Hatched columns represent
log2 of ratio between enzymatic levels in the wild-type growing at l 5 0.3 (chemostatic cultures) to the same strain at l 5 0.6 (batch cultures).
The asterisk represents significant ratio (P value <5% determined by t-test). The colour code matches the entity pathway (blue for the
glycogen synthesis pathway, orange for the glycolysis pathway and gluconeogenesis pathways and green for the TCA cycle-related enzymes).
GlgC, glucose 1-phosphate adenyltransferase; Pgm, phosphoglucomutase; Pgi, phosphoglucose isomerase; PfkA, phosphofructokinase A;
Tpi, triose phosphate isomerase; Pyk, pyruvate kinase; Fbp, fructose biphosphatase; AceA, isocitrate lyase; AceB, malate synthase; Pck,
phosphoenolpyruvate carboxykinase.
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Glycolytic activities are mainly under hierarchical control

Major reorganization of the CCM has been described

above in the csrA51 mutant strain. CsrA is expected to

regulate the levels of target enzymes and thus the cor-

responding fluxes. However, indirect control of fluxes by

enzyme activities can also occur due to the important

metabolome modifications observed in the csrA51

strain. Hierarchical regulation analysis (ter Kuile and

Westerhoff, 2001; van Eunen et al., 2011) was therefore

applied to the data to decipher the mode of flux control

for glycolytic and glycogenic reactions (see Experimen-

tal procedures and supporting information S4 for

details). Flux regulation was dissected into hierarchical

regulation (qh) and metabolic (qm) coefficients, quantify-

ing the contribution of changes in gene expression or

metabolite pool to the flux change. The distributions of

the resulting coefficients are displayed as boxplots in

Fig. 5. Median values of qh coefficients were close to 1

for most of glycolytic reactions (PYK, ENO, TPI and

PGI) while higher values were obtained for glycogenic

reactions (PGM and GLGC). All these qh coefficients

are positive, indicating that in the csrA51 strain, changes

in the catalyzing enzyme levels impose the flux

changes. The metabolic regulations of these catalyzing

enzymes, as indicated by the negative values of the qm,

are antagonistic to the flux changes and therefore sec-

ondary in the control of the reaction. The result was dif-

ferent for the phosphofructokinase (PFK). The values of

the regulation coefficients qh and qm coefficients were

similar and equal to 0.5, revealing a shared control of

the flux. This indicates that 50% of the PFK flux varia-

tion in the csrA51 strain could be attributed to metabolic

changes within the cell and 50% to the modification of

PfkA expression. Overall these results show that all the

studied reactions are strongly affected at the level of

their protein level by variations of the CsrA concentra-

tion. Only PFK appears to be controlled by CsrA

through the combination of metabolic and hierarchical

regulations.

Growth defect in the csrA51 mutant is limited to

substrates requiring phosphofructokinase activity and

associated to glucose phosphate stress

The csrA51 strain presents a reduced glucose uptake rate

(Table 1) combined to the accumulation of metabolites

before the phosphofructokinase step whose activity is

under dual genetic and metabolic control (Figs. 3 and 4).

To link these observations, we grew the WT and csrA51

strains on several glycolytic substrates entering the CCM

Fig. 4. Comparison of metabolite concentrations in the CCM between the wild-type and the csrA51 strains or at different growth rates.
Metabolic concentrations are issued from three independent replicates for the csrA51 strain and its isogenic wild type (mean 6 SD). The
displayed values correspond to the log2 of the ratio of the csrA51 strain to its isogenic wild type (with propagation of uncertainty). Hatched
columns represent log2 of ratio between metabolite concentrations in the wild-type growing at l 5 0.3 (chemostatic cultures) to the same
strain at l 5 0.6 (batch cultures). The asterisk represents significant ratio (P value <5% determined by t-test). The colour code matches the
entity pathway (blue for the glycogen synthesis pathway, orange for the glycolysis pathway and gluconeogenesis pathways, pink for the
pentose phosphate pathway and green for TCA cycle-related metabolites). G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FBP,
fructose 1,6-biphosphate; 23PG, 3-phospho glycerate and 2-phospho glycerate; PEP, phosphoenolpyruvate; 6PG, 6-phospho
glucono-1,5-lactone; R5P, ribose 5-phosphate and ribulose 5-phosphate; S7P, sedoheptulose 7-phosphate; cit, citrate; aKG, a-keto glutarate;
Fum, fumarate; Mal, malate.
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before (glucose and N-acetylglucosamine) or after (fruc-

tose and fucose) the PfkA-mediated metabolic step (meta-

bolic pathways summarized in Fig. 6A). The csrA51 strain

displayed a growth defect on both N-acetylglucosamine

and glucose, whereas no measurable difference was

observed during growth on fucose or fructose on the WT

(Fig. 6B). These results confirm that the growth defect of

the csrA51 strain originated in the early steps of glucose

metabolisation and emphasize the PfkA regulation as a

crucial control. A controversial report pinpointed the accu-

mulation of glycogen as the cause of the growth defect of a

csrA mutant on glucose due to hijacking of the carbon flux

towards this reserve sugar (Timmermans and Van Melde-

ren, 2009). This disagrees with our results, which establish

the phosphofructokinase metabolic step as the pivot of the

growth defect. To clarify this point, csrA51 strains were

grown on minimal media supplemented with either glucose,

N-acetylglucosamine, fructose or fucose, and intracellular

glycogen concentrations were quantified (Fig. 6B). Inde-

pendently of the substrate, the csrA51 cells accumulated

much higher content of glycogen. Therefore, over-

accumulation of glycogen in the csrA51 strain is independ-

ent of the type of glycolytic substrate and hence independ-

ent of the growth defect. This result goes against the

hypothesis of glycogen accumulation as the cause of the

growth defect, as previously objected (Revelles et al.,

2013). We conclude that glycogen accumulation is more

likely a side effect of CsrA attenuation.

G6P and/or F6P over-accumulations as observed in the

csrA51 mutant (Fig. 3) are known to trigger a feedback reg-

ulatory loop known as “glucose–phosphate stress” (Morita

et al., 2003; Vanderpool, 2007). The accumulation of these

sugar phosphates indirectly induces the expression of the

noncoding RNA SgrS (Vanderpool, 2007; Rice and Van-

derpool, 2011). SgrS triggers the degradation of the ptsG

mRNA, encoding an essential component of the glucose

transport system (Fig. 6A). This results in a reduction of the

glucose consumption rate, and hence, in a reduction of the

sugar phosphate pools to counteract the stress. Since the

pools of G6P and F6P were 2.5–3 times higher in the

csrA51 strain compared to WT and since the ptsG level

was reduced (Figs. 2 and 4), we looked for molecular evi-

dence of glucose–phosphate stress by investigating the

level of expression of SgrS in both strains grown on glu-

cose, N-acetylglucosamine, fructose and fucose. SgrS

transcript levels were 5–7 times higher in the csrA51 grown

on glucose and N-acetylglucosamine respectively (Fig.

6B). Such induction was not found in the two strains grown

on fructose or fucose. These results are evidence for the

existence of a glucose phosphate stress coupled with a

growth defect for the csrA51 strain grown on substrates

that require phosphofructokinase activity. In conclusion,

csrA51 growth defect is not associated to a glycogen accu-

mulation but to a glucose–phosphate stress when the

mutant is grown on substrate entering the glycolytic path-

way above the phosphofructokinase step.

Overexpression of PfkA suppresses the hexose
phosphate stress and partially restores the growth rate
of the csrA51 mutant

A deletion of pfkA has been reported to present a strong

growth defect on glucose medium with a growth rate

Fig. 5. Regulation of metabolic fluxes. Boxplots of the hierarchical and metabolic regulation coefficients calculated from the different
replicates of the measured enzyme-specific activities and the flux bounds for each reaction (see Experimental procedures for details). Boxes
represent the interquartile range (IQR) between the first and third quartiles. Whiskers denote the lowest and highest values within 1.5 3 IQR
from the first and third quartiles. Purple, median hierarchical coefficient; orange, median metabolic coefficient.
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close to 0.1 h21 (Fischer and Sauer, 2003; Nakahigashi

et al., 2009). We therefore hypothesized that the limited

PfkA activity inherent to the csrA51 strain could be suffi-

cient to explain the growth defect directly by blocking

the glycolytic pathway, or indirectly through the feedback

loop of the glucose phosphate stress. We assessed this

by overexpressing the pfkA gene in the WT and csrA51

strains and growing them on M9 glucose (Fig. 7). Meas-

urements of pfkA mRNA levels and of PFK enzymatic

activities showed that the overexpression enabled pfkA

expression and phosphofructokinase activity to be

restored in the csrA51 strain (Fig. 7A and B). We then

investigated the effect of pfkA overexpression on G6P

metabolic pool and on SgrS accumulation. While csrA51

increased the G6P pool, the overexpression of pfkA

abolished the phenomenon (Fig. 7C). As expected from

the moderate G6P pool, the SgrS induction in the

csrA51 mutant is prevented by pfkA overexpression

(Fig. 7D). The overexpression did not prevent glycogen

accumulation (Fig. 7E). Finally, overexpression of pfkA

moderately but significantly increased the growth rate in

the csrA51 strain (Fig. 7F). Taking as a whole, these

results comfort PfkA as a most important target of the

CSR system in the central carbon metabolism.

Discussion

The present work reveals the major role of post-

transcriptional regulation in the control of the central car-

bon metabolism of E. coli. The multilevel analysis and

data integration demonstrated the strong control of the

CSR post-transcriptional regulatory system in the upper

part of the glycolysis. Attenuation of CsrA activity results

in a decrease in most glycolytic activities, especially the

phosphofructokinase. This was shown to provoke an

accumulation of metabolites in the top of glycolysis

before the phosphofructokinase step and hence a glu-

cose–phosphate stress controlling negatively the sugar

uptake. Consequences of this cascade of regulations

C
O
L
O
R

Fig. 6. Properties of E. coli grown
on a variety of glycolytic substrates.
A. Simplified representation of the
metabolic pathways and point of
entry in the CCM for four glycolytic
substrates.
B. Growth rates, glycogen contents
and SgrS level of expression for the
wild-type and the csrA51 strains on a
variety of glycolytic substrates. Each
growth rate, glycogen content and
SgrS levels is issued from the
mean 6 SD of three independent
biological replicates. The ratio
r 5 csrA51/WT is given for each
substrate.
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are dramatic for the cell growth rate, and we propose

this explains the essentiality of the CSR system on

glucose.

Influence of the CSR system over the CCM has

already been reported in the literature. However, the

information was limited to one level of observation [for

example, activities in Sabnis et al. (1995), proteomic in

McKee et al. (2012) and fluxes in Revelles et al. (2013)].

Besides, the medium and strains were very different

from one paper to another, making comparison very

awkward [Kornberg rich medium and model strain

BW3414 in Sabnis et al. (1995), MOPS-based medium

and industrial strain BLR in McKee et al. (2012), M9

medium and strain Nissle 1917 belonging to the phylo-

genetic group B2 in Revelles et al. (2013)]. The strength

of the present work is to provide the first coherent inves-

tigation of the CSR influence on the CCM through the

measurement of growth properties, enzyme activities,

metabolite pools and fluxes of the model bacterium E.

coli MG1655. It confirms that the CSR system controls

several pathways of the CCM (glycogenesis, glycolysis,

gluconeogenesis, TCA cycle and acetate metabolism).

The multilevel investigation also allowed demonstrating

that the control is largely exerted at the gene expression

level with repercussions on enzyme activities and fluxes

distribution. Some previously identified targets like Fbp

or Pck were shown to result from the growth rate modifi-

cation triggered by the CsrA mutation during glucose

consumption. This permitted to refine the list of CSR tar-

gets in the CCM to the upper glycolysis and glycogene-

sis and this finding was corroborated by the

accumulation of metabolites in this pathway for the

csrA51 mutant. Very interestingly, all the five glycolytic

steps studied in this work (PGI, PFK, TPI, PYK and

ENO) displayed a coherent decrease in their gene

expressions, of enzyme abundances, and flux ratios in

the csrA51 strain. This was corroborated by the predom-

inant hierarchical control of their glycolytic fluxes. Thus,

these results strongly suggest that glycolytic enzymes

are under direct and coordinated regulation by CsrA.

CsrA has been reported to be essential for E. coli

growth on glycolytic substrates because it over-

Fig. 7. Overproduction of pfkA in the wild-type and csrA51 strains. Wild-type or csrA51 strains were transformed by the empty vector or the
vector carrying the pfkA gene (“pfkA1”).
A. pfkA mRNA levels in the four strains.
B. PfkA-specific activities in the four strains.
C. G6P concentration in the four strains.
D. SgrS ncRNA levels in the four strains.
E. Glycogen content in the four strains.
F. Growth rates of the four strains. Each value is issued from the mean 6 SD of three independent biological replicates. The asterisk
represents significant differences between the strain overexpressing pfkA and its control (P value <85% determined by t-test).
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accumulates glycogen (Timmermans and Van Melderen,

2009). We show here that attenuation of the essential

CsrA post-transcriptional regulator creates a growth

defect in presence of glucose in rich or minimal

medium. The accumulation of glycogen was observed in

the csrA51 strain, independently of the growth rate

default. This suggests that glycogen accumulation is not

the actual cause of the CsrA essentiality. The growth

defect was not observed with all glycolytic substrates

(i.e., not on fructose or fucose) and was related to the

upper part of glycolysis. Using systematic analysis of

CCM components in the wild-type and csrA51 strains,

we discovered that most of the molecular discrepancies

between the two strains are indeed located in the close

vicinity of the point of glucose entry into the central car-

bon metabolism. The most down-regulated enzyme of

the glycolytic pathway was PfkA. Since substrates enter-

ing the CCM after this metabolic step are not associated

with a csrA51 growth defect, we hypothesized that

down-regulation of PfkA creates an engorgement of the

metabolic fluxes in the first glycolytic reaction that could

lead to the growth deficiency. This hypothesis was sup-

ported by the observed higher pools of F6P and S7P

[i.e., the two PfkA substrates (Nakahigashi et al., 2009)]

and more largely by the accumulation of metabolites in

the top of glycolysis before the PfkA step. Restoring a

wild-type level of PfkA in the csrA51 mutant prevent

these metabolite accumulation and partially restore the

growth rate. From all these elements, we conclude that

PfkA plays a major role in the csrA51 phenotypes. How-

ever, all the consequences of the csrA51 mutation on

the CCM cannot be mediated through PfkA down regu-

lation only. First, the pfkA deletion does not entirely pre-

vent growth on glucose minimal medium as observed in

a strain in which csrA is deleted (Nakahigashi et al.,

2009; Timmermans and Van Melderen, 2010). Second,

restoring the WT level of PfkA expression did not

entirely restore a WT growth rate in the csrA51 strain

(this work). Glycolytic flux control is known to be shared

among its enzymes in microorganisms (Smallbone

et al., 2013). This might explain why the influence of the

CSR system is so dramatic since it controls the expres-

sion of most of the glycolytic enzymes conjointly, among

which PFK appears to be the most crucial metabolic

step.

An important metabolic consequence of the reduced

glycolytic fluxes is the accumulation of sugar phos-

phates G6P and F6P. F6P and S7P were reported to

accumulate in the csrA51 mutant of the Nissle 1917

background, but not G6P. We demonstrated here that

the accumulation of hexose phosphate triggers glucose

phosphate stress as a feedback control in the csrA51

strain through the expression of its characteristic marker

SgrS (Vanderpool, 2007; Rice and Vanderpool, 2011).

SgrS is known to reduce glucose transport by facilitating

the degradation of the ptsG messenger. This was con-

firmed by our multilevel analyses, which revealed

reduced ptsG expression in the csrA51 strain. Overex-

pression of pfkA in the csrA51 strain suppressed the

glucose–phosphate stress and partially restored the

growth. Thus, CsrA attenuation results in a subefficient

glycolysis unable to absorb the G6P pool which trigger

SgrS and reduced glucose entrance in the cell. On the

basis of our results, we proposed that csrA essentiality

is due to its essential role to promote glycolysis. This

suggests that the primary function of the CSR system in

the CCM is to adjust the glycolytic activity to the carbon

availability and cellular requirement. CSR was previously

proposed to fine tune the stringent response (Edwards

et al., 2011), which is also related to the growth rate

response. This reinforces that one function of the CSR

system is to coordinate the fine tuning of the glycolytic

activities and the growth rate.

Post-transcriptional regulation of central carbon

metabolism has been almost ignored so far, but it now

appears to play a crucial role in its correct tuning. One

drawback in biotechnology approaches is the robustness

of the CCM system (Sauer et al., 1999). It was recently

shown that csrB overexpression is of interest for bio-

technologies since it produces low levels of fermentation

products (McKee et al., 2012). Here, we demonstrate

the high potential of CSR mutants in biotechnologies

since they allow reshaping of the CCM metabolic pools

and fluxes. These new organizations offer many oppor-

tunities such as exploiting the larger pools of sugar

phosphates to ensure the production of high added

value compounds.

Experimental procedures

Strains

The strains used in this study were the wild-type strains E.

coli K12-MG1655 and the previously constructed and vali-

dated csrA51 strain corresponding to a partial deletion of

the 10 last amino acids of the CsrA protein by using k red

system recombination (Esquerr�e et al., submitted). pfkA

overexpression in the wild type or the csrA51 background

was achieved by cloning a 1963 pb fragment including pfkA

and its promoter into the Kpn1-HindIII sites of a pUC19

plasmid. The fragment was amplified from the MG1655

genome (50Primer: ATTGAGGTACCGATGAGGAACG-

GAAGGAAGAAATTATTG and 30Primer: TAACTAAGCTTG

AATCACCACGTTATCACCAGTTT).

Media and growth conditions

Bioreactor cultures were performed in 500 ml of M9

medium complemented with 2.7 g � l21 of D-glucose. The
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cultures were inoculated at an optical density of 0.2 after

overnight preculture of the wild-type strain and a 48 h pre-

culture of the csrA51 strain. At least three independent rep-

licates were made for each strain in the same conditions

(stirring at 800 r.p.m., pH 7, 378C and air flow at 0.2 l �
s21). These parameters were set and monitored using a

Multifors bioreactor system (Infors, Switzerland). The per-

centages of CO2 and O2 in the gas output were determined

using a Dycor ProLine Process Mass Spectrometer (Ame-

tek, DE, USA). During the cultures, OD and extracellular

metabolites were measured every 30 min. Several samples

were taken for enzymatic assays, intracellular metabolites

analysis and qPCR experimentations during the midexpo-

nential phase of the culture (OD 5 1.5) for each biological

replicate. Growth in chemostat was performed in M9 glu-

cose using a 0.5 l Sartorius bioreactor controlled by a Bio-

stat Qplus device as described in Esquerre et al. (2014).

Cultures in LB or on the range of substrates as well as for

pfkA overexpression were performed in a baffled shake

flask at 378C in 50 ml of M9 glucose complemented with

either 2.7 g � l21 D-glucose, 2.7 g � l21 D-fructose, 2.45 g �
l21 L-fucose, or 2.5 g � l21 N-acetyl-(D)-glucosamine.

Calculation of fermentation parameters

For all the cultures, different growth parameters were calcu-

lated during the exponential phase of growths. All these

parameters remained constant during this growth phase.

The maximum growth rate in h21 was calculated by deter-

mining the mean of all the instant growth rates acquired

during the exponential phase using the following equation

where X is the biomass concentration in gDW � l21:

l5
dX

dt
� 1

X
ð1Þ

The maximum glucose uptake rate (mmolGLU � h21 �
gDW21) was calculated by determining the mean of all the

instant glucose uptake rates acquired during the exponen-

tial phase using the following equation:

qSGLU 5
dGLU

dt
� 1

X
: ð2Þ

Acetate yield was calculated by determining the mean of

all the instant acetate yields acquired during the exponential

phase using the following equation:

YACE=GLU5

����
DACE

DGLU

����: ð3Þ

CO2 production rate (mmolCO2 � h21 � gDW21) was calcu-

lated by determining the mean of all the instant CO2 pro-

duction rates acquired during the exponential phase using

the following equations set:

qPCO2
5

1

X
� CO2OUT2CO2INð Þ; ð4Þ

CO2OUT gCO2
� h21 � l21

� �
5

QOUT � FmCO2
�MCO2

VmCO2
� Vf

;

ð5Þ

CO2IN gCO2
� h21 � l21

� �
5

QIN � FmCO2
�MCO2

VmCO2
� Vf

: ð6Þ

QOUT is the air outflows (gair � h21), QIN is the air inflows

(gair � h21), FmCO2 is the molar fraction of CO2 in the air,

MCO2 corresponds to the CO2 molar mass, VmCO2
is the

CO2 molar volume and Vf the medium volume.

Enzymatic assays

The equivalent of 40 mg of dried cells was sampled during bio-

reactor cultures to perform enzymatic assays. The cells were

pelleted (10 min at 6000 r.p.m. at 48C) before being washed

twice with 0.2% KCl (v/v) and resuspended in 2 ml of a Tris–car-

ballylic acid breaking buffer (Tris–tricarballylate pH 7.8, 2.7 M

glycerol, 50 mM MgCl2, 300 mM DTT). The cells were then

mechanically broken by six beating cycles of 30 s each sepa-

rated by 1 min on ice using a Mini-Beadbeater2 (Biospec Prod-

ucts, Bartlesville, OK, USA) and Sigma glass beads (0.6 g of

glass beads for 1 ml of cells). The cell extract was isolated after

centrifugation (13,200 r.p.m. at 48C for 15 min) and used in the

following hours for enzymatic assays. Eleven enzymatic activ-

ities were obtained by measuring the changes in NADH or

NADPH concentration at 340 nm using the SPECTRAmax

PLUS384 microplate reader (Molecular Devices, Sunnyvale,

CA, USA). All the reagents used were purchased from Sigma–

Aldrich (USA). The optical density was measured at 7 s inter-

vals for 10 min with a 3 s shaking phase between readings. The

assays were performed in a total volume of 200 ml (including

10, 20 or 40 ml of extract) at 378C, and the reactions were

started by adding the substrate. Enzyme activities were deter-

mined from the linear part of the reaction. The total protein con-

centration in each extract was quantified by Bradford assay

(Bio-Rad Protein assay, Bio-Rad, Germany) at 595 nm to

obtain specific activities (mmol � g21
prot � h21) (Bradford, 1976).

Phosphoglucoisomerase (Pgi) was assayed in the nonphysio-

logic direction using Tris–HCl buffer (0.1 M, pH 7.8), MgCl2
(5 mM), NADP (5 mM), glucose 6-phosphate-1-

dehydrogenase (0.2 U) and fructose 6-phosphate (10 mM).

Phosphofructokinase (Pfk), triosephosphate isomerase (Tpi)

and enolase (Eno) assays were performed as described in

Even et al. (2001). Pyruvate kinase (Pyk) was measured using

a modified method derived from Even et al. (2001): fructose

1,6-diphosphate (3 mM) was added to the assay and GDP

(30 mM) was replaced by ADP (30 mM). Acetyl-coenzyme A

synthetase (Acs) was assayed as developed by Castano-

Cerezo et al. (2009); the isocitrate lyase (AceA) assay was per-

formed as described in Van der Werf et al. (1997). We also fol-

lowed this author’s protocol for the phosphoenolpyruvate

carboxykinase assay (PckA) but in a Tris–HCl buffer (0.1 M, pH

7.8). The fructose bisphosphatase (Fbp) assay was adapted

from Peng and Shimizu (2003) by replacing the buffer with a

Tris–HCl buffer (50 mM, pH 7.8). The phosphoglucomutase

(Pgm) assay was that of (Joshi, 1982) using 40 mM of the

same Tris–HCl buffer. Glucose 1-phosphate adenyltransferase

(GlgC) was measured using phosphate buffer (100 mM, pH
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7.8), MgSO4 (5 mM), NADP (0.5 mM), fructose 1,6-diphos-

phate (10 mM), glucose 6-phosphate1-dehydrogenase (0.2 U),

phosphoglucomutase (1 U) and ADP-glucose (8 mM). Malate

synthase (AceB) was assayed in Tris–HCl buffer (0.1 M, pH

7.8), MgSO4 (5 mM), acetyl-CoA (4 mM), NAD (3 mM), malate

dehydrogenase (4 U) and glyoxylate (4 mM).

Extracellular and intracellular metabolites

The extracellular metabolites were identified and quantified

using H1 HPLC (Agilent Technologies 1200 Series HPLC

and Aminex HPX-87H column for acid and sugar separa-

tion). The analysis was carried out at 488C using H2SO4

5 mM as eluent.
Intracellular metabolites were sampled at the mid-

exponential phase using the differential method of Taymaz-

Nikerel et al. (2009): 120 ml of broth or filtered culture

(Sartolon polyamide 0.2 mm, Sartorius, Goettingen, Ger-

many) were mixed with 1.25 ml of a quenching solution

composed of 40% methanol, 40% acetonitrile and 20%

water in a hemolysis tube. The tubes were stored at

2208C until analysis. A total of 120 ml of a fully 13C-

labeled cell extract were added to each tube as internal

standard before the extracts were evaporated for 5 h in

a SC110A SpeedVac Plus (ThermoFischer, MA, USA).

The pellet was then resuspended in 120 ml of ultrapure

water. Intracellular metabolites were quantified by high-

performance anion exchange chromatography (Dionex

ICS 2000 system, CA, USA) coupled to a triple quadru-

pole QTrap 4000 mass spectrometer (AB Sciex, CA,

USA). The signals were processed and quantified using

Analyst software (Analyst Software, AB SCIEX, USA).

RT-PCR analysis

Gene expression levels were analysed using Q-PCR in

micro-Fluidigm or classical RT-PCR. At the mid-

exponential phase, the equivalent of 5 mg of cells (dry

weight) was harvested and directly flash-frozen in liquid

nitrogen. RNA extraction was performed according to the

TRIZOL method for E. coli described in Esquerr�e et al.

(2014) and the concentration of RNA was determined

using a NanodropVR spectrophotometer. After a quality

control by capillary electrophoresis (Bioanalyzer from Agi-

lent, Santa Clara, CA, USA), the samples were subjected

to reverse transcription using the Superscript II Reverse

transcriptase (Life Technology). The Q-PCR EvaGreen

experiment (Mao et al., 2007) was performed on a Bio-

mark 96.96 dynamic array (Fluidigm, San Francisco, CA,

USA). Ninety samples were tested against 33 pairs of

designed primers (Table 2) in technical triplicate. An inter-

nal control of human DNA was used to check the effi-

ciency and quality of the run. Briefly, the experiment was

carried out in three steps. First, in each cDNA sample,

targeted cDNA was amplified using the pool of primers

and TaqManVR PreAmp Master Mix (Fluidigm, San Fran-

cisco, CA, USA) with the following program: (i) 10 min at

958C, (ii) 14 cycles of 15 s at 958C and 4 min at 608C.

The samples were then treated with exonuclease ExoI

(for 30 min at 378C for digestion and for 15 min at 808C

for inactivation). Finally, the samples were added to a

premix (2X TaqMan Gene Expression Master Mix, 20X

DNA Binding Dye Sample Loading Reagent, 20X

EvaGreenVR and TE buffer) before being loaded into the

macroarray. The sets of primers were loaded into the

macroarray at a concentration of 20 mM. Control idnT val-

ues were used to normalize the data.

Table 2. RT-PCR primers used in this work.

Name Sequence (50–30) Name Sequence (50–30)

Q-aceA-30 AACCAGCAGGGTTGGAACG Q-aceA-50 ACATGGGCGGCAAAGTTTTA
Q-aceB-30 TCAGGCCATAAATCGGCACA Q-aceB-50 GGTGAACGCACCGAAGAAGG
Q-ack-30 TCTTCCACCTGCACGACACC Q-ack-50 TCGCTGGTCACTTCGGTCAG
Q-acs-30 GGATCTTCGGCGTTCATCTC Q-acs-50 GGGAAAATTGACTGGCAGGA
Q-eno-30 GGGTGGTTTCGTCGGTATGG Q-eno-50 CCAGGAAACGGGATTTGTCG
Q-fbp-30 GTAGAGATAAATACCGCCTTTCAGCA Q-fbp-50 ATAAATCCACCAACCGCCCTTA
Q-glgC-30 AGATCACCGAAGCCGGTCTG Q-glgC-50 GTACCCACATCGCGCCAGTA
Q-icd-30 TTCGTCACCGATGTTTGCAC Q-icd-50 CGCCTGTATGAACCTGAACG
Q-idnT-30 AACACCGTGCGCCTCTTCTT Q-idnT-50 TTACGTCGGCCCAGTGTGAA
Q-ihfB-30 CAAAGAGAAACTGCCGAAACC Q-ihfB-50 GCCAAGACGGTTGAAGATGC
Q-mdh-30 TGGCCCATAGACAGGGTTGC Q-mdh-50 CCGAGCAGGAAGTGGCTGAT
Q-pck-30 GTGTCTACGCCCGGCAGTTC Q-pck-50 GACGCCATCCTCAACGGTTC
Q-pfkA-30 CACCCATGTAGGAACCGTCA Q-pfkA-50 AATTCCGCGACGAGAACATC
Q-pgi-30 AGATCCGGCAACGCTTGACT Q-pgi-50 CCCAGGCTGAACGGAGTGAT
Q-pgm-30 ATAACCCGCCGGAAGATGGT Q-pgm-50 AGTGCGTTGGCCCTGTCTTC
Q-pps-30 CTGGCTCGTAACGCTCACCA Q-pps-50 GTGCCGCGTTTTATCCGAAG
Q-pta-30 ACCGTGTTGCAGCGTCTCAG Q-pta-50 GCAGTTCGACCAGACGACCA
Q-ptsG-30 GGAATGTCGCCGTGGAAAAC Q-ptsG-50 CCGTTTGGTCTGCACCACAT
Q-pykF-30 GCAACCATGATGCCGTCAGA Q-pykF-50 CGGCGAAAACATCCACATCA
Q-sdhD-30 ACACACCCCACACCACAACG Q-sdhD-50 CGTTAAACCGCTGGCTTTGC
Q-sgrS-30 TCACACATGATGCAGGCAAGTCA Q-sgrR-50 GGTTGCGTTGGTTAAGCGTCCC
Q-sucA-30 GGTGTCAGGGTCGGAGATCG Q-sucA-50 ACGGGAGTCAAACCGGATCA
Q-tpi-30 CATCGGCGCACAGTACATCA Q-tpi-50 GCTCTTTCAGCACCGCGAAT
Q-zwf-30 GCCCTTCGATCCCCACTTCT Q-zwf-50 GGCGCTGCGTTTTGCTAACT
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A classic RT-PCR was also used to study the SgrS

expression level and to check for pfkA overexpression using

the SYBR Green-based detection protocol (Life Technol-

ogy), an ICycler real-time PCR detection system (Biorad)

and “MyIQ” software (Biorad), as described in Enjalbert

et al. (2013).

Glycogen staining assays and intracellular glycogen

quantification

Strains were grown overnight at 378C in 50 ml M9 media

containing either 2.7 g � l21 D-glucose, 2.7 g � l21 D-fruc-

tose, 2.45 g � l21 L-fucose or 2.5 g � l21 N-acetyl-(D)-glu-

cosamine. The intracellular glycogen content of both

csrA51 and the wild-type strains was quantified at midex-

ponential growth. The experiments were performed in bio-

logical and technical duplicate. The quantification was

done as described in Parrou and François (1997). Briefly,

the cells were lysed to extract the glycogen which was

then hydrolysed by amyloglucosidase into glucose subu-

nits. The glucose subunits were then quantified using a

glucose oxidase coupled to the colorimetric reagent o-

dianisidine dihydrochloride.

Metabolic flux analysis

A slightly modified version of the genome-scale reconstruc-

tion iAF1260-flux2 of E. coli was used for all simulations

(Feist et al., 2007). These were performed using the

COBRAv2 Toolbox with Gurobi 6.0.4 as linear programming

solver (Schellenberger et al., 2011). The model and the def-

inition of its maintenance fluxes and constraints are

described in supporting information S2 and S3. In order to

determine the intracellular distribution of fluxes consistent

with the measured exchange fluxes and growth rate, we

performed a metabolic flux analysis, where the objective

was to minimize the measured and predicted exchange

fluxes and growth rate. Let v denotes the vector of steady-

state fluxes with lower bounds v l and upper bounds vu, N

the stoichiometric matrix, u1 and u2 non-negative dummy

fluxes, and uM the vector of p measurements of exchange

fluxes and growth rate. We assume that the first p elements

of v correspond to the measured fluxes. Similarly to what

was done in Lee et al. (2012), the metabolic flux analysis

can be then formulated as the following linear programming

problem:

min
Pp

j51

ðu1
j 1 u2

j Þ subject to:

Nv50;

v l � v � vu ;

vj 2u1
j 1 u2

j 5 uM
j ; for all j51; . . . ; p;

u1;u2 � 0:

Using this objective function, metabolic flux analysis was

performed for the wild-type and csrA51 strains, followed by

a flux variability analysis (Mahadevan and Schilling, 2003)

to analyse the space of solutions. This allowed us to obtain

lower and upper bounds for reaction fluxes in the two

strains that are consistent with the measured growth rate

and exchange fluxes.

Hierarchical regulation analysis

Regulation analysis dissects flux regulation into a hierarchi-

cal regulation coefficient qh and a metabolic coefficient qm

(van Eunen et al., 2011). In this study, qh quantifies to

which extent changes of protein levels in the csrA51 strain,

resulting in the modification of enzyme-specific activities

(SA), contribute to the change of flux (v ):

qh5
ln SAcsrA2ln SAWT

ln vcsrA2ln vWT
: ð7Þ

The coefficient qm quantifies the effect of changes in the

interaction of the enzyme with the rest of metabolism on

the change of flux, through variations in the concentration

of substrates, products and allosteric effectors. The coeffi-

cient qh is directly determined from the data and the fluxes

using Eq. (1), while the coefficient qm is derived from the

following summation theorem:

qh1qm51: ð8Þ

The regulation coefficients for each reaction were calcu-

lated from Eqs. (1) and (2) and combinations of the differ-

ent replicates of enzyme-specific activities and the minimal

and maximal flux values returned by the metabolic flux

analysis (see supporting information S4 for details). The

statistical distribution of the regulation coefficients for each

reaction was represented by means of box plots. Wilcoxon

signed-rank tests enabled us to statistically assess the type

of regulation exerted by the metabolism and gene expres-

sion (see supporting information S4 for details).
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