Sequence Requirements for Encapsidation of Deletion Mutants and Chimeras of Human Immunodeficiency Virus Type 1 Gag Precursor into Retrovirus-Like Particles

CHRISTIAN CARRIÈRE, BERNARD GAY, NATHALIE CHAZAL, NATHALIE MORIN, AND PIERRE BOULANGER*

Faculté de Médecine, Laboratoire de Virologie et Pathogénèse Moléculaires (CNRS URA-1487), Institut de Biologie, 34060 Montpellier, France

Received 21 July 1994/Accepted 5 January 1995

Interacting domains in human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55gag) expressed in recombinant baculovirus-infected cells were investigated by three different methods: (i) trans rescue and coencapsidation of C-terminal deletion (amber) Gag mutants and Gag chimeras into retrovirus-like particles in complementation experiments with HIV-1 wild-type (WT) Pr55gag, (ii) Gag-Gag interactions in vitro in Gag ligand affinity blotting assays, and (iii) quantitative immunoelectron microscopy of retrovirus-like Gag particles, using a panel of monoclonal antibodies to probe the epitope accessibility of encapsidated HIV-1 WT Pr55gag. Four discrete regions, within residues 210 to 241, 277 to 306 (major homology region), and 307 to 333 in the capsid (CA) protein and residues 358 to 374 at the CA-spacer peptide 2 (sp2) junction, were found to have a significant influence on Gag trans-packaging efficiency. A fifth region, within residues 375 to 426, overlapping the sp2-nucleocapsid (NC) protein junction and most of the NC, seemed to be essential for stable inter-Gag binding in vitro. The coincidence of the two regions from 358 to 374 and 375 to 426 with an immunologically silent domain in WT Gag particles suggested that they could participate in direct Gag interactions.

The morphogenetic pathway of human immunodeficiency virus type 1 (HIV-1) essentially follows that of type C retroviruses, characterized by the simultaneous assembly and budding of Gag particles at the plasma membrane (15, 61). HIV-1 Gag precursor is a polyprotein of 55 kDa (Pr55gag), composed of four major and two minor structural domains, defined by the viral protease cleavage sites (20, 34). The major domains consist of the N-myristylated p17 matrix (MA) protein, the phosphorylated p24 capsid (CA) protein, the p7 RNA-binding nucleocapsid (NC) protein, and the p6 C-terminal domain. The two minor domains are spacer peptides localized at the CA-NC junction (sp2) and at the NC-p6 junction (sp1), respectively (20). These domains and their specific signals are sketched in Fig. 1.

HIV-1 wild-type (WT) Pr55gag expressed by recombinant baculovirus in insect cells has been found to be released in significant amounts into the external medium as membrane-enveloped, retrovirus-like particles of 100 to 130 nm in diameter (16, 22, 37, 42, 43). N-myristylation modification at the N terminus of the MA domain of HIV-1 Pr55gag is indispensable for the budding process (16, 42, 43) as well as for infectious virus particle production by mammalian cells (4, 18, 38). However, unmyristylated Gag and Gag-Pol polyproteins of HIV-1 (21, 39, 46) and membrane-binding mutants of Rous sarcoma virus (RSV) (60, 62) can be efficiently coencapsidated into retroviral particles by WT Gag precursor coexpressed in trans. In contrast, unmyristylated Pr65gag of Moloney murine leukemia virus has been shown to be excluded from the virus assembly process (40, 45).

The domains which are critical in cis for transport, self-assembly, and budding of HIV-1 Gag particles have been extensively studied by using deletion, insertion, and substitution mutagenesis of Pr55gag (6, 10, 11, 13, 16, 17, 21, 24, 31, 47, 52, 53, 55, 63–67) or inhibition of virus particle formation by synthetic peptides mimicking Gag sequences (35). However, mutational analysis rarely allows one to discriminate between direct and indirect effects of a mutation and distinguish whether an assembly-defective phenotype results from a mutated residue in interacting domains or from a mutation-induced overall change in the protein conformation.

In this study, the domains required in trans for HIV-1 Gag intermolecular interaction and coencapsulation were investigated by using three different approaches. (i) In vivo, the capacity of carboxy-terminally deleted (amber) Gag mutants and Gag chimeras to be trans rescued and coencapsidated by WT Gag was assayed in complementation with recombinant HIV-1 WT Pr55gag coexpressed in the same insect cells. (ii) In vitro, the affinity of Gag amber mutants for WT Pr55gag was assayed by protein blotting, using soluble Gag protein as the ligand. (iii) Homogeneous retrovirus-like Gag particles composed of WT Pr55gag, and composite Gag particles containing both WT Pr55gag and chimeric Gag molecules, were probed for epitope accessibility and examined in quantitative immunoelectron microscopy (QIEM). Taken together, the results suggested that three discrete regions in the CA, including the cyclophilin-binding domain (30) and the major homology region (MHR) (61), the spacer peptide sp2, and the portion of the NC domain overlapping the two cysteine-histidine boxes played a significant role in Gag interaction.

MATERIALS AND METHODS

Cells and virus infection. IPLB-S21-AE (Invitrogen Corp., San Diego, Calif.), an S9 subclone of Spodoptera frugiperda cells, was maintained as monolayers at 28°C in Grace’s insect medium (Sigma) supplemented with 10% fetal calf serum (Gibco) and Yeastolate and lactalbumin hydrolysate at 3.3 gliter each. They
were infected at a multiplicity of infection (MOI) ranging from 5 to 15 PFU per cell. In coinfection experiments, in which equal production of two recombinant Gag proteins coexpressed in *trans* was needed, cell samples were simultaneously infected by the two recombinant baculoviruses, WT and mutant, at various MOI ratios, e.g., 5:2.5, 5:5, 5:7.5, 5:10, and 5:12.5 PFU per cell. Cell lysates were quantitatively assayed for double Gag expression (see below), and the infected cell sample giving equivalent signals for both recombinant Gag was retained.

Construction of recombinant Gag mutants and chimeras. The baculovirus transfer vector used in this study, pGmAcl15T-N, had the polyhedrin start codon A(1+1)TG mutated to ATT, as in pVL941 (32), a BglII-NcoI linker inserted at nucleotide +34, and an XbaI linker at position +407 in the polyhedrin coding sequence. Cloned genes were thus expressed under the control of the polyhedrin promoter. The entire nucleotide sequence of HIV-1_{LAV} gag gene (54), modified at its 5′ extremity to generate an NcoI site including its ATG initiation codon, was inserted between the NcoI and XbaI sites, generating pGmA-NGag. All genetic constructs and mutations in the HIV-1 gag gene were first made in two derivatives of the pBlueScript II KS² plasmid containing the gag coding sequence and starting its ATG initiator at an NcoI site. Their 5′-end sequence provided the two possible N termini for the recombinant Gag mutants, N myristylated, as in WT Pr55^{env} (Gag12myr₁) (42, 43), or unmyristylated, as in N-myristylation-defective mutant GagG2A (6, 7). Mutation-containing fragments were excised by restriction digestion with two unique sites on each side of the mutation and replaced into the same sites of pGmA-NGag. The oligonucleotides required for mutagenesis or cloning strategies were synthesized by Eurogentec (Seraing, Belgium). Recombinant baculoviruses were obtained by in vivo recombination in Sf9 cells between pGmA-NGag and Bsu36I-digested DNA from *Autographa californica* nuclear polyhedrosis virus (AcNPV)-derived BacPAK6 virus (Clontech Laboratories, Palo Alto, Calif.).

FIG. 1. Schematic diagrams of Gag proteins. (A) HIV-1 WT Pr55^{env}. The major domains (MA, CA, NC p7, and p6) and spacer peptides sp2 and sp1, defined by the HIV-1 protease cleavage sites (small vertical bars), are shown on the Gag precursor linear sequence and numbered from the initiation Met-1 of the HIV-1_{LAV} Gag sequence (54). Black and stippled boxes mark the positions of the following sequence elements: a, myristylated N terminus; b1 and b2, polybasic motifs at residues 26 to 32 and 110 to 114 in the MA; c, decapeptide 1₁1-1TAADTHHSSQV₁₂₉ conserved in structural proteins of nonrelated RNA viruses (3); d, cyclophilin-binding region (210 to 267) (30); e, MHR, within residues 285 to 304 (61); f1 and f2, His-Cys boxes at positions 392 to 405 and 413 to 426, respectively; g, conserved PTAPP sequence, at positions 455 to 459 in p6; and AD3, the third major assembly domain of retrovirus Gag, composed of two subdomains, 241 to 407 and 408 to 437 (2, 60, 61). (B) Carboxy-truncated Gag amber mutants. The Gly-to-Ala substitution at position 2 generates the unmyristylated configuration. Each number on the right indicates the last residue of the Gag sequence preceding the amber stop codon. (C and D) Gag chimeras, with foreign sequences indicated by hatched boxes. In PH58HI, the N-terminal 58 residues of the baculovirus polyhedrin sequence were fused to Arg-15 of the HIV-1 MA. In SP203HI, the entire HSRV MA (203 residues) was substituted for the HIV-1 MA.
Deletion mutant amb143 consisted of the MA domain and 11 amino acids from the CA (7). The other carboxy-truncated mutants of recombinant Gag protein were constructed by insertion of an amber mutistop codon (doublestranded 5'-CTAGTCTAGATCTAG-3'), linked by the blunted EcoRI site created at gag codons 209, 241, 334, 341, 357, 374, 426, 438, and 462 by our linker-mediated mutagenesis (6). They are referred to as amb276 (nt 306), amb333, amb143, and amb462, respectively. The number refers to the last residue of the Gag sequence, regardless of the human sequence between the cloning sites and diuribase oligonucleotide, and in designations such as amb143myr or amb462myr, the suffix myr or myr indicates the amber mutistop codon and the myristoylated configuration. Mutants amb276 and amb462 were generated by PCR amplification, using primer pairs A or B and A or C, sense and antisense, respectively. Oligonucleotide A (5'-CTGGGATCAGCTACAACATCC-3') corresponds to the sequence between codons 61 and 276 on the bgl II site, and B (5'-CTGGGATCAGCTACAACATCC-3') corresponds to codons 278 to 276, introduced a mismatch at codon 277, changing the tyrosine to an amber stop codon. Primer C (5'-TGTGCTGCTTCTGATGTT-3'), corresponding to gag codons 306 to 301, introduced a Glu-to-amber change at position 307. The PCR fragments were cloned into plBluescript II KS-, verified by DNA sequencing, then excised by digestion at the unique sites PvuII (codon 210 in gag) and KpnI in the cloning cassette, and reintroduced into the same unique sites of pGmAc-NcGag baculoviral vector.

The construction and phenotype of the AcNPV polyhedrin-HIV-1 Gag fusion protein (Gag5) have been described elsewhere (42, 43). Gag5 consists of the nsp1-deleted Gag precursor, terminated at codon 437 in the NC sequence (Bii1 site) and fused to the N-terminal 38 amino acids from the baculoviral polyhedrin (Bii site) to stabilize our nomenclature. The N-terminal myristoylated human spumaretrovirus (HRSV)-HIV-1 Gag chimera SP203H consisted of the MA domain from HSRV (203 residues) linked to the 378 residues from the HIV-1 CA-NC domains. The HSRV genome, cloned as proviral DNA in pBluescript II KS and fused to EcoRI site upstream of the ATG start position 1223 (5'-GGAGATCATCGGCTGAGTTTATA-3'), was inserted downstream to the HIV-1 gag natural TAA stop codon at position 1836. The HIV gag Bii1-Eii1 fragment was reintroduced into the same unique sites of pBluescript II KS, generating pBKS-SpuGag. Oligonucleotide D (sense) corresponded to nucleotides (nt) 1200 to 1222 in the HSRV gag sequence (29) and introduced a unique EcoRI site upstream to the ATG start position 1223 (5'-GGAGATCATCGGCTGAGTTTATA-3'), generating a full-length gag gene was sequenced. PCR amplification with primers D and E and subclone into the Smal site of pBluescript II KS- generated a panel of 12 Gag amber mutants with progressively shorter gag open reading frames, from amb462, truncated in its N-terminal domain, and amb2143, truncated near the MA-CA junction (Fig. 1). Gag particles released from the insect cells harboring the recombinant baculoviruses were purified by ultracentrifugation in sucrose density gradient as already described (43). Sodium dodecyl sulfate (SDS)-denatured proteins were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) and using the method described for the cell lysates in subsequent experiments (29). The sequence of the N-terminal 58 residues from baculoviral p6 domain from HSRV (203 residues) linked to the 378 residues from the HIV-1 CA-NC domains. The HSRV genome, cloned as proviral DNA in pBluescript II KS, was fused to the N-terminal 38 amino acids from the baculoviral polyhedrin (Bii site) and used for the baculoviral vector. The baculovirus vector was transfected into Sf9 cells, and the recombinant baculoviruses were used to infect Sf9 cells. The baculovirus-infected cells were analyzed by SDS-polyacrylamide gel electrophoresis to confirm the expression of the recombinant proteins.

RESULTS

trans rescue and coexpression of carboxy-truncated Gag (amber) mutants. To determine the sequence requirements for trans rescue of HIV-1 Gag mutants by WT Pr55Gag and coexpression into retrovirus-like particles, SF9 cells were infected with Gag12myr, expressing N-myristylated WT Pr55Gag, and a second recombinant expressing a Gag mutant in its N-myristylated or unmyristylated configuration. Stop codons introduced into the CA domain of HIV-1 Pr55Gag generated a panel of 12 gag amber mutants with progressively shorter gag open reading frames, from amb462, truncated in its nsp1 domain, to amb143, truncated near the MA-CA junction (Fig. 1). Gag particles released into the culture medium of infected cells were analyzed by ultracentrifugation in a sucrose density gradient. SDS-PAGE, and immunoblotting. Gag proteins of mutants amb462myr, amb438myr, amb426myr, amb374myr, amb357myr, amb341myr, and amb306myr were rescued in trans by WT Pr55Gag and were detected in extracellular Gag particles. By contrast, there was no detectable coexpression for mutants amb276myr, amb241myr, amb209myr, and amb143myr (Fig. 2 and Table 1). This result implied that deletion of the sequence between amino acids 277 and 306 was detrimental to coexpression of unmyristylated Gag precursor into budding particles.

The N-myristylated versions of the Gag amber mutants were also analyzed in trans-rescue assays with WT Pr55Gag. However, certain N-myristylated HIV-1 Gag carboxy-truncated mutants not detected by the specific epitope tags: the M52/28F Mab epitope in the p6 carboxy-terminal domain of full-length Pr55Gag when amber Gag mutants were immunobilized on blots and Pr55Gag was used as the ligand (7, 51), or the Epiclone-5001 epitope, destroyed in the insertion mutant in 341 (6), when n341 Gag was immobilized on blots and amber Gag mutants were used as the ligands.
rescue assays could not be performed with amber mutants located on the C-terminal side of the boundary for particle budding capacity, recently identified at the sp2-NC junction in baculovirus-expressed HIV-1 Gag (24). This investigation was therefore restricted to the nine budding-defective mutants, amb143myr−, amb209myr−, amb241myr−, amb267myr−, amb306myr−, amb333myr−, amb341myr−, amb357myr−, and amb374myr−. All of these N-myristylated amber mutants were found to be coencapsidated by WT Pr55gs, although to various extents (Table 1).

The efficiency of coencapsidation, estimated from the ratio of amber mutant to WT Gag signals in luminograms of immunoblotted Gag particles, showed two thresholds in the coencapsidation level of unmyristylated Gag mutants: one between amb276myr− and amb306myr− and one between amb357myr− and amb374myr−. Mutants amb143myr−, amb209myr−, amb241myr−, and amb267myr− showed no detectable coencapsidation. Mutants amb306myr−, amb333myr−, amb341myr−, and amb357myr− were found to be coencapsidated at relatively low levels (3 to 16%), whereas in amb374myr−, amb426myr−, amb438myr−, and amb462myr−, coencapsidation occurred at levels ranging from 30 to 40%. In the N-myristylated series, two thresholds could also be distinguished, with a twofold increase in copackaging efficiency between mutants amb209myr+ and amb241myr+ and between amb306myr+ and amb333myr+ (Table 1).

Gag interaction in vitro. The domains required for in vitro interaction and stable binding between Gag precursor molecules were investigated by ligand affinity blotting assays. In assay 1, unmyristylated Gag amber mutants analyzed by SDS-PAGE were immunoblotted on a membrane and soluble unmyristylated full-length Gag precursor expressed by mutant G2A, immunologically detectable by its p6 domain, was used as the ligand. The results are shown in Fig. 3. An intense signal of bound Gag was observed on blots for mutants amb462, amb438, and amb426. A faint signal of Gag ligand binding was still visible with amb374, amb357, amb341, and amb333, but no binding was detectable with shorter Gag amber mutants (amb306 to amb143). A possible influence of SDS denaturation and partial renaturation of immobilized Gag amber mutants on the efficiency and/or specificity of binding was examined by a reverse in vitro binding reaction (assay 2). Full-length Gag precursor was electrophoresed and transferred to the solid support, whereas soluble, non denatured amber Gag mutants were used as the ligands. The blotted full-length Gag used was from in341myr−, an insertion mutant which has lost its reactivity toward MAb Epicline-5001 (6). This allowed us to distinguish the bound Gag ligands amb462, amb438, amb426, amb374, and amb357, which all carried the Epicline-5001 epitope, from the immobilized Gag species. The results obtained with the reverse Gag ligand affinity blotting assays (data not shown) were similar to those obtained with assay 1 and confirmed that the boundary between high- and low-affinity binding between Gag molecules in vitro lay between residues 375 and 426. This region corresponded to the sp2-NC junction and the portion of the NC domain overlapping the two zinc fingers.

Determinant accessibility in WT Gag particles analyzed by QIEM. Retrovirus-like particles released by budding from the plasma membrane of Sf9 cells expressing HIV-1 WT Pr55gs (Gag12myr+) were probed with a panel of 17 characterized MAbs, and the accessibility of epitopes localized in different Gag domains was analyzed by EM. As shown in Fig. 4 and Table 2, the reactivities of particle-incorporated WT Pr55gs varied from an average ratio of 29.5 colloidal gold grains per particle for the most highly reactive MAb RL4 (mapped be-
between residues 219 and 233 in the CA domain) to 0.3 and 1.3 grains per Gag particle for the less reactive MAbs HH3 and i5B11, respectively. HH3 and i5B11 epitopes have been localized at both termini of the NC p7 domain, within residues 378 to 391 for i5B11 and residues 429 to 444 for HH3 (49). Both i5B11 and HH3 were highly reactive against isolated NC p7 and SDS-denatured Pr55\(^{gag}\) in immunoblotting (not shown), which suggested that their epitopes were buried and not accessible in encapsidated WT Pr55\(^{gag}\). Five regions were thus found to be exposed in sectioned Gag particles: two at both extremities of the MA, within residues 11 to 25 and 113 to 132, two in the CA at positions 201 to 233 and 285 to 357, and one in the C-terminal moiety of the p6 domain (463 to 500). Both regions from 201 to 233 and 285 to 341 have already been identified as accessible and immunodominant regions in soluble CA protein (12, 27). These reactive regions delineated four silent windows: (i) within residues 26 to 112 in the MA, (ii) 133 to 200 and (iii) 234 to 284 in the CA, and (iv) a fourth zone within residues 357 to 462, overlapping the sp2, NC p7, and sp1 domains (Fig. 1 and Fig. 4). These inaccessible domains carried potential interacting sites between Gag precursor molecules.

}\textit{cis} effects of MA modifications on Gag interaction and assembly in vivo. It was previously shown that the unmyristylated, polyhedrin-fused, p6-deleted Gag protein expressed by recombinant PHS8HI in S9 cells was defective in extracellular budding of membrane-enveloped particles and was released as soluble protein into the culture medium (43). Likewise, the HIV-HSRV Gag chimera SP203HI, consisting of the unmyristylated HSRV MA fused to the HIV-1 CA-NC domains, was found to be released only as soluble protein, and no retrovirus-like particles were found at the plasma membrane of SP203HI-infected cells (data not shown). However, both PHS8HI and SP203HI chimeras were capable of assembling core-like particles within the cell (Fig. 5). The intracellular particles made of p6-deleted, polyhedrin-fused PHS8HI, or formed by the SP203HI chimera, were similar in size and morphology to the core particles composed of unmyristylated full-length HIV-1 Gag precursors expressed by Gag10 (42) or G2A (6). Their outer diameters in EM sections were 107.1 \pm 4.7 nm for PHS8HI (mean \pm confidence interval at P = 0.05; n = 31) and 111.7 \pm 5.1 nm for SP203HI (n = 22). This finding suggested that the fusion of the HIV-1 MA domain to foreign, nonretroviral sequence, as in PHS8HI, or its complete replacement by another retroviral MA sequence, as in SP203HI, had no detrimental effects in \textit{cis} on the intracellular assembly capacity of the resulting Gag chimeras. However, HIV-1 Gag insertion mutant in40 (6) and deletion mutant dl42-100 (7), which both accumulate a cleaved Gag species (Pr39\(^{gag}\)) lacking the MA domain, failed to assemble core structures within the cell, suggesting that the presence of an MA domain, homologous or heterologous, was essential for in vivo assembly of HIV-1 Gag precursor.

\textit{trans} effects of MA modifications on Gag coencapsidation. S9 cells were coinfected with two recombinants, one expressing HIV-1 WT Pr55\(^{gag}\) (Gag12myr+) and the other expressing an MA mutant or a Gag chimera, both Gag species being distinguishable by their unique epitope tags and/or apparent molecular masses in SDS-PAGE. Mutants in40 and dl42-100 showed no detectable \textit{trans} rescue of their cleaved precursor Pr39\(^{gag}\) in coexpression with WT Pr55\(^{gag}\) (data not shown), suggesting that the presence of an MA domain, regardless of its N-myristylation modification, was indispensable for HIV-1 Gag precursor coencapsidation.

In cells coinfected by PHS8HI and Gag12myr+., the budding-defective phenotype of PHS8HI (42, 43) was efficiently rescued in \textit{trans} by coexpressed WT Pr55\(^{gag}\), SDS-PAGE and immunoblot analysis of the velocity gradient fractions corresponding to particulate Gag sedimenting at 600 to 700S (1.17 in apparent density) showed that the Gag particles released by coinfected cells were heterogeneous in nature and contained two Gag signals (Fig. 6a) that were electrophoretically and immunologically identifiable: the HIV-1 WT Gag precursor of 55 kDa reacted with anti-p6 MAb, whereas PHS8HI (53 kDa), tagged at its N terminus by 58 amino acids from the polyhedrin sequence, lacked the p6 domain. An efficient complementation effect was also observed in coexpression of HIV-1 Pr55\(^{gag}\) and an unmyristylated Gag chimera SP203HI (65 kDa; Fig. 6c). As estimated from densitometric scanning of immunoblot lumiograms, the \textit{trans}-rescue efficiencies, expressed as the percentages of total Gag molecules coencapsidated, were 28\% for PHS8HI and 15\% for SP203HI (Table 1).

The occurrence of composite retrovirus-like particles containing two different (N-myristylated and unmyristylated) Gag protein species was confirmed by immunoelectron microscopy. Gag particle reactivity was probed in EM sections of cells coinfected by Gag12myr+ and PHS8HI or Gag12myr+ and SP203HI, using anti-p6 rat MAb and antipolyhedrin rabbit antibody for the first pair and anti-HIV p17 mouse MAb and anti-HSRV MA rabbit antibody for the second pair. Specific Gag epitopes were then distinguished on individual core particles by using differential labeling of the conjugate, i.e., 5-nm colloidal gold-labeled anti-rat IgG and anti-mouse IgG antibodies and 10-nm colloidal gold-labeled anti-rabbit IgG antibody. Most of the plasma membrane-budding Gag particles were found to carry double immunogold labeling in both types of coinfection experiments, Gag12myr+ + PHS8HI and Gag12myr+ + SP203HI (Fig. 6b and d), thus confirming the results of biochemical analyses in sucrose gradients (Fig. 6a and c). The next analysis was designed to determine the influ-
ience of the intracellular environment on the composition of heterogeneous Gag particles and the role of cellular compartments in Gag coencapsidation.

QIEM analysis of homogeneous and heterogeneous Gag particles in different cell compartments. Several hundred individual Gag particles budding from the plasma membrane or assembled within cells coinfected with Gag12myr+ and PH58HI or with Gag12myr+ and SP203HI were statistically analyzed by QIEM after double immunogold labeling as described above. The reactivity of composite Gag particles assembled in coinfected cells was then compared to that of homogeneous particles formed during single infections. The results are presented in Table 3. In single infections, the anti-p6 reactivity of Gag particles constituted of full-length Gag precursor varied slightly with the cellular compartment in which they accumulated, from 16.6 gold grains per particle at the plasma membrane (N-myristylated Gag12myr+) to 18.7 and 22.6 gold grains per particle in the cytoplasm and nucleus, respectively (unmyristylated G2A mutant). Composite Gag particles harboring WT Pr55_{gag} and PH58HI showed a lower p6 reactivity in the nuclear compartment, and a significant polyhedrin labeling was observed in membrane-enveloped particles budding from the plasma membrane (4.8 grains per particle; Fig. 6b). The ratio of anti-p6 to antipolyhedrin reactivity, which reflected both the accessibility of each Gag protein species and its molar ratio within the core particle, was found to be higher at the plasma membrane than in the cytoplasm and nuclei of cells coexpressing WT Pr55_{gag} and PH58HI. The difference was significant at the P = 0.05 level. It must be remembered that a nuclear localization signal (29^{KNAKRKK}) is present in the fused polyhedrin sequence of PH58HI. A similar effect was observed in cells coexpressing WT Pr55_{gag} and SP203HI, with a twofold-higher ratio of HIV p17 to HSRV MA reactivity in membrane-budding particles than in intracytoplasmic particles (Table 3). This finding suggested that the number of copies of unmyristylated Gag chimeras significantly differed in extracellular and intracellular particles, with a ratio to HIV-1 WT Pr55_{gag} minimum in particles released by budding and maximum in particles accumulated within the cell.

DISCUSSION

Immature virions of retroviruses are physiologically heterogeneous in Gag composition. In the case of HIV-1, they are constituted of a majority of Pr55_{gag} molecules and a minority of
TABLE 2. Epitope reactivities of encapsidated WT Pr55gag analyzed by QIEM

<table>
<thead>
<tr>
<th>MAa Designation</th>
<th>Epitope localizationb</th>
<th>Reactivityc</th>
<th>No. of particles analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LI4.17</td>
<td>11–25</td>
<td>12.62 ± 0.93</td>
<td>232</td>
</tr>
<tr>
<td>2 3H7</td>
<td>113–122</td>
<td>3.20 ± 0.26</td>
<td>345</td>
</tr>
<tr>
<td>3 Epiclone-5003</td>
<td>120–132</td>
<td>14.31 ± 0.82</td>
<td>281</td>
</tr>
<tr>
<td>4 31–11</td>
<td>124–132</td>
<td>4.06 ± 0.34</td>
<td>438</td>
</tr>
<tr>
<td>5 8D2</td>
<td>201–218</td>
<td>12.16 ± 0.94</td>
<td>245</td>
</tr>
<tr>
<td>6 8H7</td>
<td>201–218</td>
<td>17.85 ± 1.32</td>
<td>239</td>
</tr>
<tr>
<td>7 47–2</td>
<td>201–218</td>
<td>24.53 ± 1.44</td>
<td>215</td>
</tr>
<tr>
<td>8 RL4.72.1</td>
<td>219–233</td>
<td>29.55 ± 1.68</td>
<td>136</td>
</tr>
<tr>
<td>9 2A5G4</td>
<td>285–304</td>
<td>7.40 ± 0.58</td>
<td>253</td>
</tr>
<tr>
<td>10 M0.42.2</td>
<td>285–310</td>
<td>6.98 ± 0.60</td>
<td>294</td>
</tr>
<tr>
<td>11 9A4C4</td>
<td>302–320</td>
<td>12.52 ± 0.72</td>
<td>259</td>
</tr>
<tr>
<td>12 11C0B10</td>
<td>302–320</td>
<td>4.41 ± 0.34</td>
<td>380</td>
</tr>
<tr>
<td>13 11D1F2</td>
<td>302–320</td>
<td>1.95 ± 0.20</td>
<td>366</td>
</tr>
<tr>
<td>14 Epiclone-5001</td>
<td>341–357</td>
<td>11.26 ± 0.84</td>
<td>306</td>
</tr>
<tr>
<td>15 15B1</td>
<td>378–391</td>
<td>1.33 ± 0.19</td>
<td>237</td>
</tr>
<tr>
<td>16 HH3</td>
<td>429–444</td>
<td>0.30 ± 0.05</td>
<td>582</td>
</tr>
<tr>
<td>17 M35/2F8</td>
<td>463–500</td>
<td>8.75 ± 0.60</td>
<td>236</td>
</tr>
<tr>
<td>18 Controld</td>
<td></td>
<td>0.11 ± 0.07</td>
<td>138</td>
</tr>
</tbody>
</table>

a All were from mice except for 15B1 and M35/2F8, which were from rats.
b Mapped in the HIV-1 Gag precursor sequence as indicated in Materials and Methods. Amino acid numbering starts from the methionine initiation codon in the HIV-1 gag gene sequence (54).
c Expressed as the number of gold grains per budding Gag particle. Values are means ± confidence interval at the P = 0.05 level.
d Performed with mouse monoclonal anti-adenovirus type 2 penton base (25) and 5-nm-gold-labeled anti-mouse IgG conjugate.

deficiency virus, human T-cell leukemia virus type I, and maedi-visna virus (1).

No trans rescue was detected for unmyristylated Gag amber mutants which lacked the CA region from 277 to 306 (Table 1), suggesting that the MHR (33, 48, 61) was essential for this process. Furthermore, the coencapsidation of MHR-containing amber mutants occurred with a higher efficiency with the addition of the downstream sequence from 358 to 374, overlapping the CA-sp2 junction. The deletion of the spacer nonapeptide at the CA-NC junction of RSV has been found to abolish virus infectivity without obvious effects on the assembly of the mutant Gag and its release from the transfected cells. The loss of virus infectivity provoked by the mutation was attributed to a subtle change in the organization of the internal components of the virion, as suggested by the detergent sensitivity of the mutant particles, possibly via a role of the spacer peptide in directing folding and/or oligomerization of the CA subunits within the capsid structure (8).

The in vitro binding assays, using immobilized Gag amber mutants and soluble full-length Gag ligand, showed a low level of Gag binding to mutants containing MHR and downstream CA sequence until position 374. The highest Gag binding was obtained with amber mutants amb426, amb438, and amb462 (Fig. 3), suggesting that the sequence from 375 to 426 was essential for the occurrence of stable Gag interaction. The same sequence was also found to be nonreactive in QIEM analysis of WT Gag particles budding from the plasma membrane of Gag12myr+ -infected cells in EM sections (Fig. 4).

Five regions were found to be exposed in budding WT Gag particles, within residues 11 to 25 near the N terminus of the MA, 113 to 132 near the MA-CA junction, 201 to 233 and 285 to 357 in the CA, and the C-terminal moiety (463 to 500) of the p6 domain (Fig. 4 and Table 2). These regions delineated four antigenically silent windows in the Pr55gag sequence, which represented potential interacting domains between Gag precursor molecules: (i) within residues 26 to 112 in the MA, (ii) 133 to 200 and (iii) 234 to 284 in the CA, and (iv) 358 to 462, overlapping the sp2, NC p7, and sp1 domains (Fig. 1 and 4). The position of the last two windows is consistent with the recent report that the minimal domain required for HIV-1 Gag polyprotein multimerization in the GAL4 two-hybrid system is the region from 240 to 434 (14).

A comparison of the data from QIEM analysis of WT Gag particles and from trans rescue of Gag amber mutants showed that the Gag regions from 210 to 241 and 307 to 333, which were found to be critical for the coencapsidation of N-myristylated Gag amber mutants, were superimposed with the two highly reactive domains from 201 to 233 and 285 to 357, respectively. For the unmyristylated Gag amber mutants, the critical region from 277 to 306 coincided with the reactive domain from 285 to 357, whereas the sequence from 358 to 374 coincided with the silent domain from 358 to 462 (Table 1 and Fig. 4). The region of the Gag sequence which was found to be essential for Gag-Gag interaction in ligand binding assays (375 to 426) was also included in the silent domain from 358 to 462. It could thus be hypothesized that the two discrete silent regions, 358 to 374, as defined by the trans-rescue experiments, and 375 to 426, as identified by in vitro Gag binding assays, would participate in direct Gag interactions with WT Pr55gag, whereas exposed regions from 210 to 241, 277 to 306, and 307 to 333 would have an indirect, conformational function in inter-Gag binding. The finding that the MHR is immunologically exposed within the Gag particles assembled in vivo (Table 2 and Fig. 4), as well as in recombinant CA protein oligomers assembled in vitro (12), would thus imply a conformational rather than direct role in Gag assembly and budding. Our
FIG. 5. Intracellular assembly of Gag chimeras in recombinant-infected S9 cells. (a and c) SP203HI, an HSRV-HIV chimera constituted of the MA domain of HSRV fused to the CA-NC domains of HIV-1. (b and d) PH58HI, a p6-deleted HIV-1 Gag precursor amino terminally fused to the N-terminal 58 residues from the polyhedrin sequence. (a and b) Conventional EM of osmium-fixed, Epon-embedded cell specimens; (c and d) IEM of Lowicryl-embedded cell sections, reacted with anti-HSRV MA antibody (b) or antipolyhedrin antibody (d). Bar, 200 nm.
results, and additional data from substitution mutagenesis of HIV-1 NC (10), confirmed the existence of a third major morphogenetic domain (AD3) in Gag, spanning the sp2-NC p7 junction and the cysteine-histidine boxes of HIV-1 NC (60, 61). However, the two Cys-His motifs did not seem to be directly involved in Gag-Gag interaction in HIV (2) and RSV (58).

The difference between N-myristylated and unmyristylated Gag amber mutants in relation to the regions critical for their trans rescue by WT Pr55\textsuperscript{\text{gag}}, suggested that additional factors and parameters, other than the presence of interacting domains in the Gag proteins, e.g., Gag conformation, transport, or binding to cellular chaperons, could be involved in the observed phenomenon. In this hypothesis, the targeting of the N-myristylated Gag amber mutants to the plasma membrane would allow their concentration at the membrane sites of assembly and budding and coencapsidation with WT Pr55\textsuperscript{\text{gag}}, even through weak interactions, as in the case of amb\textsubscript{143}myr+ or amb\textsubscript{209}myr+. By contrast, transport-defective unmyristylated Gag species could reach the membrane budding sites only if they first establish bonds with WT Pr55\textsuperscript{\text{gag}}. In addition, the affinities of different domains of Gag amber mutants for their WT Pr55\textsuperscript{\text{gag}} partners would depend upon both their sequences and their conformations and thus be influenced by their N-myristylation. The possible role of the cellular environ-
Reactivities of intracellular core particles were analyzed by using GagG2A, which expresses amyristylation-defective full-length Pr55 in the cytoplasm (SP203HI), or in both the cytoplasm and the nucleus (PH58HI).

Pr55 domains of HIV-1 could not form stable bonds with WT single (homogeneous particles) or double (composite particles) infection. Since N-myristylated HIV-1 WT Pr55 produced by mutant clones containing both HIV-1 WT Pr55 and the AcNPV polyhedrin sequence, as in PH58HI, than for SP203HI, which contained an unmyristylated MA sequences from the SP203HI chimeras were never observed at the plasma membrane but only within the cell, in the cytoplasm (SP203HI), or in both the cytoplasm and the nucleus (PH58HI).

The role of the MA domain in Gag interaction was indirectly explored by trans-rescue assays of Gag precursor species with the following MA modifications: (i) fusion to AcNPV polyhedrin sequence, as in PH58HI, (ii) substitution by another retroviral MA sequence from HSRV, as in the SP203HI chimeras, or (iii) deletion of the entire MA domain, as in PrGag alone produced by mutant in 40 or 42-100 (6, 7). PrGag alone failed to be coencapsidated with WT Pr55 alone, suggesting that the CA-NC domains of HIV-1 could not form stable bonds with WT Pr55 alone in vivo in the absence of the MA domain. However, the Gag chimeras expressed by PH58HI and SP203HI were found to be coencapsidated with HIV-1 Pr55 alone in significant amounts (Table 1). The level of coencapsidation was higher for PH58HI, of which the N-terminal 14 amino acids from HIV-1 MA were substituted by a foreign sequence of 58 residues from the AcNPV polyhedrin, than for SP203HI, which contained an entire heterologous MA sequence of 203 residues from a spumaretrovirus. Considering the sequence of the baculovirus polyhedrin and the evolutionary divergence between the HIV and HSRV genomes, these results suggested a certain degree of tolerance for Gag particle assembly and release at the N terminus of the HIV-1 Gag precursor, in terms of MA length and amino acid sequence (11). This is consistent with two recent reports showing that RSV-HIV chimeras consisting of the carboxy-terminal moiety of HIV Gag protein fused to the amino-terminal moiety of an RSV Gag molecule are functional for Gag assembly and budding (2) and that the central HIV-1 MA domain is nonessential for Gag-β-galactosidase fusion protein coencapsidation (56). This notion has some implications for the construction of HIV-1 Gag fusion proteins designed for copackaging of foreign sequences (58, 59).

ACKNOWLEDGMENTS

This work was supported by the Agence Nationale de Recherche sur le SIDA (AC-14), the Centre National de la Recherche Scientifique, the Fondation pour la Recherche Médicale, and the Fédération des Groupements d’Entreprises Françaises dans la Lutte contre le Cancer. We thank Saw See Hong for critical reading of the manuscript, Jeannette Tournier, Martine Bardy, and Nolwenn Coudronnie for technical contributions, and Liliane Cournud for secretarial aid.

REFERENCES

Table 3: Immunoreactivities of homogeneous and composite retrovirus-like core particles in EM sections of Sf9 cells expressing one or two Gag precursor species

<table>
<thead>
<tr>
<th>Recombinant expressed</th>
<th>Immunoactivity with:</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-HIV p6</td>
<td>Anti-polyhedrin</td>
</tr>
<tr>
<td>HIV-1 Pr55<sup>wt</sup> alone</td>
<td>Mb</td>
<td>16.61 ± 0.76 (287)</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>18.76 ± 1.12 (83)</td>
</tr>
<tr>
<td></td>
<td>Nu</td>
<td>22.62 ± 1.39 (104)</td>
</tr>
<tr>
<td>PH58HI alone</td>
<td>Mb</td>
<td>≤0.2</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>≤0.2</td>
</tr>
<tr>
<td></td>
<td>Nu</td>
<td>≤0.2</td>
</tr>
<tr>
<td>HIV-1 Pr55<sup>wt</sup> + PH58HI</td>
<td>Mb</td>
<td>19.87 ± 1.69 (93)</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>19.57 ± 1.68 (47)</td>
</tr>
<tr>
<td></td>
<td>Nu</td>
<td>13.28 ± 1.58 (90)</td>
</tr>
<tr>
<td>SP203HI alone</td>
<td>Mb</td>
<td>≤0.2</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>≤0.2</td>
</tr>
<tr>
<td></td>
<td>Nu</td>
<td>≤0.2</td>
</tr>
<tr>
<td>HIV-1 Pr55<sup>wt</sup> + SP203HI</td>
<td>Mb</td>
<td>20.89 ± 1.34 (113)</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>14.10 ± 3.40 (22)</td>
</tr>
<tr>
<td></td>
<td>Nu</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Gag particles were examined by QIEM in different compartments (plasma membrane [Mb], cytoplasm [Cy], and nucleus [Nu]) of Sf9 cells harvested at 48 h after single (homogeneous particles) or double (composite particles) infection. Since N-myristylated HIV-1 WT Pr55^{wt} self-assembled at the plasma membrane, the reactivities of intracellular core particles were analyzed by using GagG2A, which expresses a myristylation-defective full-length Pr55^{wt} (6).

Numbers of gold grains per Gag particle (mean ± confidence interval at the P = 0.05 level). Values in parentheses represent the number of Gag core particles analyzed. Background labeling varied between 0.1 and 0.2 grain per particle.

* Ratio of anti-p6 to antipolyhedrin or anti-HIV p17 (Epiclone-5003) to anti-HRSV MA, reactivity, expressed as number of colloidal gold grains per particle.

ND, not detected. Retrovirus-like particles assembled by the PH58HI and SP203HI chimeras were never observed at the plasma membrane but only within the cell, in the cytoplasm (SP203HI), or in both the cytoplasm and the nucleus (PH58HI).
nus of the HIV-1 matrix protein is highly similar to sequences in membrane-associated proteins of other RNA viruses: possible functional implications. New Biol. 2:1044–1046.

