A. Tarantola, Inverse Problem Theory, 2005.

H. Flath, L. Wilcox, A. Akçelik, J. Hill, B. Van-bloemen-waanders et al., Fast algorithms for Bayesian uncertainty quantification in 30

, large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM Journal on Scientific Computing, vol.33, pp.407-432, 2015.

M. Dashti and A. Stuart, The Bayesian approach to inverse problems, Handbook of Uncertainty Quantification, pp.311-428, 2017.

C. Robert and G. Casella, Monte Carlo Statistical Methods, 2010.

C. Soize, Nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, pp.277-294, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.26-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics, Journal of Sound and Vibration, vol.288, pp.623-652, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00686182

H. Chebli and C. Soize, Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems, Journal of the Acoustical Society of America, vol.115, pp.697-705, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00686209

M. Arnst, D. Clouteau, H. Cheli, R. Othman, and G. Degrande, A nonparametric probabilistic model for ground-borne vibrations in buildings, Probabilistic Engineering Mechanics, vol.21, pp.18-34, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00018949

R. Cottereau, D. Clouteau, and C. Soize, Construction of a probabilistic model for impedance matrices, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.2252-2268, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00396727

M. Mignolet and C. Soize, Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies, Probabilistic Engineering Mechanics, vol.23, pp.267-278, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00689701

C. Soize and I. Poloskov, Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation, Computer and Mathematics with Applications, vol.64, pp.3594-3612, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00746280

A. Batou and C. Soize, Rigid multibody system dynamics with uncertain rigid bodies, Multibody System Dynamics, vol.27, pp.285-319, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701567

J. Guilleminot and C. Soize, Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media, Multiscale Modeling & Simulation, vol.11, pp.840-870, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854121

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.76, pp.1583-1611, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00684517

M. Arnst, B. Abelloálvarez, J. Ponthot, and R. Boman, Itô-SDE MCMC method for Bayesian characterization of errors associated with data limitations in stochastic expansion methods for uncertainty quantification, Journal of Comptutational Physics, vol.349, pp.59-79, 2017.

C. Soize, E. Capiez-lernout, J. Durand, C. Fernandez, and L. Gagliardini, Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation, Computer Methods in Applied Mechanics and Engineering, vol.198, pp.150-163, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00686138

M. Arnst, D. Clouteau, and M. Bonnet, Inversion of probabilistic structural models using measured transfer functions, Computer Methods in Applied Mechanics and Engineering, vol.197, pp.589-608, 2008.

J. Liu, Monte Carlo strategies in scientific computing, 2008.

Y. Marzouk, H. Najm, and L. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of Computational Physics, vol.224, pp.560-586, 2007.

M. Parno and Y. Marzouk, Transport map accelerated Markov Chain Monte Carlo, SIAM Journal on Uncertainty Quantification, vol.6, pp.645-682, 2018.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica, vol.12, pp.399-450, 2003.

C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics, vol.321, pp.242-258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283842