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Direct determination of a single battery internal resistances distribution

using a heterogeneous model

Maxime Juston -
Mergo Mbeya - Bogdan Vulturescu - Guy Friedrich

Abstract Lithium-ion batteries are getting larger due to the
expansion of transportation and mass storage markets and
they can now contain up to thousands of cells. However, a
sole damaged cell can significantly impact the whole bat-
tery pack efficiency [1]. Thus, the diagnosis of a single cell
remains critical for those systems. Many methods exist [2,
3] in which the cell is considered homogeneous. We re-
cently developed a heterogeneous equivalent circuit model
that considers a distribution of internal resistances to better
represent a real single cell behavior [4,5]. This resistances
distribution (RD) may bring valuable information about a
single cell internal quality, but only if it is determined with
a sufficient accuracy. In this paper, we propose an algorithm
that allows a responsive determination of the RD. The re-
sults are compared to other determination methods. This re-
sistances distribution (RD), which is determined thanks to
the preliminary construction of a homogenous model and a
single discharge, is also valid for other operating conditions.
This proves the relevance of the determination method and
it should now be usable to detect abnormal evolution of the
RD during a single cell lifetime. Although this work is de-
veloped for a single cell, it can also be used for several cells
connected in parallel and may thus be used to detect a dam-
aged cell inside a battery pack.
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1 Introduction

Lithium-ion cells are becoming one of the best solutions
to store energy in a wide range of applications, in particu-
lar among systems where weight or volume are major con-
straints, such as drones, cars and trains. In the industry, this
technology is often not well known and it is to our advan-
tage to develop a simple yet robust model that can be used
in a wide range of operating conditions. In order to antici-
pate the voltage response of a cell to a current profile, model
can be used to simulate its behaviour. An option is to build
an electrochemical model that takes into account the chemi-
cal reactions and other deep level reactions [6-9]. However,
the complexity of these model and the number of parame-
ters needed do not suit the expectations of most end users.
Another option is to use a mathematical model such as neu-
ronal networks or fuzzy logic [10,11,2]. One last option is
to use electrical equivalent circuit [12—15]. Although these
models are easier to parameterize, their parameters have to
depend on current, temperature and State of Charge (SoC) to
bring accurate predictions. As a result, those models usually
require lookup tables that require many measurements to be
completed. These models are useful to predict a cell perfor-
mance in many operating conditions in order to optimize its
sizing, choose an appropriate cooling system or predict its
capacity to fullfill a mission.

A previous research [12] led to an homogeneous equivalent
circuit of a Ni-mH cell, built from a physical basis. This
model only takes into account the main phenomena that oc-
cur inside a cell, with the two electrodes behaviours be-
ing mixed together. Recently, the usual homogeneous model
was extended to a heterogeneous one, the so-called "multi-
bunch model" [4]. It aims to model the heterogeneity of
the cell through a distribution of one or more parameters.
The origin of those distributed parameters can have many
sources that will be listed. This model is more accurate than
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an homogeneous one and although it may appear more com-
plicated at first sight, it is faster to characterize than a usual
electrical equivalent circuit model. Actually, we found that
the addition of the heterogeneous behaviour representation
in the model makes the use of SoC-dependant parameters
not necessary anymore (except for the open circuit voltage).
This allows us to characterize our model around 10 times
faster than other usual electrical model that have a precision
of 10% in SoC. Once characterized, our model is able to
simulate the cell over its whole range of operation. To carac-
terize the heterogeneity of a cell also brings valuable insight
into a cell behaviour and internal equivalent properties. We
also expect the resistances distribution to change during the
battery lifetime due to aging, and one of our goals behind the
scope of this paper is to track these changes to identify the
mechanisms behind them. Problems related to the determi-
nation of the distribution will be presented and our solutions
explained.

In this paper, we demonstrate that the measurement of a
single discharge, used to build our model, allows us to sim-
ulate the cell in a different operating conditions. In section 2
we present the construction of the model, its parameters and
variables. Our experimental setup and the used cell are pre-
sented in section 3 while section 4 describes the simulation
and optimization algorithms. Discussions about the obtained
results are in section 5 and last, the conclusion and perspec-
tives of this study are presented in section 6.

2 Model and parameter dependency
2.1 Construction of the multibunch model

Our model is based on the assumption that one cell can
be divided into elementary volumes that behave homoge-
neously and have their specific electrical properties. Those
volumes are connected in parallel, as showed in Fig. 1.a.
We assume that certain volumes, not necessarily spatially
bounded, have close electrical properties when compared to
each other. These volumes are thus grouped into a "bunch"
that is considered homogeneous. By repeating this opera-
tion, the cell is discretized into n homogeneous parts hav-
ing distinct electrical properties, see Fig. 1.b. The origin of
those distinct electrical properties can be the position of the
tab within the cell [16], the distance of active material to
current collector, temperature gradient. The bunches have a
local current /; but the same voltage: V,.;;. The sum of the
local currents /; is the cell current: I..;;. Let n be the number
of bunches of our model, sorted in ascending order of resis-
tance value. This idea of variation of electrical parameters
within the cell is supported by the recent work of Park et
al. [5], who found that a resistance distribution is found by
scanning the surface of an active material sample.

Each bunch is modelled using an electrical circuit. The
proposed representation comes from the previous article from
Damay et al. [17] in which the hypothesis made are the fol-
lowing:

— The double layer capacity can be neglected because of
its fast dynamic and the fact that our tests are conducted
at constant current during thirty to sixty minutes. We
call "high frequency" resistance Ry, the sum of the so
called ohmic resitance and the charge transfer one.

— In order to reduce the computation time, the Warburg
impedance representing the diffusion phenomenon is mod-
elled by a single RC. More RC circuits can be added to
better model the diffusion [12, 13]. The subscript d un-
der those elements stands for diffusion.

Those two hypotheses lead us to the multibunch dynamic
model used in this paper, presented in Fig. 1 : one voltage
source, one "high frequency" resistance and one parallel RC.

2.2 Parameters values, dependencies and number of
bunches

The local voltage source values U(Q;) varies with the local
charge like an increasing and nonlinear function, following
the open circuit voltage (OCV) of the cell. The bunch charge
is defined by its previous state and the bunch current by

Qir = Qis—ar +At - Ii;_p; (D

To simplify our model, all the heterogeneity of the elec-
trical properties is concentrated in the values of the Ryr;.
We expect this parameter to be the most heterogeneous one
in a cell due to variations in the impedance of the current
collector, electrolyte and charge transfer. This heterogeneity
is reprented with varying values of Ry from one bunch to
another. The determination of the distribution of the Ryris
done either by searching a mathematical distribution (a Weibull
one), or by searching directly values fitting the experiments.
Differences between both methods will be discussed later.
Values of the distributed parameters at different temperature
and current are computed as follow:

RHF,i = RHF’Z'(SO%SOC, 1C,25 OC) 'ﬁ(l, T) (2)

— RHFmeas(50%80C,I1,T)
where ﬁ (I; T) T RHF.meas(50%S0C,1C,25°C)

Because our model does not need a SoC dependency,
we determine the electrical parameters values at only one
SoC (50%),one current (1C) and temperature (25 °C). All
the other values of the parameters are determined by multi-
plying the measured value with a coefficient that is extracted
from dependencies lookup tables. The determination of the
lookup tables for dependencies are detailed in the article
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Fig. 1: (a) Division of the cell in a high number of electrical isotropic volumes. With (1) negative current collector, (2)
negative active material, (3) electrolyte, (4) positive active material, (5) positive current collector. (b) Model with grouped
homogeneous volumes into bunches. (c) Multibunch model with n bunches.

from Damay et al [4]. Conversely to the Ryr values, the
values of R; and C,; are the same for each bunch.

A summary of the differences between a usual equiva-
lent electrical model and the multibunch model can be found
in Tab. 1 where I refers to the cell current, as opposed to the
local current.

Table 1: Differences between a homogeneous equivalent
electrical model and the multibunch model

Parameter | Homogeneous Multibunch by n
ocv U(Q“,”) U(Q,), i= [l I’l}
Rur R.(SOC,I,T)+ Ruri(I,T)

R+ (SOC,1,T) and distributed
Ry R4(SOC,I,T) R4 (SOC 50%,1,T)-n
Cy C4(SOC,1,T) Cq4(SOC 50%,1,T)/n

Regarding the number of bunches, the higher they are,
the more accurate the model is. Several number have been
tested, and the optimal number found for a single cell seems
to be the higher one. Because the computation time is roughly
a first order function of the number of bunch, the chosen
number here is a compromise between accuracy and com-
putation time. The impact of n on accuracy and computa-
tion time can be found in Fig. 2. Other way of searching for
the distribution gives similar results. For the following, we
choose n=20.

3 Cell used and experiments
3.1 Cell characteristic and experimental setup
The cell used for this paper is a 40Ah LiFePO, - graphite

cell. It is already aged and its actual capacity is around 37.9
Ah. The discharge current limit is 2C, the charge current

limit is 1C, for a voltage varying between 2,5 and 3,7V. Re-
garding the temperature, the operating range is -15 to 50°C.

As the measured temperature will be used to compute
the parameters values of all bunches, the cell needs to be the
most homogeneous possible. Thus we chose to insulate the
cell with a polyurethane box, as pictured in Fig. 3. This way,
we consider the temperature to be the same in the surface or
in the hearth of the battery.

The cell was surrounded by at least 8§ cm of polyurethane
on each side, except on the top where we used glass wool to
be able to connect the cell. The connecting cables are also
insulated with polyurethane foam. The whole setup was then
placed into a climatic chamber to access the initials temper-
atures and connected to a Bio-Logic system.

Impact of the number of bunches - WD
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Fig. 2: Influence of the number of bunches to the precision
and convergence time for Weibull Distribution.
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Fig. 3: Experimental setup with the cell and polyurethane
box inside the stove. Cable are insulated with polyurethane
foam.

3.2 Tests descriptions

The cell was discharged with an initial temperature of 10°C,
25°C and 38°C with a current of 1C and 2C for each temper-
ature. The maximum temperature allowed by the constructor
was hit during the 2C discharge with initial temperature of
38 °C, resulting in a half discharge only. The measured tem-
perature was acquired using a thermocouple on the largest
side of the cell, within polyurethane setup.

4 Simulation and optimization algorithms
4.1 Simulation of the cell
Once the dependency tables are established, the current and

temperature curves acquired and the basic electrical param-
eters of the cell known, we only need to define the hetero-

geneity of our model. The flow chart of our coupled simulation-

optimization algorithm is represented in Fig. 4.

The cell is modelled by an algorithm that uses as input
the measured temperature and current during a discharge,
the initial state of the cell and the distribution of the param-
eter Ryr. The simulation algorithm has three steps.

— First the electrical parameters (resistances, capacities,
time constants) are updated with regard to current and
temperature;

— Then, with regards to the previous local currents and the
hypothesis that they remain constant during the time step
dt, the local states of charge Q; and voltages U(Q;) and
the voltage across the RC element are computed;

— Finally the new local currents and cell voltage are com-
puted by solving a linear system using cell current, the
locals OCV U (Q;) and the voltages Ug, ;.
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Fig. 4: flow chart of our algorithm

4.2 optimization algorithm and methods

In order to simplify the definition of the optimization func-
tion, we chose to use conductances instead of resistances.
This is because the equivalent conductance of parallel bunches
is simply the sum of the conductances. In the following of
this article, we will still use the denomination Ry to avoid
excessive vocabulary.

This section is dedicated to the determination of the Ry p
values, that are distributed among the bunches. To find the
best set, we tried three methods:

— an indirect determination using a Weibull distribution
(WD);

— adirect determination using a free distribution initialized
by a Weibull one (FD-WI);

— adirect determination using a free distribution initialized
by a constant one (FD).

Using a WD was already done in a previous article [4].
In this article we propose on the one hand an optimization
of the three Weibull parameters of the indirect determina-
tion and on the other hand the possibility to directly find
the Ry values that were previously extracted from the WD.
While the Weibull distribution is very adaptable mathemat-
ically speaking, it remains possible to miss an outsider in
the resistances values. Using a free distribution allows us
to be able to find those points, while increasing the number
of parameters to the number of bunches n=20. In order to
decrease the time needed, we imposed an ordered solution,
meaning that an initial conductance G is searched for and
then the difference between G,, and G, (equation 3)

i
Gi=Gi+ ) AG, )
Jj=2

Vi, j € [2,n],
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subject to Vi € [2,n], 0<AGuin <AG < AGux

The objective function for a free distribution is then:

l'l’é;ln fe(talvTvGi) = [Usim(t717T7Gi)_Umeas(t)] (4)

where f, is the error vector for a given discharge.

5 Results and discussions
5.1 Quality of the solution

The aim of the optimization operation is to find a suitable
set of conductances to model the cell. However, we also
want to obtain a distribution that is physically meaningful.
We found that a free distribution (FD) may lead to a less
physical solution. An example of this can be found in Fig. 5
where the free set gives a distribution with a few equal sub-
sequent values and one greater value at the end. This is not
in accordance with our hypothesis of a regular distribution
of conductances. A non-regular evolution is possible but is
considered less likely because it doesn’t suit our hypothe-
sis of a continuum of electrical properties inside the cell. A
free distribution initialized by a Weibull (FD-WI) distribu-
tion brings a better regularity among the set of resistances,
as expected from the model construction. This accordance to
our hypothesis can hardly be differentiated by a computer,
thus this way of searching for conductances is the one we
selected for future works. Moreover, a free set of resistances
is a good way to detect damaged cell with a different signa-
ture within a larger pack. It allows our algorithm to findn h a
set that includes outsider values that would not fit in a usual
distribution. Thus this way of determining a set of conduc-
tances seems to be the most suitable method.

5.2 Model Robustness

By optimizing the parameter of a Weibull distribution for a
single discharge, we obtained RMS error between 9.7 and
14.5 mV for each discharge. Despite the good results, we
could not find a link between the multiple sets of optimised
parameters of the Weibull law that would suggest a unique
distribution to model this cell.

Our model aims to model the heterogeneity of the cell. The
most heterogeneous discharge should be a low temperature
- high current one. Thus we make the hypothesis that opti-
mizing our resistance set over this discharge increases the
distribution overall robustness. To verify that point, we sim-
ulated the farthest discharge in term of conditions, namely
the hottest discharge with a low current, with our low tem-
perature - high current set. The results are presented in Fig. 6
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Fig. 5: Difference in resistance values without and with a
Weibull initialization for the free set of resistances and for
the Weibull set at 1C and 25°C

10°C and 2C discharge

34 45
—U -
meas
- = =Uyp L 40
3.2 U 7
. FD-WI -
b Temperature 7 35
@
=2}
= 30
E)
> -
2.8 e ®
e 20
‘_/
26 7
I 15
24 10
0 0.1 0.2 0.3 0.4 0.5

Time (h)
38°C and 1C discharge

34

o) %
o, .
E S \
K
S 2.
U
meas
26 == ~Ywo
Yeow
Temperature
24
0 0.2 0.4 0.6 0.8 1

Time (h)

Fig. 6: a). Optimization over a low temperature discharge
with RMS error of 14.46 mV (Weibull) and 13.21 mV (free)
and b). validation over a high temperature one with RMS
error of 23.65 mV (Weibull) and 19.40 mV (free)
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We then tried to let the optimization function set the Ry r
values freely, again sor the low temperature - high current
discharge. As for the WD, we present in Fig. 6 the simula-
tion over the high temperature discharge and the low tem-
perature one.

The simulation error over discharges is smaller when a
FD-WI is used. Even if the difference is small, the possi-
bility not to follow any law seems very interesting for us in
order to better diagnose the degradation of the cell, as will
be explained in section 6.

6 Conclusions and perspectives

In this paper we presented an electrical equivalent model to
model the heterogeneity of a commercial LiFePO4 — graphite
cell. This model is based on a physical approach that takes
into account various phenomena. The construction is based
on the hypotheses that one cell can be divided into parts that
have the same electrical properties, that we group into sev-
eral bunches. They differ from another thanks to a set of
"high frequency" resistances that regroup the charge trans-
fer, the current collector, the electrolyte and the contact re-
sistances.

The proposed model has been experimentally validated,
and we showed that we were able to define a set of resis-
tances that can model the cell in another operating point.
Our hypothesis that a measured discharge at high current
and low temperature allows us to simulate at best other op-
erating condition was verified in our simulation and compar-
ison to measurements. By finding a Weibull distribution and
then exploring values around it, we are able to reduce the
computation time and to find a more physical solution

Regarding the set of Ryr values, we expect to follow it
through the cell life in order to obtain a non-invasive tool
to characterize the degradation of the cell. If a part of the
cell experience severe degradation, the shape of the set of
conductances will be modified and we expect the new shape
not to follow a natural distribution law. This would allow to
smartly define periods of maintenance for the cells or change
the cells usage to prevent them from severe degradations.
This justify the choice of a free distribution, initialized by
a Weibull one, that may detect abnormal variations of the
resistance set.

We plan to apply this simulation method to other tech-
nologies of cells to further verify that we are able to simulate
them over the whole operating range. In order to further in-
crease the precision of our model, a more developed bunch
model could be considered if the computational time remain
acceptable.
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