O. Bernardi and N. Bonichon, Catalan's intervals and realizers of triangulations, Journal of Combinatorial Theory Series A, vol.116, issue.1, pp.55-75, 2009.

M. Bousquet-mélou, E. Fusy, and L. Préville-ratelle, The number of intervals in the m-Tamari lattices, Electron. J. Combin, vol.18, issue.2, p.31, 2011.

F. Bergeron and L. Préville-ratelle, Higher trivariate diagonal harmonics via generalized Tamari posets, J. Comb, vol.3, issue.3, pp.317-341, 2012.

F. Chapoton, G. Chatel, and V. Pons, Two bijections on Tamari intervals, DMTCS Proceedings, 26th International Conference on Formal Power Series and Algebraic Combinatorics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01207596

J. Courtiel, E. Fusy, M. Lepoutre, and M. Mishna, Bijections for Weyl chamber walks ending on an axis, using arc diagrams and Schnyder woods, European Journal of Combinatorics, vol.69, pp.126-142, 2018.

F. Chapoton, Sur le nombre d'intervalles dans les treillis de Tamari, Sém. Lothar. Combin, vol.55, p.7, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019167

A. Claesson, S. Kitaev, and E. Steingrímsson, Decompositions and statistics for ?(1,0)-trees and nonseparable permutations, Advances in Applied Mathematics, vol.42, issue.3, pp.313-328, 2009.

A. Claesson, S. Kitaev, and E. Steingrímsson, An involution on ?(1,0)-trees, Advances in Applied Mathematics, vol.51, issue.2, pp.276-284, 2013.

G. Châtel and V. Pons, Counting smaller elements in the Tamari and mTamari lattices, Journal of Combinatorial Theory, Series A, vol.134, issue.2, pp.58-97, 2015.

R. Cori and G. Schaeffer, Description trees and tutte formulas, Theoretical Computer Science, vol.292, issue.1, pp.165-183, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00099504

W. Fang, A trinity of duality: non-separable planar maps, ?-(1,0) trees and synchronized intervals, Advances in Applied Mathematics, vol.95, p.1, 2018.

W. Fang and L. Préville-ratelle, The enumeration of generalized tamari intervals, Eur. J. Comb, vol.61, issue.C, pp.69-84, 2017.

S. Huang and D. Tamari, Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinatorial Theory Ser. A, vol.13, pp.7-13, 1972.

V. Pons, Live demo notebook with sage computation

L. Préville-ratelle, Combinatoire des espaces coinvariants trivariés du groupe symétrique, 2012.

L. Préville-ratelle and X. Viennot, An extension of Tamari lattices, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics, vol.0, 2015.

B. Rognerud, Exceptional and modern intervals of the Tamari lattice, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01681400

, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, Combinat community, 2008.

, The Sage Developers. SageMath, the Sage Mathematics Software System, 2017.

D. Tamari, The algebra of bracketings and their enumeration, the electronic journal of combinatorics, vol.10, issue.3, pp.131-146, 1962.