S. A. Abramov, H. Q. Le, and Z. Li, OreTools: a computer algebra library for univariate ore polynomial rings, 2003.

A. Bostan, F. Chyzak, M. Van-hoeij, M. Kauers, and L. Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, European Journal of Combinatorics, vol.61, pp.242-275, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01332175

F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Mathematics, vol.217, pp.115-134, 2000.

F. Chyzak, The ABC of Creative Telescoping -Algorithms, vol.11, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01069831

P. Zimmermann, Computational Mathematics with SageMath. SIAM, 2018.

C. Hofstadler, D-finite sequences and functions in Sage. Bachelor's thesis, 2019.

M. Kauers, The holonomic toolkit, Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, 2013.

M. Kauers, M. Jaroschek, and F. Johansson, Ore polynomials in Sage, Computer Algebra and Polynomials, vol.8942, pp.105-125, 2014.

M. Kauers and P. Paule, The Concrete Tetrahedron, 2011.

C. Koutschan, HolonomicFunctions (User's Guide), RISC Report Series, 2010.

M. Mezzarobba, Rigorous multiple-precision evaluation of D-finite functions in SageMath, ArXiv, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342769

B. Salvy and P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on Mathematical Software, vol.20, issue.2, pp.163-177, 1994.
URL : https://hal.archives-ouvertes.fr/inria-00070025

R. P. Stanley, Differentiably finite power series, European Journal of Combinatorics, vol.1, pp.175-188, 1980.

D. Zeilberger, The method of creative telescoping, Journal of Symbolic Computation, vol.11, pp.195-204, 1991.