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Abstract

We solve a number of questions pertaining to the dynamics of linear operators on Hilbert
spaces, sometimes by using Baire category arguments and sometimes by constructing explicit
examples. In particular, we prove the following results.

(i) A typical hypercyclic operator is not topologically mixing, has no eigenvalues and admits
no non-trivial invariant measure, but is densely distributionally chaotic.

(ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is
ergodic in the Gaussian sense, whereas a typical operator of the form “diagonal with
coeflicients of modulus 1 on the diagonal plus backward unilateral weighted shift” is
ergodic but has only countably many unimodular eigenvalues; in particular, it is ergodic
but not ergodic in the Gaussian sense.

(iii) There exist Hilbert space operators which are chaotic and U-frequently hypercyclic but
not frequently hypercyclic, Hilbert space operators which are chaotic and frequently hy-
percyclic but not ergodic, and Hilbert space operators which are chaotic and topologically
mixing but not U-frequently hypercyclic.

We complement our results by investigating the descriptive complexity of some natural classes of
operators defined by dynamical properties.
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CHAPTER 1

Introduction

1. General overview

This monograph is a contribution to the study of linear dynamical systems on Hilbert spaces.
In other words, we are interested in the behavior of orbits of bounded linear operators defined
on a Hilbert space. The symbol H will always designate a complex separable infinite-dimensional
Hilbert space, and we denote by B(#H) the algebra of all bounded linear operators on H.

We refer to the books [8] or [32] for background on linear dynamics, and to the papers [26]
or [29] for a glimpse at the richness of the class of linear dynamical systems and its potential
usefulness in general ergodic theory. A quick review of a number of definitions will be given in
the next section. Let us just recall here that an operator 7' € B(H) is said to be hypercyclic
if it admits at least one dense orbit (and hence a dense Gy set of such orbits). The class of all
hypercyclic operators on H will be denoted by HC(#H). Recall also that an operator T € B(H)
is said to be chaotic if it is hypercyclic and admits a dense set of periodic vectors, and frequently
hypercyclic (resp. U-frequently hypercyclic) if there exists at least one vector z € H whose orbit
visits frequently every non-empty open set V' C H, in the sense that the set of integers i € N such
that Tz belongs to V has positive lower (resp. upper) density.

These definitions have, of course, nothing to do with the Hilbert space structure. The dynami-
cal properties of linear operators have been studied in arbitrary Banach spaces, and even arbitrary
topological vector spaces. However, there are good reasons for focusing on Hilbert spaces. The
first that may come to mind is perhaps that “this is the natural setting for doing operator theory”
— which is of course a highly questionable statement. Less subjectively, the richness of the Hilbert
space structure allows for the construction of many interesting examples. Also, in some parts of
linear dynamics, especially all that concerns ergodic-theoretic properties of linear operators, the
general picture is neater on Hilbert spaces than on arbitrary Banach spaces. Finally, some natural
questions in the area have been solved recently for operators on general Banach space but not
in the Hilbertian case. This should not seem paradoxical, if one compares for example with the
current state of affairs regarding the famous Invariant Subspace Problem.

The questions we are considering in this work are quite basic. In very general terms, they are
of the following type: given two interesting dynamical properties, do there exist linear operators
on H satisfying one of them but not the other?

Perhaps the most famous question of this type is Herrero’s “T' @ T problem”, stated in [36]
and asking whether there exist hypercyclic operators which are not topologically weakly mixing.
As should be expected since this is trivially true for dynamical systems on compact spaces, the
answer is “Yes”: this was shown by De La Rosa and Read in [19], and then in [7] for operators on
£, spaces, in particular for Hilbert space operators. However, the proof is surprisingly non-trivial.
To give just one more example, the third named author was recently able to solve another well-
known problem in the area by constructing in [40] operators on ¢, spaces which are chaotic but
not frequently hypercyclic — actually, not even U-frequently hypercyclic. In this monograph, we
will be especially interested in the following questions:

- are there operators which are frequently hypercyclic but not ergodic, i.e. do not admit
an ergodic measure with full support?
- are there operators which are U-frequently hypercyclic but not frequently hypercyclic?
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- are there operators which are ergodic but do not admit a Gaussian ergodic measure with
full support?

Note that the answer to the first two questions is known to be “Yes” for operators on the
Banach space ¢y (see [10] and [30], as well as [15] for further developments); but the Hilbertian
case had not been settled. As for the third question, we are not aware of any previous answer, on
any Banach space.

One can attack questions of this type from two complementary points of view (of course, there
are other strategies as well).

- “Collective” point of view: among the properties one is interested in, one may try to
determine which ones are gemeric and which ones are not, in a Baire category sense.
Once this is done, one may be able to distinguish two properties because one of them is
generic and the other one is not.

- “Individual” point of view: when it is unclear how a Baire category approach could work,
one may still try to construct explicit examples of operators satisfying (or not) such or
such a property.

Note that it is quite natural to present the two viewpoints in this order, because the indirect,
Baire category approach is in some sense simpler. Indeed, it is usually not too difficult to guess
when it should work, and in this case the technical details are likely to be rather soft. On the
other hand, one may reasonably expect to face technical difficulties when attempting a direct
construction (and perhaps quite serious ones if Baire category is inefficient).

To give meaning to the “collective” viewpoint, one has to fix an appropriate topological set-
ting. We will in fact consider two natural topologies on B(H): the Strong Operator Topology
(denoted by SOT), and the Strong* Operator Topology (denoted by SOT*). Restricted to any closed
ball By (H) := {T € B(H); ||T|| < M}, these topologies are Polish (separable and completely
metrizable). Moreover, HC(H) is easily seen to be SO0T-Gs in B(H), so that for any M > 1, the
family HCp(H) := {T" € HC(H); ||T]] < M} is itself a Polish space in its own right with respect
to both SOT and SOT*. This opens the way to Baire category arguments in B, (#H) or HCy/(H).
Of course, there is nothing new in this observation: Baire category methods have already proved
as useful in operator theory as anywhere else; see in particular [22].

Recall that a subset of a Polish space X is said to be meager in X if it can be covered
by countably many closed sets with empty interior, and comeager if its complement is meager
(equivalently, if it contains a dense Gs subset of X). Following a well-established terminology, we
will say that a property of elements of X is typical if the set of all x € X satisfying it is comeager
in X, and that a property is atypical if its negation is typical. In this work, we obtain among other
things the following results, for any M > 1.

- An SOT*-typical T' € B, (H) is (topologically) weakly mixing but not mixing.

- An SOT*-typical T' € B, (H) is densely distributionally chaotic.

- An SOT*-typical T' € HCy;(H) has no eigenvalues and admits no non-trivial invariant
measure. In particular, chaoticity and U-frequent hypercyclicity are atypical properties
of hypercyclic operators (in the SOT* sense).

Admittedly, there results are not that surprising (except, perhaps, the one concerning U-
frequent hypercyclicity). Still, they do sketch the landscape, and they explain in some sense why
some results in the area turn out to be (or are likely to be) harder to prove than some others.
For example, the fact that topological weak mixing is a typical property seems to prevent the use
of “soft” arguments for establishing the existence of hypercyclic operators which are not weakly
mixing; and indeed, the proofs in [19] and [7] rely on rather technical arguments.

On the other hand, something more unexpected happens if one restricts oneself to the class of
operators of the form T'= D + B, where D is a diagonal operator and B is a weighted unilateral
backward shift (with respect to some fixed orthonormal basis of H):
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- in the SOT sense, most “diagonal plus shift” hypercyclic operators are ergodic and yet
have only countably many unimodular eigenvalues. In particular, there exist operators
on H which are ergodic but admit no Gaussian ergodic measure with full support.

This solves a rather intriguing question, which goes back to Flytzanis’ paper [23, p. 8] and has
been very much in the air in the last few years.

As for the “individual” viewpoint, we will elaborate on the kind of operators constructed by
the third named author in [40]. Recall that the main result of [40] is the existence of chaotic
operators on ¢, spaces which are not U-frequently hypercyclic. In the present work, we describe a
general scheme allowing to produce, among other things,

- operators on H which are chaotic and frequently hypercyclic but not ergodic;
- operators on ‘H which are chaotic and U-frequently hypercyclic but not frequently hyper-
cyclic.

These are the first examples of such kinds of operators living on a Hilbert space, even if
one dispenses with the chaoticity assumption: no examples of frequently hypercyclic non-ergodic
operators, nor of U-frequently hypercyclic non frequently hypercyclic operators living on a Hilbert
space were known before. As already mentioned, up to now the only available examples were
operators acting on cg.

Moreover, our constructions will also enable us to improve the main result of [40] by showing
that there exist

- operators on H which are chaotic and topologically mizing but not U-frequently hyper-
cyclic.

One point is especially worth mentioning regarding these results: it is not at all accidental
that all the operators we construct turn out to be chaotic. On the contrary, our proofs rely heavily
on new criteria for frequent hypercyclicity and U-frequent hypercyclicity (stronger than the usual
ones), in which the periodic points play a central role.

In this part of the monograph, our constructions and arguments are rather technical, and it
is not at all clear that they could be by-passed by suitable Baire category arguments. In fact, as
already suggested above, there are reasons to believe that technicalities are unavoidable here: since
U-frequent hypercyclicity, frequent hypercyclicity and ergodicity are atypical properties, it seems
difficult to distinguish them using simply the Baire category theorem; unless one restricts oneself
to some cleverly chosen special class of operators, which has yet to be found.

The basic questions we address in this work can also be considered from a third point of view,
which is that of descriptive set theory. Indeed, once it is known (by any argument) that two
properties of linear operators are not the same, i.e. that two classes of operators are distinct, it
is natural to wonder if a stronger conclusion might hold true, namely that these classes do not
have the same complexity in the sense of descriptive set theory. More generally, it can be a quite
interesting problem to determine the exact descriptive complexity of a given class of operators. We
do so for chaotic operators and for topologically mixing operators. We also obtain a partial result
for U-frequently hypercyclic operators, whose proof relies on our general scheme for constructing
operators with special properties.

We finish this overview by pointing out that the difficulty of the existence results presented
in this work is specifically connected with the linear setting, and that the corresponding results
are essentially trivial if one moves over to the broader setting of Polish dynamical systems (i.e.
dynamical systems of the form (X,T'), where T is a continuous self-map of a Polish space X; see
for instance the book [25], as well as [18] for more on linear systems as special cases of Polish
systems). Indeed, extending the definitions of frequent and U-frequent hypercyclicity to the Polish
setting in the obvious way, it is not difficult to see that frequently hypercyclic non-ergodic Polish
dynamical systems do exist, as well as U-frequently hypercyclic Polish dynamical systems which
are not frequently hypercyclic. Here are two simple examples.



4 1. INTRODUCTION

First, consider an irrational rotation R of the unit circle T, and denote by m the normalized
Lebesgue measure on T. Then (T,B,m; R) is an ergodic dynamical system for which all points
are frequently hypercyclic. Let C' be a compact subset of T which has empty interior and is such
that m(C) > 0, and consider the set X := T\ |J,c R7"(C). Then X is a dense G5 subset of T
which is R-invariant, and (X, R) is thus a frequently hypercyclic Polish dynamical system. But,
as m(X) = 0 (by ergodicity) and R is uniquely ergodic, (X, R) admits no invariant measure at all.
This shows in particular the existence of frequently hypercyclic Polish dynamical systems which
are not ergodic. This example is due to B. Weiss (private communication).

Now, consider a frequently hypercyclic operator T on H. Then, the set UFHC(T) of all
U-frequently hypercyclic vectors for T is comeager in H ([10], see also [15]), whereas the set
FHC(T) of frequently hypercyclic vectors for T is meager ([41], [10]). Hence UFHC(T) \ FHC(T)
is comeager in H. Let G be a dense Gs subset of H contained in UFHC(T) \ FHC(T), and set
X :=,,507 ™(G). Then X is a dense G5 subset of H which is T-invariant, so that (X,T) is a
Polish dynamical system. Since X is still contained in UFHC(T) \ FHC(T), all points of X are
U-frequently hypercyclic for T' but none of them is frequently hypercyclic. In particular, the Polish
dynamical system (X, T) is U-frequently hypercyclic but not frequently hypercyclic.

2. Background and notations

In this section, we recall some well-known definitions, referring to [8] or [32] for more details.
We also fix some notations that will be used throughout the monograph. As we will consider quite
a few classes of operators, for the reader’s convenience we give in the very last chapter the list of
the abbreviations we will be using to denote these classes.

2.1. Transitivity, mixing and weak mixing. If T' € B(H), we set, for any subsets A, B
of H,
Nr(A,B):={ieN; T"(A)n B # (}.

It is well-known that 7" is hypercyclic if and only if it is topologically transitive, i.e. Np(U, V) #
(0 for all open sets U,V = (). A stronger property is topological mizing: T is topologically mixing if
all sets N (U, V) are cofinite rather than just non-empty; that is, for any pair (U, V') of non-empty
open sets in H, one has T*(U) NV # () for all but finitely many 7 € N. In between transitivity and
mixing is topological weak mizing: an operator T' € B(H) is topologically weakly mixing if 7' x T
is hypercyclic on H x H; in other words, if Np(Uy, V1) N Np(Us, V) # 0 for all non-empty open
sets U, Vi,Uz, Vo € H. We set

TWMIX(H) := {topologically weakly mixing operators on H},
TMIX(H) := {topologically mixing operators on H};

so that
TMIX(H) C TWMIX(#H) C HC(H).

It is easy to see (for example by considering weighted backward shifts) that the inclusion
TMIX(H) € TWMIX(H) is proper. As already mentioned, the inclusion TWMIX C HC is also
proper: this was first proved by De La Rosa and Read in [19] for operators living on a suitably
manufactured Banach space, and then in 7] for Hilbert space operators. Recall also that, according
to a nice result of Bes and Peris [12], the topologically weakly mixing operators are exactly those
satisfying the so-called Hypercyclicity Criterion.

2.2. Chaos. An operator T' € B(H) is said to be chaotic in the sense of Devaney if it is
hypercyclic and its periodic points are dense in A (in the linear setting, hypercyclicity automatically
implies sensitive dependence on the initial conditions). We set

CH(H) := {chaotic operators on H}.
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It is not completely obvious, but nonetheless true, that chaotic operators are topologically
weakly mixing (see e.g. [8, Ch. 4]). In other words,

CH(H) € TWMIX(H).

2.3. Ergodic-theoretic properties. In this work, the word “measure” will always mean
“Borel probability measure”. A measure p on H is invariant for some operator T' € B(H) if
poT =t = p; and an invariant measure p for T is non-trivial if 1 # &y (note that the point mass &y
is invariant for any T € B(H) since T'(0) = 0). Also, a measure p on H is said to have full support
if 4(V') > 0 for every non-empty open set V. This means exactly that the topological support of
w is equal to the whole space H.

An operator T € B(H) is said to be ergodic if it admits an invariant measure p with full
support with respect to which it is ergodic, i.e. such that for every Borel subset B of H satisfying
T~ 'B = B, we have u(B) = 0 or 1. If the measure u can be taken to be Gaussian, we say that T
is ergodic in the Gaussian sense, or G-ergodic. The operator T is said to be mizing if it admits an
invariant measure p with full support with respect to which it is strongly mixing, i.e. such that
w(ANT™(B)) — pu(A)u(B) for any Borel sets A, B C H. Mixing in the Gaussian sense is defined
as expected. The corresponding notations are the following:

ERG(H) := {ergodic operators on H };
G-ERG(H) := {operators on H which are ergodic in the Gaussian sense};
MIX(H) := {mixing operators on ’H};
(H

G-MIX(H) := {operators on H which are mixing in the Gaussian sense}.

Since the measures involved are required to have full support, it is obvious by definition that
ergodic operators are hypercyclic and that mixing operators are topologically mixing. That is,

ERG(H) CHC(H) and  MIX(H) C TMIX(H).

These inclusions are proper: for example, if B is any compact weighted backward shift on
the Hilbert space ¢3(N), the operator T' = I 4+ B is topologically mixing (see [8] or [32]) but not
ergodic. Indeed, its spectrum is reduced to the point {1}, so that it is by [49] not even U-frequently
hypercyclic. We also set

INV(H) := {T € B(H) admitting a non-trivial invariant measure};
INV(H) := {T € B(H) admitting an invariant measure with full support};
G-INV(H) := {T € B(H) admitting a Gaussian invariant measure with full support}.

Thus, for example, any operator admitting a non-zero periodic point belongs to INV(#), and any
chaotic operator lies in INV (7). So we have

CH(H) C INV (H) NHC(H).

This inclusion cannot be reversed: there exist even G-ergodic operators on H which are not chaotic
(see [3] or [8, Section 6.5]).

At this point, we would like to stress that in the present monograph, we will mostly focus on
invariant measures which are not required to be Gaussian. This is a true change of point of view
compared with earlier works on the ergodic theory of linear dynamical systems (see for instance,
among other works, [23], [5], [6], [8] ...), where Gaussian measures play a central role. But in
retrospect, this is in fact quite natural: as we shall see in Chapter 4, it turns out that within
a certain natural class of upper-triangular operators on H, the ergodic operators which are not
ergodic in the Gaussian sense are typical. Note also that non-Gaussian measures already played
an essential role in such works as [42], [26] or [29] for instance.
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2.4. Frequent hypercyclicity and U-frequent hypercyclicity. Let T € B(#). For any
r € H and B C H, set
Nr(z,B):={i €N; T'xz € B}.
The operator T is said to be frequently hypercyclic if there exists some x € H such that, for any
open set V # ), the set Np(z, V) has positive lower density; and T is U-frequently hypercyclic if
there is some = € H such that all sets N (z, V) has positive upper density.

Frequent hypercyclicity was introduced in [5] and rather extensively studied since then (for
instance in [10], [14], [28], [30], [40], [49] ...). The study of upper-frequent hypercyclicity is more
recent. This notion was introduced by Shkarin in [49]. Until the last few years, it has perhaps been
unfairly considered as somehow “less interesting”, probably because of a lack of examples or results
exhibiting truly different behaviors between frequently and U-frequently hypercyclic operators.
However, despite a formal similarity in the definitions, there are some important differences between
frequent and U-frequent hypercyclicity. For example, the set of frequently hypercyclic vectors for
a frequently hypercyclic operator T on H is always meager in H ([41], [10]) whereas if T is a
U-frequently hypercyclic operator on H, the set of all U-frequently hypercyclic vectors for T is
comeager in H ([10]; see also [15] for more along these lines). This may lead to believe that
U-frequent hypercyclicity is a typical property while frequent hypercyclicity is not; which is in
fact a wrong intuition: as we shall see, both properties are atypical. Yet, these properties are not
equivalent: Bayart and Rusza exhibited in [10] examples of U-frequently hypercyclic operators
on ¢y which are not frequently hypercyclic. The notion of U-frequent hypercyclicity was further
studied by Bonilla and Grosse-Erdmann in [15], and it plays an important role in the present work.

One can go one step further and study JF-hypercyclic operators, for a given family F of subsets
of N (see in particular [13] and [15]); but we will not follow this quite interesting route here. As
for the notations, we set

FHC(H) := {frequently hypercyclic operators on H},

UFHC(H) := {U-frequently hypercyclic operators on H}.

Although the definitions of frequent hypercyclicity and U-frequent hypercyclicity make no
explicit reference to measures, they have a partly “metrical” flavor; and indeed, invariant measures
are quite relevant here. First, it follows easily from the pointwise ergodic theorem that ergodic
operators are frequently hypercyclic. Moreover, it is shown in [30] that U-frequently hypercyclic
operators on H admit invariant measures with full support (this is in fact true for operators living
on any reflexive Banach space). So we have

ERG(H) C FHC(H) C UFHC(H) C HC(H) N INV ;(H).
The inclusion UFHC(H) C HC(H) NINV ¢(#H) is proper: as already mentioned, it is proved in

[40] that there exist even chaotic operators on H which are not U-frequently hypercyclic. As we
shall see in Chapter 7 (Theorems 7.6 and 7.10), the other two inclusions are also proper.

2.5. Properties related to eigenvalues. If T' € B(H), we denote by £(T') the set of all
unimodular eigenvectors of T, i.e. eigenvectors x of T whose associated eigenvalue A(x) has modulus
1. We say that T has a spanning set of unimodular eigenvectors if span £(T) = H; and that T has
a perfectly spanning set of unimodular eigenvectors if for any countable set D C T, where T denotes
the unit circle in C, we have span {x € £(T); A(z) € D} = H. The notations are as follows:

SPAN(H) := {T € B(H) with spanning unimodular eigenvectors };
PSPAN(H) := {T € B(H) with perfectly spanning unimodular eigenvectors}.
We also define
NEV(H) := {T € B(H) with no eigenvalues};
CEV(H) := {T € B(H) with only countably many eigenvalues}.
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Properties of unimodular eigenvectors of an operator T € B(H) are closely related to those of
invariant Gaussian measures for T (see for instance [5], [6], [8]): indeed, it turns out that in fact

SPAN(#) = G-INV;(H) and  PSPAN(H) = G-ERG(H);

so that there was in fact no need for introducing new notations. However, things are not that neat
on arbitrary Banach spaces: see [6], [8] or [9]. This is one of the advantages of working on Hilbert
spaces, or at least on “nice” Banach spaces.

2.6. Distributional chaos. Distributional chaos was first defined by Schweitzer and Smital
in [50], under the name strong chaos, for self-maps of a compact interval, and several definitions
have been proposed afterwards in the context of general metric spaces. There is no need to recall
these definitions here, because things simplify greatly in the linear setting: as shown in [11], an
operator T' € B(H) is distributionally chaotic if and only if it admits a distributionally irregular
vector, i.e. a vector x € H for which there exist two sets A and B of integers, both of upper density
1 in N, such that

lim ||T%2| =0 and lim ||T%z| = oco.
71— 00 1— 00
icA i€B

The corresponding notation is the following one:
DCH(H) := {distributionally chaotic operators on H}.

A related class is that of densely distributionally chaotic operators, i.e. of operators which
admit a dense set of distributionally irregular vectors. We use the following notation for this set:

DDCH(H) := {densely distributionally chaotic operators on H }.
Obviously, DDCH(#) € DCH(H).

2.7. The parameter ¢(T). Ergodicity and distributional chaos are closely related to a nat-
ural parameter introduced in [30]. This quantity ¢(T) € [0,1] is associated to any hypercyclic
operator T, and essentially represents the maximal frequency with which the orbit of a hypercyclic
vector for T can visit a ball in A centered at 0. The precise definition is as follows: for any a > 0,
we have

o(I)= sup dens Ny (z, B(0,a)).
zeHC(T)
It is shown in [30] that in fact densNp(z, B(0,a)) = c(T) for a comeager set of vectors
x € HC(T); so we have in particular (for any « > 0)

¢(T) = sup {c > 0; ﬁ( T(a:,B(O,a))) > c for a comeager set of z € HC’(T)} .

Note also that ¢(T) > 0 if the operator T is U-frequently hypercyclic.

The last class of operators which we introduce is that of operators T' € HC(#) such that ¢(T")
is maximal:
c'(H) :=={T € HC(H); c(T) = 1}.
Since, as proved in [11], the set of all distributionally irregular vectors for a given operator
T € DDCH(H) is comeager in H, it is clear that DDCH(H) N HC(H) C c¢!(#H). Moreover, it is
shown in [30] (more accurately, half in [10] and half in [30]) that ergodic operators are densely
distributionally chaotic: ERG(#H) € DDCH(#). So we have

ERG(H) € DDCH(H) NHC(H) C c'(H).

It is left as an open question in [30] to determine whether HC(H) NINV¢(H) C c!'(H), or
whether at least FHC(H) C c¢!(#). It follows from the proof of the main result of [40] that the first
inclusion does not hold true: the chaotic operator T' constructed there belongs to HC(H)NINV ¢ (H)
(as does any chaotic operator on H) but satisfies ¢(T") = 0. However this operator is not frequently
hypercyclic, and so the examples of [40] do not disprove the second inclusion. We will nonetheless
show in the present work that this inclusion does not hold true either (Theorem 7.6).
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2.8. A last notation. If I'(H) is a class of operators on H, then, for any M > 0, we set
Cy(H) :={T e T(H); IT|| < M}.

3. Organization of the monograph

In Chapter 2, we recall a few basic facts concerning the topologies SOT and SOT*, and then
prove some “typicality” results in the spaces B(H) and HCps(H), M > 1 with respect to the
Strong® Operator Topology SOT*. These results can be summarized as follows: for any M > 1,
an SOT*-typical T' € HCy(H) is topologically weakly mixing but not mixing (Propositions 2.16
and 2.19), has no eigenvalues (Corollary 2.25), admits no non-trivial invariant measure (Theorem
2.36), but is densely distributionally chaotic (Proposition 2.40).

Chapter 3 is a digression, in which we discuss the descriptive complexity of some of the families
of operators introduced above. We show that for any M > 1, TMIX,,(H) and CHp(H) are
Borel subsets of (B (H),S0T*) of class exactly I3, aka F,s (Propositions 3.2 and 3.4), whereas
UFHC (M) is Borel of class at most I19, and neither IT3 nor X9 (Corollary 3.24). We also show
that some rather natural classes of operators defined by dynamical properties are non-Borel in
B (H); for example, the family of all operators T' € B ,,(H) admitting a hypercyclic restriction
to an invariant subspace is non-Borel (Proposition 3.29), as well as the family of distributionally
chaotic operators T' € B, (H) (Proposition 3.36). In contrast, the class of densely distributionally
chaotic operators T' € B (H) is G5 (Proposition 2.40).

In Chapter 4, we consider ergodicity properties of upper triangular operators with coefficients
of modulus 1 on the diagonal, this time with respect to the Strong Operator Topology SOT. We
show first that for any M > 1, an SOT-typical upper triangular operator T € B, (H) is ergodic in
the Gaussian sense (Proposition 4.4). On the other hand, we essentially show in Theorem 4.9 that
an SOT-typical operator T' € B (H) of the form “diagonal + backward shift” (where the diagonal
operator has coefficients of modulus 1 on the diagonal) is ergodic but admits only countably many
eigenvalues (and hence is ergodic but not ergodic in the Gaussian sense).

In Chapter 5, we prove several criteria for an operator T to be U-frequently hypercyclic or
frequently hypercyclic. These criteria are rather different in spirit from the by now classical Fre-
quent Hypercyclicity Criterion ([14]) or from the more recent criteria which can be found in [13]
or [15], since they rely explicitly on the existence of many periodic (or almost periodic) vectors
for the operator T'. However, our criterion for frequent hypercyclicity turns out to be stronger
than the classical one: indeed, any operator satisfying the so-called Operator Specification Prop-
erty also satisfies the assumptions of our criterion, whereas it is known [2] that operators satisfying
the assumptions of the classical Frequent Hypercyclicity Criterion have the Operator Specification
Property (but not conversely, see [2]). In the present work, these criteria for U-frequent hyper-
cyclicity and frequent hypercyclicity are instrumental: we use them in order to simplify the proofs
of several later results (more precisely, Corollary 5.11, Theorem 5.14 and Theorem 5.35 will be
used in the proofs of the main results of Chapter 6). However, we believe that these criteria might
be useful in other situations as well; and for this reason we have stated them in the setting of
general Banach spaces.

In Chapter 6, which is by far the the most difficult part of this work, we develop a general
machinery for producing hypercyclic operators with special properties. This machinery is very
much inspired from the construction of [40], but things are done here in greater generality. Again,
we hope that this approach could be useful to solve other questions as well. The operators we
construct depend on a number of parameters, and we are able to determine in a rather precise way
how the parameters influence on U-frequent or frequent hypercyclicity, ergodicity or topological
mixing.

In Chapter 7, we use the machinery developed in Chapter 6 to produce the examples we are
looking for. The main results we obtain are the existence of chaotic and frequently hypercyclic
operators which are not in ¢!(#) and hence are not ergodic (Theorem 7.6), the existence of chaotic
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and U-frequently hypercyclic operators which are not frequently hypercyclic (Theorem 7.10), and
the existence of chaotic and topologically mixing operators which are not U-frequently hypercyclic
(Theorem 7.15).

We conclude the monograph (Chapter 8) with a short list of possibly interesting questions.






CHAPTER 2

Typical properties of hypercyclic operators

1. The strong and strong* topologies

The Strong Operator Topology (SOT) on B(H) is defined as follows: any Ty € B(H) has a
neighborhood basis consisting of sets of the form
MUTpian o ee = {T eB(H); (T —To)xi|| <e fori=1,.. .,s}
where z1,...,2; € H and € > 0. Thus, a net (T;) C B(H) tends to Ty € B(H) with respect to
80T if and only if T;x — Tpx in norm for every x € H.

The second (and perhaps a little less well-known) topology we will use is the Strong* Operator
Topology (SOT*), which is the “self-adjoint” version of SOT. A basis of SOT*-neighborhoods of
To € B(H) is provided by the sets of the form

Vlpior,.ase =T € B(H); (T — To)z|| < e and ||(T — Tp)*x;l| <e fori=1,...,s}
where z1,...,2, € H and € > 0. In other words, a net (T;) tends to Ty € B(H) with respect to

SOT* if and only if 7; 2 Ty and T =2 Ti. Obviously, SOT is coarser than SOT*, which is in

7

turn coarser than the norm topology. The topologies induced by SOT and SOT* on any closed ball
B (H) are easily seen to be Polish, i.e. separable and completely metrizable (see e.g. [44, Section
4.6.2]). This will be of primary importance for us.

The following simple lemma will be used repeatedly, sometimes without explicit mention.
LEMMA 2.1. Let M > 0. If B(H) is endowed with either SOT or SOT*, then the map (T, S) —

TS is continuous from B (H) x B (H) into B(H). Consequently, for any fized integer n > 1,
the map T — T™ is (SOT, SOT)-continuous and (SOT*, SOT*)-continuous from B pr(H) into B(H).

PROOF. It is enough to check the statement involving the SOT topology; so we have to show
that for any fixed vector x € H, the map (7, S) — TSz is continuous from B (H) x B (H) into
H. Since the map (7,S) — (T, Sz) is continuous from By (H) x B (H) into B (H) x H, it
suffices to check that the map (T, u) — Tu is continuous from B, (H) x H into H. Now, for any
operators T, Ty € B (H) and any vectors u, ug € H, we have

[Tu — Touol|| = |T'(w — uo) + (T — To)uol| < M|lu— ol + (T — To)uol|-
The result follows immediately. O

It is easy to deduce from Lemma 2.1 that HCys(#) is SOT-Gs in B (H) for any M > 1. We
state this as

COROLLARY 2.2. For any M > 1, HCp(H) is SOT-Gs and SOT*-Gs in By (H). Hence
(HCar(H),S0T) and (HCy(H),S0T*) are Polish spaces.

PRrROOF. It follows from Lemma 2.1 that if A and V are two non-empty subsets of H with V'
open, then, for any fixed n > 1, the set

Oy i={T € By (H); T"(A) NV # ()}

is SOT-open in By (H). Now, fix a countable basis of non-empty open sets (V,)p>1 of H, and
observe that

HCy(H) = (| U{TeBu®):; V)0V, 20} = () U Onv,vs-

p,q=21n=>1 p,q=1n>1

11
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This proves that HCps(H) is G5 in B (H) with respect to SOT. Since the topology SOT* is finer
than the topology SOT, HCy;(#H) is also Gs in B, (H) with respect to SOT*. O

We now state a less immediate fact, which will be proved in Corollary 2.12 below. The
corresponding (weaker) SOT statement can be found in [17], and its SOT* analogue undoubtedly
would have been proved there if there had been any need to do so.

PROPOSITION 2.3. For any M > 1, HC(H) is dense in (B (H),SOT*). Hence, HCp(H) is
comeager in By (H), both for the SOT and the SOT* topology.

Note that this result, although not very difficult, is not trivial either. For example, since
the map T — T* is a homeomorphism of (B, (H),SOT*), it immediately implies that a typical
operator T € B,(H) is hypercyclic and has a hypercyclic adjoint. In particular, this argument
proves that there exist hypercyclic operators whose adjoint is also hypercyclic; which is a classical
result of Salas obtained via an explicit construction in [45].

We deduce immediately from Proposition 2.3 that the word “typical” has the same meaning
in the whole of B;(#) or in the subclass HC s (#H) of hypercyclic operators in B, (H). This will
be used repeatedly below.

COROLLARY 2.4. Let I'(H) be a class of operators on H, and let M > 1. IfT'p(H) is a dense
G5 subset of (Bpr(H), ), where T is either SOT or SOT*, then I'p (H)NHC(H) is a dense G subset
of (HCp(H), 7). Conversely, if T'(H) C HC(H) and if Tpr(H) is dense Gs (resp. comeager) in
(HCp(H), 7), then T'p(H) is dense Gs (resp. comeager) in (B (H), 7).

PrOOF. This is obvious: if I'p;(H) is dense G in (B (H), 7) then, by Corollary 2.2, Propo-
sition 2.3 and the Baire category theorem, I'ps(H) N HC(H) is dense Gs in B (H), and hence in
HCyps(H); and likewise for the converse. The “comeager” case follows from the “Gs” case. O

Here is a last fact concerning the topology SOT* that will be quite useful for us. Note that
the corresponding statement for SOT is false. This is an important difference between the two
topologies, which explains in particular why we will encounter some subsets of B ,;(H) which are
G5 with respect to SOT* and not with respect to SOT.

LEMMA 2.5. Let us denote by w the weak topology of H. If B is a bounded subset of H, then
the map (T, x) — Tz is continuous from (Bpr(H),S0T*) x (B,w) into (H,w).

PROOF. We have to show that for any fixed vector e € H, the map (T,z) — (Tz,e) is
continuous on (Br(H),S0T*) x (B,w). The key point is that one can separate T from z by
writing (T'z,e) = (z, T*e) (this trick would be useless, of course, if we were working with the SOT
topology).

Let (T;,x;) be a net in B(H) x B converging to some element (T,z) € B(H) x B; that is,

T; ﬂ>Taundacl—>:n Then

‘(Tixi, e) — Tz, e‘ |x1,T e) — (z,T* e)’
|CE1,T e—T"e) ‘—&—’ xz—xTeH

Since the net (;) is bounded in norm and z; —» x, this shows that (T;z;,e) — (T'z, €). O

1.1. Why S0T and SO0T*? There are other natural topologies on %(#), most notably the
operator norm topology, of course, and the Weak Operator Topology (WOT). The norm topology
is not very well-suited for Baire category arguments, mainly because it is much too strong; in
particular, the lack of separability seems unacceptable. The topology WOT is better behaved in
this respect, being Polish on any closed ball B,,(#H). However, since we are interested in typical
properties of hypercyclic operators, it seems better to consider topologies with respect to which
HCyps(H) is comeager in By (H) for any M > 1. This is definitely not the case for WOT. Indeed,
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it is proved in [20] that a typical element of (B1(H),W0T) is unitary. It follows that a WOT-
typical T' € B, (H) is a multiple of a unitary operator and hence not hypercyclic. Incidentally,
the operator norm topology has the same “drawback”, in an even stronger way: the hypercyclic
operators (actually, even the cyclic operators) are in fact nowhere dense in B(H); see [8, Section
2.5].

So we will consider neither the operator norm topology nor the Weak Operator Topology in
this work. Actually, when working in the whole of B (H) or HCp(H), M > 1, we will always use
SOT* rather than SOT. The reason is that, with respect to SOT, a result from [22] gives a rather
complete picture as far as typical properties are concerned: a typical element of (81(H), S0T) is
unitarily equivalent to the operator B(>), the countable direct lo-sum of the unilateral backward
shift B on ¢3(N). Tt follows that for every M > 1, the class of operators T' € HCp;(H) which
are unitarily equivalent to M B(*) is comeager in (HCp(H),S0T). Now, the dynamical properties
of the operators MB(>®) M > 1 are quite strong and very well understood: these operators are
mixing in the Gaussian sense (and hence ergodic and topologically mixing), densely distribution-
ally chaotic, and they have nearly any other strong dynamical property one might think of. This
explains why, when trying to determine which properties are typical within the class of all hyper-
cyclic operators, we will use SOT* rather than SOT. The situation in this setting is more involved,
and thus leads to more interesting results.

On the other hand, we will see that within specific subclasses of HC(#) consisting of upper

triangular operators, the topology SOT becomes much more useful. This is not really surprising,
since triangularity is not exactly a self-adjoint property.

2. How to prove density results

For future reference, we state here a simple criterion for a class of operators to be dense in
(Bar(H),S0T) or (Bas(H),S0T*), M > 0. We will use it repeatedly in the sequel.

LEMMA 2.6. Let T'(H) be a class of operators on H, and let M > 0. Let also (er)k>1 be
an orthonormal basis of H, and for each v > 1, denote by H, the finite-dimensional subspace
spanfer; 1 < k < r] of H. Assume that for every r > 1, for any operator A € B(H,) with
Al < M and for every € > 0, there exists an operator T € T'pr(H) such that

() (T — Aex|| <€ fork=1,...,r.
Then T'pr(H) is dense in (B (H),SOT). If (x) is replaced by its self-adjoint version
() (T = A)exl <e and |(T—A)*exl| <e  fork=1,...,m

then T'pr(H) is dense in (Bas(H), SOT*).

Note that there is a slight abuse of notation in the statement of Lemma 2.6: we consider the
operator A € B(H,.) as an operator on H by identifying it with P*AP,, where P, : H — H, is the
orthogonal projection of H onto H,..

PRrOOF. We will prove the assertion concerning the SOT*-topology, the proof of the SOT state-
ment being exactly the same. Fix Ty € By (H), € > 0, and z1,...,2s € H. Without loss of
generality, we can suppose that || Tp|| < M. We are looking for an operator T' € I'j;(H) such that

1 T —Ty)x,; T—Ty)x; .
) max max(|(T = To)ay|, (7~ To) ) < e
Since ||T|| < M for every T € T'p(H), and since every vector x; can be approximated by a

finite linear combination of the basis vectors e, there exists an integer ro > 1 sufficiently large
such that (1) above holds true as soon as

13
T-T, T —Tp)* -
1I§r1kzlg>§oma><(|l( o)erll, lI( o) erll) < 5
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For each r > rg, consider the operator A, = P,TyP, Observe that ||A.| < |[To]] < M. By our
assumption, there exists T' € T'(H) such that

* <.
max max (7 = AdJew | (T = 4)"en]) < 3

Now
€
1T = To)erll < (T = Apexll + (B ToPr — To)erll < 5 + (B = I)Toe]

and .
(T = To)"exll < 5 + I(Pr = I)Tgexll

for every 1 < k < r. Since lim,_,, P = I for the SOT topology, one can choose r so large that

max max (||(PT — DToerl, ||(Pr — I)T{fekH) < g,

ISkST()

from which the conclusion of Lemma 2.6 follows. O

REMARK 2.7. It is sometimes more convenient to endow H with an orthonormal basis (fx)kez
indexed by Z rather than by N. In this case, the corresponding version of Lemma 2.6 reads as
follows.

For each r > 0, denote by H, the finite-dimensional subspace span[fi; —r < k <r] of H. Assume
that for every r > 0, for any operator A € B(H,.) with ||A|| < M and every e > 0, there exists an
operator T € T'pr(H) such that

(+) (T —A)fell <e fork=—r ... ,r.
Then T'n(H) is dense in (B (H),S0T). If (x) is replaced by
(%) (T - A)fill <e and |(T—A)fill <e  fork=—r...r

then T'pr(H) is dense in (B (H), SOT*).

3. Construction of mixing operators, and density of G-MIX(H)

In order to show that a property is typical, we first need to prove the density of the set of oper-
ators satisfying it. In this section, we show that the class G-MIX;(#H) is dense in (HCjs(#), SOT*)
for any M > 1. This will be achieved by considering perturbations of weighted unilateral or bilat-
eral weighted shifts with respect to some orthonormal basis of H. We show that these operators
admit spanning eigenvector fields which are analytic in a neighborhood of the unit circle, and hence
are mixing in the Gaussian sense. The precise statement we will use is the following.

LEMMA 2.8. Let T € B(H). Assume that there exists a connected open set @ C C with
QNT # 0 and a family (E;)icr of holomorphic maps, E; : Q — H, such that TE;(\) = AE;(\)
for every i € I and every A € Q, and span{E;(\); i € I, A€ Q} = H. Then T is mizing in the
Gaussian sense.

PROOF. Recall that we denote by £(T') the set of all unimodular eigenvectors of T', and by
A(z) the eigenvalue associated to x € £(T). By [5, Th. 3.29], it is enough to show that for any
Borel set D C T of Lebesgue measure 0, we have span{z € £(T); A(z) € D} = H. Let y € H
be orthogonal to the set {x € E(T); A(z) ¢ D}. Then (y, E;(\)) = 0 for every ¢ € I and every
A e (2NT)\ D. Since the functions (y, E;(-)) are holomorphic on €, and since (2N T)\ D
certainly has an accumulation point in © (because D has Lebesgue measure 0), it follows that y is
orthogonal to all vectors E;()), i € I, A € ©, and hence that y = 0. This concludes the proof. O

REMARK 2.9. The assumptions of Lemma 2.8 imply that the operator T' is also chaotic: since
the roots of unity contained in {2 have an accumulation point in €2, this follows as above from the
identity principle for holomorphic functions.
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Let us first consider perturbations of unilateral weighted shifts. Let (e;)r>1 be an orthonormal
basis of the Hilbert space H, and let w = (wg)r>1 be a unilateral weight sequence, i.e. a bounded
sequence of positive real numbers. Let » > 1 be an integer, and let A be an operator acting on the
finite-dimensional space H, = spanfey; 1 < k < r]. We define a bounded operator B4, on H by
setting

{Aek forevery 1 < k<r
Baywer =
Wk_rep_p for every k > r.

PROPOSITION 2.10. Let w be a unilateral weight sequence, r > 1, and A € B(H,). Suppose

that for every 1 <1<,

Ry :=liminf (wpy4 - - ~wr+lwl)1/p > max(1, ||A|]).
p—ro0
Then the operator B4, is mizing in the Gaussian sense. Besides, Ba, is also chaotic.
PROOF. Solving formally the equation B4z = Az, where A € C and = = (2 )r>1 € CN, one

gets the following identities:

(AN=A)P.x = ZwleTq and WgTktr = Az for every k > r.
1=1

From this (setting y := P,.x) we infer that the eigenvectors of By, associated to the eigenvalue A
must be given by the formula

2 V=gt S - e <erl+ erl)
(2) Z + Z P WMH

p>2

where y is a non-zero vector of H,. Conversely, if y belongs to H, \ {0} is such that the above
formula makes sense, then E,()) is an eigenvector of By, with associated eigenvalue A. It follows
that the complex number A is an eigenvalue of B4, as soon as
wolo P

< 00 forall1 <[l <r,

w(p_l)r_H Wy

p=>2

which holds true whenever |A| < R := min;<;<, R;. In this case, the eigenvector field B, is well-
defined and holomorphic on the open disk D(0, R) for every y € H,. Note that our assumption
implies that R > 1, so that the disk D(0, R) contains T.

By Lemma 2.8 and Remark 2.9, in order to show that Ba, belongs to G-MIX(H) and is
chaotic, it suffices to check that the eigenvectors Ey(X), y € H,, |A\| < R, span a dense subspace
of H. So let u € H be such that (Ey()\),u) = 0 for every y € H, and every || < R. Writing u as

u= Y ugey, this means that
k>1

APl
+Z y7 (A= A)er) (WH"FZUWH 5 l) =0
r+

o2 Wp—1)r+l - -+

for every y € H,.. It follows that each vector

r 1 Xp—l i
U+Zw(uT+l+ZupT+l > (A—A) er, |)\| <R
=1

p>2 W(p—l)r+l ceeWrg

is orthogonal to H,., i.e. belongs to the closed linear span of the vectors ey, k > r. In other words,

T 1 XP*1
Pou+ z o <Ur+l + z Upr+1 ) (A—A)"e =0.
1
=1

p>2 Wp—1)r+l - - - Wr4l
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Consider now the open subset 2 = D(0, R) \ 0(A) of C, where o(A) denotes the spectrum of A.
Applying the operator (A — A)*~! to the previous equation, we obtain that for every A € Q:

"1 At
*—1 _
3) A=A P = =30 (a4 D —Ja

=1 p>2 (p—1)r+1 -

Since the expression on the right hand side of (3) defines an antiholomorphic map on D(0, R)
and since the disk D(0, R) contains o(A) (recall that R > ||A| by assumption), it follows that
the map A — (A — A)*~1P.u extends antiholomorphically to the whole complex plane. But
(A—A)*"1P.u — 0 as |A\| = oo, so the function A\ — (A — A)* 71 P.u must vanish identically on Q
by Liouville’s Theorem, which is possible only if P.u = 0.

Going back to (3), the fact that P,u = 0 yields that up,4; = 0 for every 1 <1 < r and every
p > 2, and that u,y; = 0 for every 1 < [ < r. Thus v = 0, and this concludes the proof of
Proposition 2.10. O

REMARK 2.11. The definition of the operator B4, shows that every eigenvalue of A is also
an eigenvalue of B4 .. This explains why the conditions R; > 1 for every [ = 1,...,r are not
sufficient to ensure that B4, be mixing in the Gaussian sense. Indeed, if A € o(A) is such that
|A] > maxi<;<, R;, then A is an isolated eigenvalue of B4, with |[A] > 1, and this prevents B4
from being hypercyclic. This is to be compared with Remark 2.15 below.

From Proposition 2.10 we easily deduce a basic density result, which gives in particular the
promised proof of Proposition 2.3 above.

COROLLARY 2.12. For every M > 1, the class of operators G-MIXps(H) N CHps(H) is dense
in (HCp(H),S0T*).

PRrROOF. We are going to apply Lemma 2.6. So, let (eg)r>1 be an orthonormal basis of H, and
let us fix r > 1, an operator A € B(H,) with ||A|| < M and € > 0. Let also § > 0 be a small
positive number to be specified below. We define a weight sequence w = (wi)x>1 as follows:

6 forevery1<k<r
Wr =
F M for every k > r;

and we consider the associated operator B, acting on H. Identifying A with PFAP, € B(H),
we have for every 1 < k < r:

Bawer = Aey and BZMek = A%ex + degir,
so that ||(Baw — A)*ex|| = 0. It follows that if § < e, then

max max (I(Baw — Aexll, [[(Baw — A)*erll) <e.

The assumption of Proposition 2.10 is clearly satisfied, so that B4, belongs to G-MIX(H)NCH(H).
To estimate the norm of By, note that for every x = ) z,e; € H, we have

j>1

Bjywxr=AP.x+ Z Thtr Ok + Z Tiqr Mey
k=1 k>r

so that

2
+ M2 Z |Z'k+7~|2.
k>r

r
|| BA,w-r ||2 = “AP7I + 5Zxk+7"ek‘
k=1

Since [|A]| < M, it follows that |Baw| = M if § > 0 is sufficiently small. So Ba, belongs to
G-MIX;(H)NCHps(H), and Lemma 2.6 now allows us to conclude the proof of Corollary 2.12. O
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REMARK 2.13. Corollary 2.12 does not state that G-MIXy,;(H) N CHy(H) is comeager in
(HCp(#H),S0T*). Indeed, we will prove below that G-MIX;(H) and CHs(H) are actually meager
in (HCas(H), SOT*).

Let us now turn to a bilateral analogue of Proposition 2.10, which we state as Proposition 2.14
below. Let (fx)kez be an orthonormal basis of the space H, and let w = (wg)rez be a bilateral
weight sequence, i.e. a bounded sequence of positive real numbers indexed by Z. For any integer
r > 0, we write H, = spanfey; |k| < r], and let A € B(H,) be a bounded operator on H,. We
define a bounded operator S4,, on H by setting

_JAfe Fwr—@rr1) fr—(2rr1y  for every [k| <7
SA,wfk =
Wh—(2r+1) fr—(2r+1) for every |k| > .

PROPOSITION 2.14. Let w be a bilateral weight sequence, v > 1 and A € B(H,.). Suppose that
for every —r <1<,

e 1
Rl = hprgg}f(wp(QrJrl)Jrl .. .w<2r+1)+l) /e > 1

and

. 1/
ry := lim sup(wl,p(gﬂrl) .. .wl,(2r+1)) P,
pP—00

Then Sa is mizing in the Gaussian sense and chaotic.

PROOF. The proof is so similar to that of Proposition 2.10 that we will not give it in detail.
A complex number A is an eigenvalue of S4 , as soon as the series

ap—1 2 Wi p(2r 1) - - - Wi (2 2
W(p—1)(2r+1)+l - - - W(2r+1)+l p>1 AR

p=>2
are convergent for all —r < [ < r. If we define R := min_,<;<, R; and r := max_,<;<, 1, our
assumption implies that r < 1 < R. Any complex number A belonging to the annulus {r < |A| < R}
is an eigenvalue of S4 ., and the eigenvectors of S, associated to A have the form

T 1 pfl
Ey(\) = Z —((A=A)y, 61>< (2r41)+1 T Z Cp(2r11)+1

—— p>2 W(p—1)(2r4+1)41 - - - W(2r4+1)+l

Wi—p(2r+1) - - - Wi—(2r+1
(4) + “ ))\p : )ep(2r+1)+l)
p=1

where y € H,. Since r < 1 < R, the annulus {r < |A| < R} contains T, and an argument similar to
the one given in the proof of Proposition 2.10 show that S, belongs to G-MIX(H) N CHp(H).
Indeed, if u € H is such that (Ey()\),u) = 0 for every y € H, and every r < |A\| < R, then

T

1 P
Z — (U(zq +1)+1 T+ Z Up(2r+1)+1

P o2 W(p—1)(2r+1)+1 - - - W(2r4+1)+l

wWi— r T *
+ Z —p(2 +1 —(2r+1) —p(2’r+1)+l> A—A)e, =0

p>1

for every r < |\| < R and every [ = —r,...,r, from which it follows that

"1 X!
Z ( 2r+1)+l+z Up(2r+1)+1

=Y b2 W(ip—1)(2r4+1)+1 « - - W(2r+1)+I
Wi—p(2r41) - - - WI—(2r41
+Z p( )71) ( )up(2r+1)+l) =0
>1 A
p>

for every r < |A\| < R and every [ = —r,...,r. Hence u = 0, and Proposition 2.14 is proved. O
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REMARK 2.15. The description of the eigenvectors of Sa, given in (4) above shows that if
the two series

Z(wp(Qr-‘rl)-‘rl"'w(2r+1)+l)72 and Z(wl—p(2T+1)~'-wl—(2r+1))7

p>1 p>1

2

are divergent for every |I| < r, then the operator S4, has no eigenvalue, whatever the choice of
A € B(H,). This observation will be useful for the proof of Proposition 2.24 below. It is also
interesting to observe that the assumptions on R; and r; in Proposition 2.14 do not involve the
operator A, contrary to what happens in Proposition 2.10. This is coherent with the fact that
the eigenvalues of A do not necessarily appear as eigenvalues of S4,,, while they do appear as
eigenvalues of B4 .

4. Topological weak mixing and topological mixing

In this section, we show that topological weak mixing is a typical property, whereas topological
mixing is atypical. In view of the corresponding well-known analogues in ergodic theory due to
Halmos and Rohlin (see e.g. [34, pp. 77-80], and [21] for a more general result), this should not
be surprising at all.

PROPOSITION 2.16. For every M > 1, the class TWMIX;(H) is a dense G (and hence
comeager) subset of (HCpr(H),SOT*).

PRrROOF. That TWMIX,,(H) is G follows from the fact that HCps (H xH) is G in B (HxH),
and the SOT*-continuity of the map T +— T x T. Since operators in G-MIX(H) are topologically
mixing, density follows from Corollary 2.12. ]

Our next proposition (Proposition 2.19) states that topologically mixing operators form a
meager class in (HCy/ (), SOT*). Its proof relies on Lemmas 2.32 and 2.33, which belong to the
forthcoming Section 6. We nonetheless prefer to present things in this order, because the purposes
of Lemmas 2.32 and 2.33 will appear more clearly in our proof of the typicality of operators without
non-trivial invariant measures. But for the reader’s convenience, we state these two lemmas here as
Lemmas 2.17 and 2.18 respectively. Here is the first one (corresponding to Lemma 2.32 in Section
6):

LEMMA 2.17. Let B be a closed ball of H not containing the point 0. Let also M > 0. For any
integer n > 1, the set
Op.B = {T € B (H); there exist n distinct integers p1, ..., p, such that
TP (B)NT" (B) =0 for every i # j, 1 <4,j <n}
is open in (Bpr(H),SOT*).
And then the second one (corresponding to Lemma 2.33 in Section 6):

LEMMA 2.18. Let e € H with |le| =1, and let 0 < p < 1. Denote by B the closed ball B(e, p).
Let also M > 1. For any n > 1, the open set Op g is dense in (B (H), SOT*).

We now have:
PROPOSITION 2.19. For every M > 1, the class TMIXr(H) is meager in (HCp(H), SOT*).

PrOOF. By Corollary 2.4, it is enough to show that the class TMIX;;(H) is meager in
(B (H),S0T*). Let B be a non-trivial closed ball in H. We certainly have

TMIXy (H) € | S,
N>1

where
SN = ﬂ {T eBy(H); T"(B)NB#0}  for every N > 1.
n>N



4. TOPOLOGICAL WEAK MIXING AND TOPOLOGICAL MIXING 19

Each set §n is closed in (B (H), SOT*). Indeed, we may write
Tefy < VYn>N3dJxeB : T'zc B.

Since B is weakly closed in H, the condition “I"™xz € B” defines a closed subset of (B (), SOT*) x
(B,w) by Lemmas 2.1 and 2.5; and since B is weakly compact, this shows that §y is closed in
(B (H),S0T*). To conclude the proof, it is enough to show that for some suitable choice of the
ball B, the closed sets §n have empty interior in (28,,(H), SOT*); or, equivalently, that the open
sets

Opn = {T €By(H); In>N : T"(B)NB = @}

are dense in (B (H),S0T*). We choose for B the ball B(e,1/2), where e € H satisfies ||e|| = 1.
Then Oy contains the set Ony1 5 of Lemma 2.17, so it is dense in (B (H),S0T*) by Lemma
2.18. (I

REMARK 2.20. The same proofs would show that topological weak mixing is typical and
topological mixing is atypical for operators on ¢, spaces. It would be interesting to know if this
is still true on every Banach space with separable dual. In this respect, it is worth mentioning
that there exist on any separable Banach space hypercyclic operators which are not topologically
mixing ([31]).

4.1. Some illustrations. In this section, we present some consequences of Propositions 2.16
and 2.19.

First, we have the following amusing fact: a typical operator T € HCy;(H), M > 1, satisfies
the Hypercyclicity Criterion but not Kitai’s criterion.

In the same spirit, it follows from Proposition 2.16 and the Baire Category Theorem that a
typical T € B, (H) is such that T and T™* are both topologically weakly mixing; but no operator
with this property can be topologically mixing since otherwise T' x T would be hypercyclic on H x
‘H, which can never happen. Note that this argument provides an alternative proof of Proposition
2.19.

Here is now a less immediate consequence of the comeagerness of TWMIX ,(#H), which is a
partial strengthening of the main theorem of [54]. This result could also be easily deduced from
[27, Th. 4.1], the proof of which is, however, quite different.

PROPOSITION 2.21. Let Z be a linear subspace of H with countable algebraic dimension. For
any M > 1, the set of all T € By (H) such that every vector z € Z \ {0} is hypercyclic for T is
comeager in (Bar(H), SOT*).

The proof of Proposition 2.21 relies on two lemmas (Lemmas 2.22 and 2.23 below) concerning
the existence of particular hypercyclic N-tuples for typical N-fold products of operators.

We begin by fixing some notation. For any operator T € B(H) and every N € N, we denote
by T the N-fold product operator T x - -- x T acting on HY = H x --- x H. Also, for any finite
sequence f = (f1,..., fn) of vectors of H, we denote by Gram(f) the associated Gram matriz,

Gram(f) := (<fza fj))lgi,jSN

and we define ¢ := {x = (x1,...,2n) € HY; Gram(x) = Gram(f)}. Note that Hs is a closed
subset of H™V, and hence a Polish space. Our first lemma is

LEMMA 2.22. Let f = (f1,..., fn) be a finite sequence of linearly independent vectors in H.
For any operator T € TWMIX(H), the set He N HCO(Ty) is dense in Hs.

PROOF. Let us first recall that any topologically weakly mixing operator T on H is in fact
totally hypercyclic, which means that for any N > 1, the operator Ty is hypercyclic on H™V. This
is a classical result, which has nothing to do with linearity; see e.g [25], or [8, Th. 4.6].
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Let (uq,...,un) € Hg be arbitrary. We are looking for some N-tuple (z1,...,2x) € He such
that (z1,...,2n) lies in HC(T) and (z1,...,2N) is very close to (uy,...,un). Since HC(Ty) is
dense in H", one can first choose (21, ...,2x) € HC(Ty) very close to (u1,...,un).

Note that the N-tuple u = (uq,...,uy) consists of linearly independent vectors since the Gram
matrix Gram(u) = Gram(f) is invertible; and that (z1, ..., zx) is linearly independent as well since
it belongs to HC(Ty). Let us denote by (uy,...,un) and (Z1,...,2n) the sequences obtained by
applying the Gram-Schmidt orthonormalization process to (uq,...,uy) and (z1,...,25) respec-
tively. Then (uy,...,uy) and (21,...,2n) are very close to each other, provided (uq,...,uy) and
(21,...,2n) are sufficiently close. Now, define (z1,...,7x) € HY as follows:

N
zi::Z(ui,ﬂl>EZ fori=1,...,N.
1=1
We have by definition
N
(o sy =Y (ug, ) (ug, i) = (uiyug) = (fi, f;)  fori,j=1,...,N,
1=1
so that (z1,...,zn) belongs to Hg. Moreover, each vector z;, 1 < i < N, is very close to
Zf\;l (u, ) w; = wy, so (x1,...,xzy) is very close to (ug,...,un). It remains to show that
(1,...,zn) belongs to HC(Tw).

Since the vectors z; are linearly independent (because (z1,...,zn) € Hg) and belong to

span [Z1,...,2n]| = span [z1, ..., 2n], they form a basis of span [z1,...,2n]. So we may write each

vector x; as
N
T = E Ci,j %5
j=1

where the matrix (¢; j)1<i j<n is invertible. Now, let Vi, ..., Viy be non-empty open sets in #, and
define

N
V:{(y177yN)€HNazcl,]yj€V; fOI'i:].7...,N}.
j=1

Since the matrix (¢;;)1<; j<n is invertible, this is a non-empty open subset of HV. As (z1,...,2n) €
HC(Ty), one can find an integer n such that (T™z1,...,T"zy) belongs to V, which means that
(T"x1,...,T"xN) belongs to Vi x -+ x Vy by the definition of V. This shows that (z1,...,zxN)
belongs to HC(T). O

Having established Lemma 2.22, we can now state and prove Lemma 2.23, from which Propo-
sition 2.21 will easily follow.

LEMMA 2.23. Let M > 1. For any finite family £ = (f1,...,fn) of linearly independent
vectors in H, the set of all T € By (H) such that (f1,..., fn) belongs to HC(Ty) is comeager in
(B (H),SOT*).

PROOF. Let us consider the set
Gi={(01, . on,T) € He x Bas(H); (w1, 2x) € HO(Tw) }.

This is a Gs subset of He x (Bp(H),S0T*). Moreover, Claim 2.22 asserts that for any T €
TWMIX, (H), the T-section of G is dense in Hg, and hence comeager in Hg since this is a G5 set.
Since TWMIX;(H) is comeager in (B 7(#H), SOT*), it follows, by the Kuratowski-Ulam Theorem
(see for instance [38, Section 8.K]), that there exists at least one (in fact, comeager many) x =
(1,...,2N) € Hg such that the set

Gy :={T € By (H); (21,...,2n) € HC(TN)}
is comeager in (B (H), SOT*).
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Now, since (z1,...,zn) belongs to Hg, i.e. (x;,x;) = (fi, f;) for every i,j =1..., N, one can
find a unitary operator U : H — H such that U f; = x; for every i = 1,..., N. Then the map T —
U~'TU maps B (H) bijectively onto itself because U is unitary, and is a homeomorphism with
respect to the topology SOT*. Therefore, the set ®¢ := U1, U is comeager in (B (H), SOT*).
Since by definition (f1,..., fn) belongs to HC(T) if T belongs to &¢, this concludes the proof of
Lemma 2.23. O

With Lemma 2.23 at hand, we can now prove Proposition 2.21.

PROOF OF PROPOSITION 2.21. Let (f;);>1 be an algebraic basis of Z. By Lemma 2.23, the
set
6 = {T € %M(H)a VN > 1: (fla"'afN) € HC(TN)}
is comeager in (B (H),S0T*). So it is enough to show that that if T' belongs to &, then every
non-zero vector z € Z is a hypercyclic vector for T. Let V' be a non-empty open set in H. Write
N .
zas z=y ., ,%fi, and consider the set

V, = {(xl,...,mN) e HV: ﬁ:zimi € V}.
i=1

Since z # 0, this is a non-empty open set in H~. As T belongs to @&, it follows that there exists
n > 1 such that (T"fy,...,T" fn) belongs to V,, which means exactly that 7"z belongs to V.
Hence z is indeed a hypercyclic vector for T'. (I

5. Hypercyclic operators without eigenvalues
The following result shows that operators without eigenvalues are typical.

PROPOSITION 2.24. For any M > 0, the class NEV(H) is a dense G5 subset of the space
(B (H),S0T).

From this and Corollary 2.4, we obtain
COROLLARY 2.25. For any M > 1, a typical operator T € (HCy;(H), SOT*) has no eigenvalues.

As a matter of fact, Proposition 2.24 is already proved in [22], where typical properties of
contraction operators are studied for various topologies (see also [20]). However, since the proof
is not that complicated, and in order to keep this work as self-contained as possible, we outline it
below.

PROOF OF PROPOSITION 2.24. We divide the proof into two steps. In what follows, we fix
M > 0.

CLAIM 2.26. The set NEV;(H) is a G5 subset of (B ,(H), SOT*).

PrOOF OF CrLAIM 2.26. To any closed ball B C H, we associate the following subset of
%]V[(’H)Z
Mp ={T € By(H); IA€C, Tz € B with Tz = Az}.
Let us show that this set Mp is F, in (Bps(H),SO0T*). To this aim, we endow B with the weak
topology, and introduce the set

Fp={(T,\x) € By(H) xCx B; Tx = Az}.
Then Mp is the projection of Fp on the first coordinate. Moreover, the set Fp is closed in
(Bar(H),S0T*) x C x (B,w) by Lemma 2.5. Since the space C x (B,w) is K, (because (B, w) is
compact), it follows that Mg is F,.

Let now (Bg)q>1 be a sequence of closed balls of H not containing the point 0, such that
Ugs1 Bo = H\ {0}. Then By (H) \NEVy(H) = U5, Mp, Is an F, set, so that NEVy(H) is a
Gy set in (B (H),SOT*). O
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CLAM 2.27. The set NEV () is dense in (Bas(H), SOT*).

PROOF OF CLAIM 2.27. Let (fx)rez be an orthonormal basis of H. For each r > 0, we set
H, := span[fy, ; |k| < r] and we denote by P, the orthogonal projection of H onto H,.. By Lemma
2.6 and Remark 2.7, it suffices to show that for every r > 0, every A € B(H,), with ||A|| < M,
and every € > 0, there exists an operator T' € NEV ,(#) such that

T —A)frll <e and (T —A)" frl]| <e for every k= —r,...,r.

Let w = (wk)kez be a bilateral weight sequence with 0 < wy < M for every k € Z and wy = ¢ for
every index k with |k + r| < 2r + 1. As in the proof of Corollary 2.12, one easily checks that if
0 > 0 is sufficiently small, the bilateral weighted shift operator Sa,, (defined with respect to the
basis (fx)kez) satisfies

|(Saw —A)frll <e and ||(Saw—A) fill <e for every k= —r ... r.

Moreover, if the weight sequence w is chosen in such a way that the series

Z (wp(27"+1)+l .. -w(2r+1)+l)72 and Z (wl—p(2r+1) .. -wl—(2r+1))72
p>1 p>1

are divergent for every |I| <, then S4, has no eigenvalue by Remark 2.15. So T' := S 4, satisfies
the required assumptions for a suitable choice of the weight w. O

The two claims above complete the proof of Proposition 2.24. ([

REMARK 2.28. The fact that we are using the topology SOT* is crucial in the proof of Claim
2.26 in order to obtain that the sets Fp above are closed in (Bps(H),S0T*) x C x (B,w). The
situation turns out to be completely different if one considers the topology SOT instead of SOT*.
Indeed, it is proved in [22] that an SOT-typical T' € B1(H) has the property that every A € C with
|A| < 1 is an eigenvalue of T. More precisely, a typical T' € B1(H) is unitarily equivalent to the
infinite-dimensional backward unilateral shift operator. So a typical T € (B ,(#), S0T) has the
whole disk D(0, M) within the set of its eigenvalues.

REMARK 2.29. The proof of Corollary 2.25 is a good example of the usefulness of Corollary 2.4
for simplifying arguments of this kind: although it is easy to construct the weight sequence w above
in such a way that the operator S4,. is S0T*-close to A and has no eigenvalue, it is technically
much less obvious to ensure that S4 ., is additionally hypercyclic. In other words, it would be less
easy to prove Corollary 2.25 directly, without using Corollary 2.4.

REMARK 2.30. Here is a very short alternative proof of Proposition 2.24. First, we may assume
without loss of generality that M > 1 because the property of having (or not having) eigenvalues is
invariant under scalar multiplication. Then, since hypercyclic operators are typical in B ,(H) and
since the map T+ T™* is a homeomorphism of (B 7(H), SOT*), we know that a typical T' € B (H)
has the property that T is hypercyclic. Since the adjoint of a hypercyclic operator can have no
eigenvalues, this concludes the proof.

The following consequence of Corollary 2.25 is worth mentioning.

COROLLARY 2.31. For every M > 1, CHps(H) is meager in (HCp(H),S0T*). In other words,
a typical hypercyclic operator on H is not chaotic.

This is indeed obvious since chaotic operators have plenty of eigenvalues. Note that we are
using here the fact that H is a complex Hilbert space, so that periodic points are linear combinations
of eigenvectors whose associated eigenvalues are roots of unity. Nonetheless, Corollary 2.31 holds
true on real Hilbert spaces as well; see Remark 2.37 below.
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6. Hypercyclic operators without invariant measures

It follows easily from Proposition 2.24 that for any M > 1, the operators in HCy(#H) ad-
mitting a non-trivial invariant measure with a second-order moment form a meager class in
(HCp(#H),80T*). Indeed, if T € HCjp(H) admits an invariant measure u # &g such that
Sy llzl|? du(x) < oo, then the Gaussian measure m whose covariance operator is given by the
formula

(Re,y) = /H (2.2) T ) du(z), wy e H

is T-invariant. Its support is the closed linear span of the support of u, and hence is non-trivial.
This closed subspace is spanned by unimodular eigenvectors of T' (see [5] or [8] for details), from
which it follows that T does not belong to NEV ;(H).

The main result of this section (Theorem 2.36 below) is that the SOT*-typical operator T €
HCjps(H) actually admits no non-trivial invariant measure at all. Its proof relies on the next two
lemmas.

LEMMA 2.32. Let B be a closed ball of H not containing the point 0. Let also M > 0. For any
integer n > 1, the set

Onp = {T € By (H); there exist n distinct integers py,...,pn such that
TP (B)NT? (B) =0 for every i # j, 1 <i,j <n}
is open in (Byr(H),80T*). Consequently, the set
6p = {T € By (H); for every n > 1, there exist n iterates of B
under the action of T which are pairwise disjoint}
is G5 in (B (H),S0T*).
PROOF. The second part of the lemma follows immediately from the first, since

6p = () On.s
n>1
To derive the first part, it is enough to show that if we fix p,q > 1, then the set
O :={T € By (H); TP(B)NTYB) =0}
is 80T*-open in By (H). If T € B (H), we may write
TeO < Vx,ye B : TPx #£T,.

Since the map (7', u) — T™u is continuous on (B (H), SOT*) x (B, w) for any n > 1 by Lemmas
2.1 and 2.5, the condition “TPx # T%” defines an open subset of (B ;(H), SOT*) x (B, w) X (B, w).

Since B is weakly compact, it follows that O is indeed SOT*-open in B ;(H), its complement being
the projection of a closed subset of B ,;(H) x B x B along the compact factor B x B. O

LEMMA 2.33. Let e € H with |le|| =1, and let 0 < p < 1. Denote by B the closed ball B(e, p).
Let also M > 1. For any n > 1, the open set O, g is dense in (B (H),SOT*).

PROOF. Let us fix an orthonormal basis (ey)r>1 of H with e; = e. Our aim being to apply
Lemma 2.6, we fix » > 1, an operator A € B(H,) such that ||A|| < M, and € > 0. We are looking
for an operator T' € O, p such that

(T — A)ex|| <e and |(T— A)%er| <e€ fork=1,...,r
We will define a sequence (Cn)ns2, of operators, with Cn € B(Hy) for every N > 2r, and

show that if N is sufficiently large, the operator Px,CnPn € B(#H) belongs to O, p and satisfies
the above estimates. Here Py denotes as usual the canonical projection of H onto Hy.
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Let § > 0 and v > 1, to be fixed later on in the proof. For each N > 2r, consider the operator
Cn € B(Hy) defined in the following way:

Aey, + depqr forevery 1 <k <r
Cner = < Yepar for every r <k < N —7r
0 for every N —r < k < N.

Thus, in matrix form,

A

Cn

0 .0

8l

We note that if ||A|| < v < M and if § is sufficiently small, then ||Cxy| =~ < M. Moreover, if
4 is sufficiently small, then

(5) (Cn — A)er]l <e and ||[(Cy —A)ex| <e for every k=1,...,r

whatever the choice of the integer N > 2r. The key of the proof lies in the following simple
computation.

CLAM 2.34. For every N > 27, every p > 1 such that pr +1 < N, and every x € H,
(CRTs epri1) = P16(x, eq).
PRrROOF OF CLAIM 2.34. Clearly (Cnyz,er4+1) = d(z, e1); so we may write Cyx as

N
Cnx =d{x,e1)e 41 + Z (Cnz,er)ek.

k=1
Hence k41
N

C’%ﬁlx = oy z, e1)eprt1 + E (Cn, e@Cﬁ,ﬁlek.
k=1
k#r+1

Now Cﬁ,_lek belongs to the closed linear span of the vectors e;, 1 < j < N, j # pr + 1, for every
1 <k <N with k # r + 1. Indeed,

- if 1 <k <r, a straightforward induction shows that C’f)\,_lek € spanfe;; 1 < j <prl;
-ifr+1<k<N-—(p—1)r, then C’%_lek = Wp_lekﬂp,l)r;
- if N— (p—1)r < k < N, we have C¥ ‘e, = 0.

Thus (C8 'z, epri1) = 697~ (x, 1), which is the claim of Claim 2.34. O

From Claim 2.34, it is not hard to deduce

CramM 2.35. Let 1 < p,q¢ < N be such that pr +1 < N. If 4P~971§ > 1%’;, then CR,(PnB) N
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ProoF or CramMm 2.35. If z,y € Py B, then by Claim 2.34
ICRy — CRll = [(CRa — Cfy, eprrn)| Z 477 0l en)| = ICK Il Iyl
Moreover, since z and y belong to Py B C B, we have |[(z,e1)| > 1 — p and ||y|| < 1+ p. Hence
ICRy — CRall = 47718(1 = p) =77 (1 + p).

Thus C% (PnB) N CX(Pn(B)) is empty as soon as 77 ~16(1 — p) —v2(1 + p) > 0, which proves our
claim. 0

We now choose the various parameters in this construction in the following order: first we
choose =y such that max(1,|Al]) < v < M. Then we choose § > 0 so small that (5) holds
true for every N > 1. Lastly, we choose N > 2r so large that there exist n distinct integers
1<p <py <--- < pp <N with p,m+ 1 < N, such that the gaps between two consecutive
integers p; are so large that %7 ~7:=1§ > (1 — p)/(1 + p) for every 1 < i < j < n. By Claim 2.35,
the operator C'y then satisfies C]’Qj (PNnB)NCR (PyB) = 0 for every 1 < i < j < n. So the operator
T := P5yCNPn € By (H) is such that TP (B) N TP (B) = () for every 1 < i < j < n, that is, T
belongs to O, p; and by (5) we also have ||(T' — A)ex|| < e and |[(T — A)*ex|| <efor k=1,...,r.
This concludes the proof of Lemma 2.33. (]

Using Lemmas 2.32 and 2.33, it is now not difficult to prove that SOT*-typical operators admit
no non-trivial invariant measure.

THEOREM 2.36. For every M > 1, the set HCpr(H) \ INV(H) is comeager in the space
(HCM(H),SOT*).

PRrROOF. Combining Lemmas 2.32 and 2.33, we obtain that &g is a dense Gs subset of the
space (B (H),SOT*) for every ball B = B(e, p), where |le]| =1 and 0 < p < 1. By Corollary 2.4,
it follows that &5 N HCy/(H) is a dense G subset of (HCps(H), SOT*) for each such ball B. Let
(Bg)g>1 be a countable family of such balls with the property that

U B, = B(0,2)\ {0}.

g1

Then & := (ﬂq21 ®p,) NHCy(H) is a dense Gy subset of (HCy(H), SOT*).

Every element T' of & enjoys the property that for any ¢ > 1 and any n > 1, there exist n
iterates 177 (B,) of B, which are distinct. It follows that if m is any invariant (probability) measure
for T, then m(B,) = 0 for every ¢ > 1 and hence m(B(0,2) \ {0}) = 0.

Suppose now that T' € & admits an invariant measure m # dg. Then one can find a closed
ball B’ not containing 0 such that m(B’) > 0. Consider for any R > 0 the measure mp on H
defined by mg(C) = m(RC) for any Borel subset C' of H. Each such measure mpg is an invariant
probability measure on H. Moreover, if R is sufficiently large then R~1B’ C B(0,2) \ {0}, so
that mp(B(0,2) \ {0}) > 0, which is a contradiction. We have thus proved that any operator
T € ® admits no invariant measure except dp, and hence that HCys(H) \ INV(H) is comeager in
(HCp (M), S0T). O

REMARK 2.37. The above proof does not use the fact that H is a complexr Hilbert space;
so Theorem 2.36 holds true as well for real Hilbert spaces. This shows in particular that in the
real setting also, the chaotic operators form a meager subset of % ,(#H); more precisely, a typical
operator T' € B/(H) has no periodic point except 0. Indeed, any periodic point = # 0 for an
operator T gives rise to a “canonical” invariant measure supported on the orbit of x, namely
mi= % Zij\;_ol driy, where N > 1 is a period of z.

REMARK 2.38. Theorem 2.36 implies a weak form of Proposition 2.24, namely that operators
without any eigenvalue of modulus 1 are typical. Indeed, if T' admits a unimodular eigenvalue and
if z is an associated eigenvector, then there is a canonical invariant measure m # Jy supported on
T - x, namely the image of the Lebesgue measure on T under the map A — Az.
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Regarding the eigenvalues, one may also note that if m is any non-trivial invariant measure
for an operator T' € B(H), then m(ker(T — X)) = 0 for every complex number A such that |A] # 1.
Indeed, if m # §p is a measure such that m(ker(T - )\)) > 0, one can find a ball B not containing
0 such that m(B,) # 0, where By = BNker(T — \). Since |A| # 1, it is easily checked that B
has infinitely many pairwise disjoint iterates under T, which is not possible since the measure m
is T-invariant.

Since U-frequently hypercyclic operators on a Hilbert space always admit an invariant measure
with full support by [30], Theorem 2.36 immediately implies:

COROLLARY 2.39. For every M > 1, UFHCy;(H) is meager in (HCp;(H),S0T*). In other
words, a typical hypercyclic operator on H is not U-frequently hypercyclic.

7. Densely distributionally chaotic operators

In this section, our aim is to show that, for any M > 1, the class DDCH),(#) of densely
distributionally chaotic operators in B ,,(#H) is a dense G5 subset of (B /(H),S0T*), from which
it follows that the class DCH s (#H) of distributionally chaotic operators in B, (H) is a comeager
subset of (B (H), SOT*).

PROPOSITION 2.40. For any M > 1, the set DDCHy;(H) of densely distributionally chaotic
operators in By (H) is a dense Gs subset of (B (H),SOT*).

PROOF. Recall that an operator T' € B(H) is densely distributionally chaotic if and only if it
admits a dense set of distributionally irregular vectors, i.e. of vectors x € H for which there exist
two sets of integers A, B C N with upper density 1 such that 7%z — 0 as i — oo along A and
|Tiz|| — oo as i — oo along B. Since the set of distributionally irregular vectors for T’ can be

written as
Gr= (1 [ Gren
e€Qt* N>1
where

Gren = {x eH;Imn>N : #{1 <i<m; ||T1x|| <el>m(l—e)
and #{1 < <ns |T'al] > 1/2} = n(1 - 2)},

it follows that G is a dense G subset of H whenever T is densely distributionally chaotic. Denot-
ing by (V,)p>1 a countable basis of non-empty open subsets of H, we infer from this observation
that an operator T' € B (H) belongs to DDCH s (#H) if and only if

Vec QM"Y N>1Vp>13x eV, Inm>N #{1<i<m; [T <e} >m(l —¢)
and #{1 <i <n; ||[T|| > 1/e} > n(1 —¢).

Using this, we can prove

CramM 2.41. The set DDCH,(H) is a Gs subset of (B (H), SOT).

PrOOF OF CLAIM 2.41. It suffices to show that for every e € Q™, N > 1,p> 1, m,n > N
and x € H, the set

{T € By (H); #{1<i<m; |Tiz| <} >m(l—e)
and #{1 < i <n; |Tiz| > 1/e} > n(l - 5>}

is SOT-open. So let Ty € B (H) belong to this set, and let » > m(1l — ) be an integer such
that there exist r indices 1 < iy < -+ < i, < m such that |T% x| < € for every 1 < j < r. If
T € By (H) is sufficiently close to Ty for the SOT-topology, we still have ||[T%z| < ¢ for every
1 <j<r. Hence #{1 <i < m; ||[T%| < e} > m(1 —¢). In the same way, the set of operators
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T such that #{1 <i < n; ||T'z|| > 1/e} > n(1 — ¢) is SOT-open in B, (H). This proves Claim
2.41. (]

CrAIM 2.42. The set DDCH () is dense in (B (H), SOT*).

PROOF OF CLAIM 2.42. By a result of [30], every ergodic operator on H is densely distribu-
tionally chaotic. Since G-MIX(H) is dense in (B (H),S0T*) by Corollary 2.12, it immediately
follows that DDCH () is dense in (B (), SOT*). O

By Claims 2.41 and 2.42, the proof of Proposition 2.40 is now complete. |

Since DDCH(#) € DCH(H), and since any operator T' € DDCH(H) NHC(H) satisfies ¢(T) =
1, Proposition 2.40 has the following immediate consequences:

COROLLARY 2.43. For any M > 1, the set DCH;(H) of distributionally chaotic operators in
B (H) is comeager in (B (H), SOT*).

COROLLARY 2.44. For any M > 1, the set ci;(H) of operators T € HCp(H) with ¢(T) = 1
is comeager in (HCps(H), SOT*).

There is an alternative approach for proving the comeagerness of DDCH /(). It makes use
of the following lemma, which is interesting in itself.

LEMMA 2.45. Let T be an ergodic operator on H, and let m be a T-invariant ergodic measure
with full support for T'. For every e, R > 0, one can find two other ergodic measures yn and v for
T, both with full support, such that u(B(0,R)) > 1 —e and v(B(0, R)) < € respectively.

PROOF. The proof relies on a dilation argument already used several times in [30]. This
argument has been essentially given at the end of the proof of Theorem 2.36, but we repeat it
anyway. For any p > 0, let m, be the measure on H defined by m,(C) = m(pC) for any Borel
subset C of H. We have m,(B(0, R)) = m(B(0, pR)). All these measures m,, are ergodic for T’ and
have full support. Moreover, m(B(0, pR)) — m(H) = 1 as p — oo and m(B(0, pR)) — m({0}) = 0
as p — 0 (that m({0}) is necessarily equal to 0 follows from the ergodicity of m with respect to T
and the fact that m # do; recall that T'(0) = 0). So there exist p1, p2 > 0 such that p = m,, and
v =m,, satisfy u(B(0,R)) >1—¢ and v(B(0,R)) < e. O

We deduce from Lemma 2.45 the following proposition:

PROPOSITION 2.46. Let M > 1. For every vector x € H \ {0}, the set
&% = {T € By (H); x is a distributionally irregular vector for T'}
is comeager in (HCp(H), SOT*).
PROOF. Let us consider the following two subsets of B s (H):
&L :={T € By (H); VR >0 :dens Ny(z, B(0,R)) =0}, and
¢ ={T €By(H);Vr>0 : dens Nyp(z,H \ B(0,r)) = 0}.
It is not difficult to see that
& NGy C 6™,
Indeed, if T € &%, then one can find a set A C N with dens(4) = 1 such that |T%z| — oo
as ¢ — oo along A; whereas if T € &7, one can find a set B C N with dens(B) = 1 such that
|Tiz|| — 0 as i — oo along B. So it is enough to show that &% and &% are both comeager

in (B (H),S0T*). We will actually concentrate on &% only, the proof for &% being completely
similar.

For any €, R > 0, we introduce the set

te=) U {TeBu): #{1 <i<n; T2 < R} < ne}.

k>1 n>k
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CLAIM 2.47. Each set ﬁgﬁ is SOT-Gs.

PRrROOF OF CLAIM 2.47. Proceed as in the proof of Claim 2.41. O

CrAim 2.48. Each set $7 ;; is SOT*-dense in B (H).

PROOF OF CLAIM 2.48. We will use the density of G-MIX(H) in (B (H), SOT*), proved in
Corollary 2.12 above.

Let 4 be a non-empty open subset of (B,r(H),S0T*). By Corollary 2.12, we know that
G-MIXjpp/(H) is dense in (B (H),S0T*) for every 1 < M’ < M. Since Uypops B (H) is
obviously dense in B 5/ (H), it follows that I contains an operator T' which is mixing in the Gaussian
sense and satisfies || T|| < M. The operator T is in particular ergodic. By Lemma 2.45, T admits
an ergodic measure with full support v such that v(B(0,2R)) < . Birkhoff’s ergodic theorem then
implies that the set

1 )
&= {y € H; limsup ﬁ#{l <i<n; [Tyl <2R} < 5}
n— oo

is dense in H.

Let now § > 0 be a small positive number, to be fixed later on in the proof. Since x # 0, the
density of £ in H implies the existence of an isomorphism L of H with the following properties:
Lx €&, |[I-L| <9, and |[I—L7!|| < §. Consider now the operator S = L='TL. Since ||T|| < M,
we have ||S|| < M if § is sufficiently small. Also, S belongs to i as soon as ¢ is sufficiently small.
We thus fix & > 0 such that these two conditions are satisfied. It now remains to prove that S
belongs to HI , which will conclude our proof that $7 p is dense in (B (H), SOT*).

For every n > 1, we have LS™xz = T" Lz. Since Lx belongs to &, it follows that

1 ,
limsup —#{1 <i<n; ||[LS'z| <2R} <e.
n

n— 00

Observe now that if [|S?z|| < R, then ||LS'z| < ||L||||S‘x| < 2R (as soon as § < 2, of course). It
follows that

#{1<i<n;||S2| <R} <#{1<i<n;|LS| <2R} < ne
for all sufficiently large n. Hence S belongs to 7 r, and this concludes the proof of Claim 2.48. [

The two claims above imply that all the sets $ p are comeager (in fact, dense Gjs) in

(B (H),SOT*). Since
6%, = m ﬂ ﬁg,Rv
€€Q} ReQ}

it follows that &% is comeager as well. The case of &§ being exactly similar, the proof of Propo-
sition 2.46 is now complete. O

We can now deduce from Proposition 2.46 that the set DDCH,(#H) is comeager in the space
(B (H),S0T*). By the Kuratowski-Ulam Theorem, Proposition 2.46 implies that the set

&= {(T,z) € By (H) x H; x is a distributionally irregular vector for T'}
is comeager in (B;(H),S0T*) x H; and this, in turn, implies that the set
{T € Brp(H); V' € H is distributionally irregular for 7'}

is comeager in (Bps(H), SOT*). Here, “V*z € H” means “for quasi-all x € H in the Baire category
sense”. This shows that DDCH s () is comeager in (B (H), SOT*).
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8. Summary

Let us summarize the results obtained so far: for any M > 1, an SOT*-typical hypercyclic
operator T'
- is topologically weakly mixing but not topologically mixing;
- has empty point spectrum, and hence is not chaotic;
- has no non-trivial invariant measure, hence is not U-frequently hypercyclic, and a fortiori
not ergodic;
- but is densely distributionally chaotic and hence satisfies ¢(T") = 1.
We shall see in Chapter 4 below that the picture changes drastically when we consider SOT-
typical elements of some natural classes of upper-triangular operators with respect to a given
orthonormal basis of H.






CHAPTER 3

Descriptive set-theoretic issues

In what follows, we fix M > 1. We have seen in the previous section that CH s (H), TMIX;(H)
and UFHCj;(H) are meager in (9B, (H),SOT*). In this chapter, we are going to show that these
classes of operators are also Borel in B, (H) with respect to SOT and SOT*, and we will discuss their
exact descriptive complexity in some details. Moreover, we will show that some natural classes of
operators defined by dynamical properties are non-Borel in By (H).

Recall the standard notations for Borel classes: ¢ = open, I1? = closed, £3 = F,, IIJ = G,
and in general, for any countable ordinal £ > 2 :

0 __ 0 0 __ 0
=0 — (U Hn)g and IO = (U zn)é,
n<§ n<é

where 2(, denotes the family of all countable unions of sets from the family 2 and 2s is the family of
all countable intersections of sets from 2. We refer the reader to [38] for (much) more information
on the Borel hierarchy.

1. Complexity of the families TMIX(H), CHy (H), UFHC (%) N CH/(H) and
UFHC ,(H)

The following fact will allow us to concentrate mainly on the topology SOT*.

LEMMA 3.1. The identity map id : (B (H),S0T) — (B (H),S0T*) is Baire 1; in other
words, any SOT*-open subset of By (H) is SOT-XY. Therefore, for every countable ordinal &, any
soT* —22 subset of B (H) is SDT—22+1 and any SOT*—Hg set is SOT—Hg_H.

PROOF. The second part of the lemma follows from the first one by an easy transfinite induc-
tion argument. So we concentrate on the first part.

Since (B (M), SOT*) is second-countable, it is enough to show that any basic SOT*-open set
is SOT-X9. Therefore, we just have to check that if z,a € H and ¢ > 0, then the set 4 := {T €
B (H); |T*z — al| < €} is SOT-F,,. But this is clear since

1
Tel — szeN(VheH, p <1 : <a:,Th>—<a,h>|§s—k>

and the condition under brackets is SOT-closed. O

1.1. Complexity of TMIX;(#). The complexity of TMIX,,(H) is given by the following
proposition:

PROPOSITION 3.2. The set TMIX;(H) is a IIS subset of (Bar(H),S0T), and a “true” T3
subset of (Bpr(H),S0T*), i.e. a II3 set which is not X9.

PROOF. Let us first show that TMIX,(#) is II with respect to SOT*, and hence (by Lemma
3.1) I with respect to SOT. Let (B,),>1 be a countable family of closed balls of # whose interiors
form a basis of open sets for H. Then an operator 7' € B ,(H) is topologically mixing if and only
if

Vp,q>13IN eNVn >N : T"(B,) N B, # 0.

31
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For each fixed data (p, ¢, n), the condition “T"(B,)N By # (" is SOT*-closed, by weak compactness
of B, weak closedness of B, and continuity of the map (7', z) — Tz from (B (H), SOT*) X (B, w)
into (H,w). This shows that TMIX;(H) is II3 in (B p(H), SOT*).

In order to show that TMIX/(H) is a true I3 subset of (B (H),SOT*), we assume that
H = %(N) and we use weighted backward shifts on H. It is well-known that a weighted backward
shift B, on A is topologically mixing if and only if the weight sequence w = (wy)r>1 satisfies

lim |wy - wy| = co.
n—roo

Let us denote by S the set of all sequences of positive integers s = (s;)r>1 such that sgy1 < Msg
for all k£ > 1. This is a closed subset of the Polish space NN, and hence a Polish space as well. We
need the following fact.

CLAIM 3.3. The set So := {s € S; sp — 00 as k — oo} is a true II9 set in S.

ProOF OF CLAIM 3.3. It is well known (see e.g. [38, Section 23.A]) that the set Ny := {a €
NN: ay — oo} is a true II9 set in NN. So we just need to find a continuous map ® : NN — S such
that ®1(S.) = Noo. In other words, our goal is to associate to each o € NN another sequence
s € NN in such a way that s, — oo exactly when oy — oo and, additionally, sx1 < Ms;, for all
k > 1; and this needs to be done in a continuous fashion. For any a € NN, we define s = s(a) as
follows: s; = a7 and, for every k > 1,

oLy = Jars if a1 < Msy,

k+1 = Msy, if A1 > M sy,.
It is obvious that sx11 < Msy for all £ > 1 and that the map a +— s(«) is continuous. Moreover,
since M > 1, it is straightforward to check that ap — oo if and only if s — oc. O

Going back to the proof of Proposition 3.2, we associate to each s € S a weight sequence
w(s) = (wk(s))k>1 defined as follows:

wi(s) =1 and  wiyi(s) = 8?_1 for every k > 1.
k
Since s € S, we have 0 < wi(s) < M for all k > 1, so that the weighted shift B, on H satisfies
|| Bu(s)|| < M. Moreover, the map s — w(s) is clearly continuous from S into RN, and hence the
map s +— B,(s) is continuous from S into (B (H),S0T*). Finally, since wi(s)---wr(s) = sx/s1
for all k& > 1, the shift By, is topologically mixing if and only if s — oo. We have thus
constructed a continuous map ® : S — B, (H) such that ®~1(TMIX s (H)) = Soo, which proves
that TMIX /(M) is a true I subset of (B,(H), SOT*) by Claim 3.3. O

1.2. Complexity of CH;(H). We now consider the class of chaotic operators on H. Our
aim in this section is to prove the following result:

PROPOSITION 3.4. The set CHy(H) is a TIS subset of (Ba(H),S0T), and a true I13 subset
of (B (H),s0T*).

To prove this result, we will make use of the so-called Kalisch operators. These operators, which
were introduced by Kalisch in [37], display interesting dynamical properties (see for instance [8,
Section 5.5.3]). They are defined as follows. Let T : L?(0,27) — L?(0,27) be the operator defined
for every f € L?(0,2n) by

Tf(&):ewf(ﬁ)—/o il f(t)dt, 0 € (0,2n).

A simple computation shows that for any A = e!® € T\ {1}, the function fy := 1(q,27) I8 an
eigenvector of T associated to the eigenvalue A, and that ker(7T'— A) = span [f\]. Note also that the
map A — fy is continuous from T\ {1} into L?(0,2n). In particular, if A # () is any compact subset
of T\ {1}, the closed subspace H, of L?(0,27) spanned by the functions fy, A € A, is T-invariant.
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The Kalisch operator associated to A is the operator T : Ha — Ha induced by T on Hx. The
following lemma summarizes the known facts that we will need regarding these operators.

LEMMA 3.5. For any compact set A C T\ {1}, the Kalisch operator Tp has the following
properties.

(a) The spectrum of Ty is exactly equal to A.
(b) The operator Ty is hypercyclic if and only if A is a perfect set, in which case T is actually
ergodic in the Gaussian sense.

PROOF. (a) This is proved in [37] (see also [4, Lemma 2.12]).

(b) Recall that a perfect set is a non-empty compact set without isolated points. If A is a
perfect set, then T belongs to PSPAN(H,) because the map A — f is continuous; and hence
T is ergodic in the Gaussian sense. Conversely, if A has an isolated point Ag, then T cannot
be hypercyclic, otherwise the restriction of T to the one-dimensional space span [fy,] would be
hypercyclic as well by the Riesz decomposition theorem, which is of course not possible. (I

As the proof of Proposition 3.4 is somewhat involved, we split it into several sub-statements.
First, it is rather straightforward to show:

LEMMA 3.6. The set CHp(H) is IIS with respect to SOT*, and hence I1Y with respect to SOT.

PROOF. Let (B,)p>1 be a countable family of closed balls whose interiors form a basis of open
sets for H. By definition, an operator T' € B ,,(H) is chaotic if and only if it is hypercyclic and
each ball B, contains a periodic point for 7". In other words:

T € CHpy(H) <= T €HCy(H) and VpeNINEN : (erBp : TNx:x>.

For each fixed pair (p, N), the condition under brackets is SOT*-closed by continuity of the map
(T,x) = TNz and weak compactness of the ball B,. Therefore, the second half of the condition
on the right hand side of the above display defines a IIY set; and since HCj;(H) is Gy, it follows
that CHM(H) is Hg in (%N[(H),SOT*). |

The proof that CHys(H) is a true I3 set is more involved.

First, we deduce from Lemma 3.5 the following characterization of those compact subsets A of
T\ {1} for which T4 is chaotic. Let us denote by  the subset of T consisting of all roots of unity.

CLAM 3.7. Let A be a perfect subset of T\ {1}. Then the Kalisch operator T} is chaotic if
and only if 2N A is dense in A.

PROOF. Since the map A +— fy is continuous and fy is a periodic point of Ty if A € QN A,
it is clear that Per(T) is dense in Hp if QN A is dense in A. Since A is assumed to be perfect,
T is hypercyclic, and hence chaotic. Conversely, assume that 2 N A is not dense in A and choose
A€ A\ Ay, where Ag = QN A. Then f) is not an eigenvector of Ty, since o(Th,) = Ag. Since
however f) is an eigenvector of T', this means that f\ does not belong to Ha, = span [f¢; & € Ao,
i.e. that f\ does not belong to span [fe; € € QNA]. But since o(Tx) = A and ker(T'— &) = span [ f¢]
for every £ € T\ {1}, we have

span [fe; € € QN A] = span { U ker(Th — {)} = Per(Ty).
£eQNA

So Per(T}) is not dense in H, and T is not chaotic. O

Here is now a purely descriptive set-theoretic fact, which is certainly well-known but for which
we were unable to locate a reference. Here and afterwards, given a compact metric space F, we
denote by K(E) the space of all non-empty compact subsets of E endowed with its usual topology,
and by Kperr(E) the set of all perfect subsets of E. Recall that IC(E) is compact metrizable, and
that Kpert(E) is a Gs subset of IC(E). So Kpert(E) is a Polish space. See [38] or [52] for more
details.
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CramM 3.8. Let E C T be a perfect set such that Q2 N E is dense in E. Then the set W :=
{A € Kpert(E); QN A is dense in A} is a true II9 set in Kpert(E).

PROOF. Since Kperf(E) is G5 in K(E), it is in fact enough to show that W is a true IIS set
in K(E). That W is I3 is easy to check. In order to show that it is a true II9 set, we proceed as
follows.

Let us denote by C the Cantor space {0,1}N, and by Q the set of all “rationals” of C, i.e.
Q = {a = (a(i))i>1 € C; a(i) is eventually 0}. It is known (see [38, Section 23.A]) that the set

W = {d:(an)nZI ECN, Vnz 1: Qp GQ}

is a true IIJ set in CN. So it is enough to find a continuous map ® : CN — KC(E) such that
PtW) =w.

We first note that if M C E is a perfect set such that QN M is dense in M, then WNIK (M) is
not Gy in K(M). Indeed, on the one hand W N K(M) is easily seen to be dense in K(M) because
M is perfect and Q N M is dense in M; and on the other hand W N (M) is meager in K(M)
because it is disjoint from the Gy set K(M \ ), which is dense in (M) because M is perfect
and Q is countable. Hence W N K(M) cannot be Gs in (M) by the Baire Category Theorem.
By Wadge’s Lemma (see [38, Th. 21.14]) applied to the two Borel sets WN (M) and C\ Q, it
follows that for any perfect set M as above, WNK (M) is “X9-hard”, i.e. one can find a continuous
map ¢ : C — K(M) such that o' (WNK(M)) = Q.

Now let us choose a sequence (M,),>1 of pairwise disjoint perfect subsets of E such that
QN M, is dense in M,, for every n > 1 and the sets M, accumulate to some point a € E, which
means that every neighborhood of a contains all but finitely many of the sets M,,. This is possible
because E is perfect and QN E is dense in E. For each n > 1, let ¢,, : C — K(M,,) be a continuous
map such that ¢, *(WNK(M,)) = Q. One can then define a map ® : CN — K(E) by setting

o0
®(a):={a}tU U onlan) for every a = (a,) € CN.

n=1
Since the sets M,, accumulate to a, it is clear that each ®(@) is indeed a compact subset of T
and that the map ® is continuous. Moreover, it is equally clear that ®(&) is perfect if and only
if all the sets ¢, (o, ) are perfect, and that QN ®(@) is dense in ®(&) if and only if Q N ¢, (an)
is dense in ¢, (ay) for every n > 1. Hence ®(@) belongs to W if and only if «, belongs to
et (WNK(M,)) = Q for all n > 1. We have thus proved that

W) ={a; V¥n>1: o, €Q} =W,
which concludes the proof of Claim 3.8. O

We need yet one more fact, which is a simple and certainly well-known consequence of the
Michael Selection Theorem. The version of this theorem which we use here runs as follows (see
[62, Section II1.19]).

Let X be a zero-dimensional compact space, and let Y be a complete metric space. Let ® :
X — F(Y) be a lower semi-continuous map, where F(Y) denotes the set of all non-empty closed
subsets of Y. Then ® admits a continuous selection, i.e. there exists a continuous map f: X — Y
such that f(x) belongs to ®(x) for every x € X.

CramM 3.9. Let E be a zero-dimensional compact metric space. There exists a sequence
(€n)n>1 of continuous maps from Kpee(E) into E such that for each A € Kpers(E), the points
&, (A), n > 1, belong to A, are distinct, and the countable set {£,(A); n > 1} is dense in A.

PROOF. Since E is zero-dimensional, one can choose a countable basis (V;);>1 for the topology
of E consisting of (non-empty) clopen sets. For each A € KCpers(E), let us denote by i1 (A) < ia2(A) <
. the integers 7 such that ANV; # 0 (since A is perfect, there are infinitely many such integers
i). As the V; are clopen sets, it is not hard to see that the functions i,, n > 1, are locally constant.
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In particular, the map ® : A — ANV, () from Kpef(E) into K(E) is continuous. Since E is
zero-dimensional, Kpe,s(E) is zero-dimensional as well, and one can apply the version of Michael’s
Selection Theorem quoted above to the map ®. This yields a continuous map A — &;(A) from
Kpert(E) into E such that £ (A) belongs to ANV, () for every A € Kpert(E). Now, any perfect set
A € Kpert (E) satisties AN (Vi,a) \ {€1(A)}) # 0; so there exists an integer j such that & (A) € V;
and V;,a) \ V; # 0. Moreover, if we denote by ja(A) the smallest such integer j with these two
properties, the map A — ja(A) is locally constant, and hence the map A — AN (V;2(A) \ Viaay)
is continuous from Kper(E) into IC(E). Applying Michael’s Selection Theorem a second time,
we obtain a continuous map & : Kyert(E) — E such that &(A) € AN (Viyay \ Viy(a)) for every
A € Kyt (E); in particular, §3(A) € ANV, ) and &(A) # €1(A). Continuing in this fashion, we
obtain the required sequence (§,,)n>1- O

We are now in position to prove:
LEMMA 3.10. The set CHp(H) is a true II3 set in (B (H), SOT*).

PROOF. Let us first choose a compact set E C T\ {1} with the following properties: E is
perfect and zero-dimensional, 2 N E is dense in E and, moreover, ||Tg|| < M. Such a compact set
does exist. Indeed, the definition of the operator T" shows that the norm of the restriction of T" to
the subspace L%(u,2r) C L?(0,2m) tends to 1 as u — 2. Therefore, if Ag C T\ {1} is a non-trivial
closed arc sufficiently close to 1 then || Th,|| < M; so it is enough to take as E any perfect set with
empty interior contained in Ay and such that Q N E' is dense in F.

Having fixed E in this way, let (§,)n>1 be a sequence of continuous maps given by Claim 3.9,
selecting a dense sequence of distinct points in each perfect set A C E. Note that if A € Kpere(E),
the points &,,(A) are distinct and form a dense subset of A, so that the functions fe (4) are linearly
independent and span a dense subspace of H,. Applying the Gram-Schmidt orthonormalization
process to the sequence (f¢, (a))n>1, We obtain an orthonormal basis (e, (A))n>1 of Ha which
depends continuously on A, that is, each map A + e, (A) is continuous from Kpert(E) into L?(0, 27).

Let us now fix an orthonormal basis (e,)n>1 of H. For each A € Kperf(E), denote by Uy :
Ha — H the unitary operator defined by setting Upe,,(A) = e, for every n > 1. Since ||Tg| < M,
one can define a map @ : Kperr(E) = Bp(H) by setting

O(A) = UATAU;1 for every A € Kpere(E).

Since ®(A) and T are unitarily isomorphic, ®(A) is chaotic if and only if Ty is, which holds true
exactly when Q N A is dense in A. Thus, we have

O HCHp (H)) = W.

Claim 3.8 will allow us to conclude the proof, provided that we are able to show that the map & is
continuous from Kperf(E) into (B as(H), SOT*). This relies on the following observation. For every
A € Kpert(E), let us denote by Py : L?(0,27) — Ha the orthogonal projection of L?(0,2) onto
Ha, and by Jp : Ha — L?(0,27) the canonical embedding of H, into L?(0,27). In other words,
Ja = P}.

CrLAM 3.11. For any f € L?(0,2n), the map A > Up P, f is continuous from Kpes(E) into H;
and for every x € H, the map A + Jy\Uy ' is continuous from Kpert(E) into L2(0,27).

PROOF OF CLAIM 3.11. Fix f € L?(0,2m). Since Paf = Y. (f,en(A)) en(A), we have
n=1

UsPaf =) (f,en(d)) en.

n=1

The maps A — e,(A), n > 1, being continuous, it suffices to show that the convergence of the
above series is uniform (with respect to A) on compact subsets of Kperf(E) in order to derive the



36 3. DESCRIPTIVE SET-THEORETIC ISSUES

continuity of the map A — Uy Py f. Now, we have for any N > 1

B(d) = || 3 (Fea(d))en

n>N

= Y )P Jf - S0 en () en(W)][
n>N

n=1

In particular, the maps A — Ry (A) are continuous. Since the sequence (Ry)n>1 is non-increasing,
it converges uniformly to 0 on compact subsets of Kperf(E) by Dini’s Theorem. This proves the
first part of Claim 3.11. The proof of the second part is exactly similar. O

Let us now prove that ® is continuous from Kper(E) into (Bar(H),S0T*), which amounts
to showing that for any = € H, the maps A — ®(A)z and A — ®(A)*x are continuous. Since
Tx = Pp\TJy, we have

@(A)x = UAPATJAUX1$ and CI)(A)*.’L' =UAP\T™ JAlex.

By Claim 3.11, the map A — fa := TJA\U, ' is continuous from Kper(F) into L2(0,27). By Claim
3.11 again, and since the map A ~ UpP, takes values in a bounded subset of B(L?(0,2m),H),
the map A — ®(A)x = Up Py fa is continuous. Likewise, the map A — ®(A)*z is continuous. The
equality ®~1(CHys(H)) = W, the continuity of ® and Claim 3.8 now imply that CHys(H)) is a
true IIY set in (B (H), SOT). O

Combining Lemmas 3.6 and Lemma 3.10, we see that we have finally shown that CH,/(H) is a
IT subset of (B (H), SOT), and a true ITY subset of (B (H), SOT*), and thus proved Proposition
3.4.

1.3. Complexity of UFHC,,(H) and UFHC),(H) N CH;(H). In this section, we study
the descriptive complexity of the sets UFHCy/(H) and UFHCy,(H) N CHy(H) in the space
(B (H),S0T*), for any M > 1. Although we have been unable to determine the exact complexity
of these sets, we obtain some simple upper bounds and some rather non-trivial lower bounds. Our
first result relies on the following observation, first made in [10] and then developed in [15].

LEMMA 3.12. Let (V,)g>1 be a countable basis of (non-empty) open subsets of H, and let T be
a bounded operator on H.
(1) Assume that T belongs to UFHC(H), and let xo € H be a U-frequently hypercyclic vector
for T. For each q > 1, denote by 20, the upper density of the set Nr(xo,Vy). For any
integers q, N > 1, define

G,I,N::{xGH; In>N : #{lgign;Tierq}2n§q}.

Then

G:=[1 1 Caw

g1 N>1
is a dense G subset of H which consists entirely of U-frequently hypercyclic vectors for
T.

(2) Conversely, assume that there exists a sequence of positive numbers (§4)q>1 such that for
any ¢, N > 1, the open set Gg n defined by the formula above is dense in H. Then T is
U-frequently hypercyclic and admits a dense Gy set of U-frequently hypercyclic vectors x
which satisfy

dens Np(x,Vy) > 6,  for every ¢ > 1.
We deduce from this the following proposition:

PROPOSITION 3.13. For any M > 1, the set UFHC () is I1I$ in (B (H), SOT), hence also
in (Ba(H),SOT*).
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PROOF. Let us denote by Q% the set of all positive rational numbers. It follows immediately
from Lemma 3.12 that an operator T € B r(H) belongs to UFHC,,(#) if and only if

Vg>136€Q  VN>1Vp>13z €V, In>N : #{1<i<n;T'z eV} >né.
In order to prove that UFHC;(H) is ITY in (B, (H), SOT), it is enough to check that each set

{TeBy); #{1 <i<n; Tiwe V) >ns}

is S0T-open in By, (H). This is easy: if Ty belong to this set, one can find k > nd distinct integers
1 <iy,...ix < n such that T} x belongs to V, for every s = 1,..., k. If T € B (H) is sufficiently
close to Tp for the SOT-topology, it still satisfies Tz € V, for every 1 < s < k, and thus belongs
to our set. Hence UFHC s (H) is I in (B (H),S0T), and thus in (B (H), SOT*) as well. O

REMARK 3.14. An “alternative” proof of the Borelness of UFHCj;(#H) could run as follows.
According to Lemma 3.12, an operator T belongs to UFHC(#H) if and only if quasi-all vectors
x € H (in the Baire category sense) are U-frequently hypercyclic for T'. So, for T' € B (H), we
may write

T € UFHC (M) <= Y*z € H (z is U-frequently hypercyclic for T).

Since the relation B(T,z) «— (x is U-frequently hypercyclic for T') is Borel in the product space
(Bar(H),S0T) x H, and since the category quantifier V* preserves Borelness (see for instance [38,
Section 16.A]), it follows that UFHC), () is Borel in (9B (#), SOT).

REMARK 3.15. In view of Proposition 3.13, it is natural to wonder whether the class of fre-
quently hypercyclic operators FHC s () is also Borel in (HCps(#), SOT). Let (V,),>1 be a count-
able basis of open sets for H. An operator T' € B (H) is frequently hypercyclic if and only
if

weH (Vg2 13€QiIN =1V > N : #{1 <i<n; T'x € V,} > no);
and since the relation R(T, z) defined by the expression between brackets is Borel in 9B, (H) x H,

we deduce that FHC/(H) is a 31 (that is: analytic) subset of (B (H), SOT). It is quite tempting
to conjecture that it is in fact non-Borel in (B (H), SOT).

We are now interested in the complexity of the class UFHC;(H) N CHps(H). Our first result
gives an upper bound:

PROPOSITION 3.16. The set UFHCy(H) N CHy(H) is a difference of XY sets in the space
(Brr(H),S0T*), i.e. it can be written as A\ B, where A and B are both SOT*-X9 sets.

The proof of this relies on the following lemma, which characterizes in a rather surprising way
the U-frequently hypercyclic operators within the class of chaotic operators. We state it without
proof as it follows from Theorem 5.23, to be proved below.

LEMMA 3.17. Let T be a chaotic operator on H. Then T is U-frequently hypercyclic if and
only if ¢(T) > 0.

PROOF PROPOSITION 3.16. By Lemma 3.17, we have UFCH,(H) N CHy(H) = cf,(H) N
CHus(H), where
¢ (H) ={T € HC(H); ¢(T) > 0}.
Hence, since CHy;(H) is SOT*-II by Proposition 3.4, it suffices to show that c},(#) is SOT*-
29, Let (V,)4>1 be a countable basis of non-empty open subsets of H, and observe that, by the
definition of ¢(T), an operator T' € HCys(H) belongs to ¢ (H) if and only if
Je€ QT Vg>1VYN>132 €V, In>N: #{1<i<n;|T| <1} > ne.

This condition is easily seen to define an SOT*-X9 subset of B (H); and since HC s (H) is G5 in
B (H), it follows that ¢}, () is SOT*-X9. This concludes the proof of Proposition 3.16. O

Our second step in the study of the complexity of UFHC;(H) N CHr(H) is
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PROPOSITION 3.18. There is no SOT*-X9 set A such that G-MIXy(H) N CHy(H) € A C
UFHC () U CHp (H). In particular, UFHCy (H) N CHpr (M) is not SOT*-X9 in By (H).

The proof relies on two lemmas. The first lemma says that there is no Gs set A such that
G-MIX;(H) N CHp(H) € A C UFHC )y (H) U CHpy(H), whereas the second lemma will allow us
to use a direct sum argument to show that in fact, there is no X9 set A with this property.

Our first lemma reads as follows. Recall that we denote by Q the set of all “rationals” of the
Cantor space C,

Q = {a = (a(i))i>1 € C; a(i) = 0 for all but finitely many ¢}.

LEMMA 3.19. There exists a continuous map o — Ty, from C into (B (H),S0T*) with the
following two properties:

- if a € Q, then T, is chaotic and mizing in the Gaussian sense, and hence chaotic and
U-frequently hypercyclic;

- if a € Q, then the spectrum of Ty is reduced to the point {1}, and hence Ty, is not chaotic
and not U-frequently hypercyclic.

PrROOF. The very last part of the second assertion follows from the fact that the spectrum of
a chaotic or U-frequently hypercyclic operator has no isolated points ([49]).

We assume that H = £2(N), endowed with its canonical basis. For any unilateral weight
sequence w = (wj);>1, let us denote as usual by B, the associated weighted shift acting on H.
If inf;>q |w;| > 0, the operator T,, = I + B,, is chaotic and mixing in the Gaussian sense since
it admits a spanning holomorphic eigenvector field defined in a neighborhood of the point 1 (see
Lemma 2.8). On the other hand, if w; — 0 as j — oo, then o(B,) = {0}, so that ¢(T,) = {1}.
So, setting ¢ := M — 1 > 0, it is enough to find a continuous map a — w(a) from C into (0, cN
such that inf;>q w;j(a) > 0 if @ € Q while wj(a) = 0 as j — oo if & € Q. Once this is done, the
map «a = Ty, := T Will enjoy the two properties stated in Lemma 3.19. Now, it is quite easy to
define such a map a — w(a): just set, for every j > 1,

. where nj(a)=#{i <j; a(i) =1}

c

wj(a) = T

Lemma 3.19 is thus proved. (I

To state our second lemma, let us choose a sequence (H,),>1 of infinite-dimensional closed
subspaces of H such that H can be decomposed as the orthogonal direct sum of the spaces H,,

ie. L=, >, Hn.

LEMMA 3.20. Let T € B(H) have the form T = Eanl T,, with respect to the decomposition
H= @nZI H., where T,, € B(Hy,) for each n > 1.

(i) If all operators T,, are chaotic and mizing in the Gaussian sense, then so is T.
(ii) If T is U-frequently hypercyclic or chaotic, then so are all operators T,.

PRrROOF. (i) Assume that all operators T}, are chaotic and mixing in the Gaussian sense, and fix
for each n > 1 a mixing Gaussian measure with full support u,, for T,,. Each second-order moment
an |z ||?du((x,)) is finite; and by rescaling (i.e. replacing each measure p, by a measure fi,
defined by setting fi,,(B) = ju, (g, B) for every Borel subset B of H,,, for a suitably small &,, > 0),
we may assume without loss of generality that the series >, -, an |z ||?dpen (2,,) is convergent.

Let us denote by p the infinite product measure &), pn on the product space [[,,~; Hn.

Then
/ (Z (e )dn Tn)) Z/ 2| 2dpin (22) < 00,

n>1 Mo “p=1
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from which it follows that p is in fact concentrated on the set

H .= {(wn)n21 S H Hns 7;::1 ||xn||2 < OO}

n>1

We may therefore define a probability measure p on H as follows: for any Borel subset C of H,

w(C) = u({(xn)nzl € H; ixn c c})

This measure y is obviously Gaussian, and it is T-invariant because each measure p,, is T),-invariant.
Indeed, for any bounded Borel function f : H — R, we have

eman= [ /(T autte) = [ (3 a) o) = [ s

n=1

The measure p has full support. Let indeed V be a non-empty open set in H. Choose a point
a € V, and € > 0 such that B(a,2¢) C V. We may assume that a belongs to H1 & --- & Hy for
some N > 1, where N is so large that

(6) Lo el (@) < 2

n>N

where HY := {(Cﬂn)nzN € [Lon Hni Domey llzal® < oo} and p" := @, v tn- Then the set
{(xn)n>1 € H; 2721 Zn € V'} contains

A= {(mn)n21 €eH; z1+ - +ay € B(a,e) and Z lznl* < 52}.
n>N
Moreover, if we set AN := {(z,)n>n; Y pon lZnl < €2}, then pV (AN) > 0 by (6). Also, setting
Uy = ®n§N pn and Ay = {(z1,...,2N); 1 + -+ N € Bla,e)}, the fact that the measures
{1, - .., pi have full support implies that py (Ax) > 0. Hence u(V) > u(A) = pn(An) ¥ (AN) >
0.

Finally, T is mixing with respect to u because each operator T,,, n > 1, is mixing with respect
to fi,,: this can be shown easily by checking that pu(ANT~*(B)) — u(A)u(B) as k — oo for any
Borel sets A, B C H whose definition depends on finitely many coordinates only with respect to
the decomposition H = ,,~; Hn.-

Thus, we have shown that 7' is mixing in the Gaussian sense. Finally, since all operators T;,
are chaotic, it is easily checked that the periodic points of T" are dense in H; hence T is chaotic.

(ii) Fix n > 1. If we denote by 7, : H — H,, the canonical projection of H onto H,, then
Tom, = m,T. Since m, is continuous and onto (that it has dense range would suffice for our
argument), (ii) follows easily: if © € H is a U-frequently hypercyclic vector for T, then z,, := m,x
is a U-frequently hypercyclic vector for T,,; and if T is chaotic, then m,(HC(T')) C HC(T;,) and
7 (Per(T)) is a dense subset of H,, consisting of periodic vectors for T,. O

It is now easy to deduce from Lemmas 3.20 and 3.19 that no subset A of B,(H) with the
property that G-MIX s (H) N CHp(H) € A C UFHC s (H) U CHpy(H) can be SOT*-X9, and thus
to prove Proposition 3.18.

PROOF OF PROPOSITION 3.18. Let us fix a set A as above. Decompose H as H = D,,~; Hn,
where the spaces H,, n > 1, are infinite-dimensional. Let us define a map ® : CN — B,,(H) as
follows: for every & = (a,)n>1 € CN,

o(a) = PTa,,

n>1
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where the operators T,,, € By (H,), n > 1, are given by Lemma 3.19. Then ® is continuous, and
Lemmas 3.20 and 3.19 imply that

A =W={a= ()1 €CY; ¥n>1": a, €Q}.

Since W is a true IT9 subset of CN, hence not a X9 set, it follows that A cannot be 9. This
concludes the proof of Proposition 3.18. O

Our last result along these lines is

PROPOSITION 3.21. There is no SOT*-I1J set B such that FHCy (H) N CHy(H) € B C
UFHC s (H). In particular, UFHC (%) N CHpy (H) is not SOT*-II3 in B (H).

The proof of Proposition 3.21 make use of the machinery developed in Chapter 6 below. The
reader may therefore prefer to skip this proof and return to it after reading Chapter 6.

PRrOOF. In what follows, we assume that H = ¢5(N), endowed with its canonical basis. Let
My be such that 1 < My < M, and choose an even integer C' > 3 large enough to have
s _1lcok > _ 1k
(7) Mo+ 2" My 29 <M and Y 2hMp OO <1
k=1 k=1

Now, let us denote by D the set of all infinite sequence of integers ¢ = (6(’“));.320 with 60 =1
such that C' < 6% < C*% and §*) > C' 5% Y for every k > 1. This is a closed subset of NN and
hence a Polish space. For any element § of D, we denote by Ts the operator of Cy-type on H
defined as follows: for any k& > 1

k
_%5( )

AW =tk R = pp and w;

Tl i 6 <i< Al

Note that in the terminology of Chapter 6, T looks exactly like an operator of Cy 1-type with
k) = %5(’”, except that in the definition of the weights v*) and wgk) the constant 2 has been
replaced by My. (See Section 2 for the definition of C-type operators, and Section 2 for the
definition of C ;-type operators.) Observe that if § = (6(*));>o belongs to D, then 6 > C* for
all £ > 1. By (7), it follows that ||T5]| < M for every 6 € D. Moreover, it is clear that the map
§ + Ty is continuous from D into (B (H), SOT*).

The key point of the proof that UFHC p; (H)NCH s (H) is not SOT*-I1 is the following lemma,
which is actually nothing but a reformulation of the forthcoming Theorem 7.2, in a slightly different
setting.

(k)_{MO it 1<i<o®),

LEMMA 3.22. Let § = (6(k))k20 belong to D. Then the operator Ts is always chaotic, and Ty
is U-frequently hypercyclic if and only if 6(k)/C4k does not tend to 0 as k — oo; in which case T
18 in fact frequently hypercyclic.

PrROOF OF LEMMA 3.22. We apply a modified version of Theorem 7.2, with p = 2. Accord-

ingly, we set for every k > 1

§(k=1) _ 1 5(k) §(k=1) _15(k)
=My 2 VAW =g

Since 6% < C=15k+D) < 15(+D e have 6F) — 15(k+D) < 150 < 5= — 150 from which

Cc?*,

_1ick
it follows easily that the sequence (7yx)r>1 is non-increasing. Moreover, we have v, < M, ¢ C%
for all k > 1. Hence condition (7) above yields that

o0
PIERHAESE
k=1

The analogues of the “additional assumptions” in Theorem 7.2 are thus satisfied, and it follows
that T is U-frequently hypercyclic on H if and only if §*) /C** does not tend to 0 as k — co. [
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Now, let B C B (H) have the property that FHCy(H) N CHp(H) € B C UFHCp(H).
Consider the map ® : D — B, (H) defined by setting ®(d) := Ts for every § € D. As already
mentioned, the map @ is continuous from D into (B (H),S0T*). By Lemma 3.22 we have

®Y(B) =D\ Dy, where Dy={5cD; C**§k) 5 0ask — oo}
Now, a proof quite similar to that of Claim 3.3 shows that Dy is a true Hg set in D, so that D\ Dy

is a true X9 set in D. Hence B cannot be II$ in (B,7(H),S0T*). This concludes the proof of
Proposition 3.21. O

We summarize the statements of Propositions 3.16, 3.18 and 3.21 in the single Proposition
3.23.

PROPOSITION 3.23. The following statements hold true.
(1) The set UFHC (M) N CHy (M) is a difference of £ sets in (B (H), SOT*).
(2) There is no SOT*-XY set A such that G-MIX(H) N CHy(H) € A C UFHCy(H) U
CH(H). In particular, UFHCp (H) N CHpy (M) is not SOT*-X9 in By (H).
(3) There is no SOT*-IT3 set B such that FHC(H) N CHy (H) € B € UFHC(H). In
particular, UFHC p;(H) N CHp (M) is not SOT*-II3 in B s (H).

As a straightforward consequence of Proposition 3.23, we obtain:
COROLLARY 3.24. The set UFHC s (H) is neither Y, nor TIS in (B (H), SOT*).

PROOF. By Proposition 3.23, UFHC ;(H) is not X9, and it is not I1J because CH s (H) is TIS
and UFHC;(#H) N CHas(H) is not. O

Another immediate consequence is
COROLLARY 3.25. The set TMIX(H) N CHys(H) is a true IIY set in (B (H), SOT*).

PROOF. By Propositions 3.2 and 3.4, TMIX,(H) N CH s (H) is I13; and by Proposition 3.23,
it is not Eg. ([l

REMARK 3.26. Propositions 3.4 and 3.23 together formally yield the statement that, since
CH(H) is IS in (B s (H), SOT*) while UFHCy(H) N CHyy(H) is not I19, these two sets cannot
be equal; in other words, there exist chaotic operators in B,;(H) which are not U-frequently
hypercyclic. However, there is nothing magic here: the proof of Proposition 3.23 relies heavily on
a construction, carried out in Chapter 6, of explicit chaotic operators which are not U-frequently
hypercyclic.

REMARK 3.27. The proof of Proposition 3.23 has established that the set ¢}, (H) = {T €
HCp (H); ¢(T) > 0} is a true SOT*-X9 subset of B s (H).

REMARK 3.28. It is likely that TMIXj;(H) and CHps(H) are both true IIJ subsets of the
space (Byr(H),S0T), i.e. II{ but not X, that UFHC s (H) is a true II{ set in (B (H), SOT*),
and that UFHCy;(H) N CHps(H) is a true difference of X9 sets in (B (H), SOT*). However, we
have been unable to prove any of these facts.

2. Some non-Borel sets in B,,(H)

We conclude this section by showing that some natural classes of operators defined by dynam-
ical properties are non-Borel in the space (2B (H), SOT*), for any M > 1.

If T is any class of Hilbert space operators, we will say that an operator T' has a restriction
in T if there is a closed T-invariant (infinite-dimensional) subspace £ of H such that the operator
T\¢ induced by T on £ belongs to I'(£). We denote by [(H) the class of all operators T' € B(H)
admitting a restriction in T'.

PROPOSITION 3.29. Let I'(H) be a class of operators on H such that G-ERG(H) C I'(H) C
HC(H). For any M > 1, the set I'pr(H) is non-Borel in (B (H), SOT*).
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Before proving Proposition 3.29, we recall that for every compact subset A of T\ {1}, T :
Ha — Ha denotes the Kalisch operator associated to A (this notation has been introduced in the
proof of Proposition 3.4). For any compact subset E of T\ {1}, we denote by Ko (F) the set of
all infinite compact subsets of E.

LEMMA 3.30. Let E be a compact subset of T\ {1}. There exists a sequence (ey)n>1 of Borel
maps from Koo (E) into L?(0,2m) such that (e, (A))n>1 is an orthonormal basis of Ha for every

A e Ko(E).

PrOOF. By the Kuratowski-Ryll-Nardzewski Selection Theorem (see [38, Section 12.C]), there
exists a sequence (&,,)n>1 of Borel maps &, : K(E) — E such that {£,(A); n > 1} is a dense subset
of A for every A € K(E). If A belongs to K (E), there exists a sequence ((,(A))n>1 of distinct
elements of A such that {¢,(A); n > 1} is dense in A. Indeed, it suffices to set (1 (A) = &1(A) and,
for every n > 1, ¢, (A) = &, (A) where ky, :=min{j > n; forall 1 <i<j, §(A) #E(A)}. Then
the maps A — (,(A), n > 1, are Borel on K (E), and by construction the elements ¢, (A), n > 1,
are distinct and form a dense subset of A. Applying the Gram-Schmidt orthonormalization process
to the sequence ( fent A))nZl; which is linearly independent, we get the required orthonormal basis
(en(A))n21 of HA. ([l

The key step in the proof of Proposition 3.29 is the following result of Waterman [53].

LEMMA 3.31. If A is a compact subset of T\ {1}, the operator T, admits spectral synthesis,
which means that every closed Ty -invariant subspace of Hp is spanned by the eigenvectors belonging

to it. In other words, any invariant subspace £ C Hy for Ty has the form € = Hg for some compact
set K C A.

We are now ready to prove Proposition 3.29.

PROOF OF PROPOSITION 3.29. Let us fix a non-trivial arc E C T\ {1} such that |Tg|| < M.
As in the proof of Proposition 3.4, let (e,)n>1 be an orthonormal basis of #, and for any A €
Koo(E), denote by Uy : Ha — H the unitary operator sending e, (A) to e, for all n > 1, where
en(A) is given by Lemma 3.30. Then define a map ® : Koo (E) — B (H) by setting

®(A) = UNTAUL"  for every A € Koo (E).

Proceeding as in the proof of Proposition 3.4, and using the fact that the maps A — e, (A), n > 1,
are Borel on K (FE), we deduce that the map ® is Borel from K (E) into (B, (H), SOT*).

If A € Ko(F) is uncountable, it admits a perfect subset K, so the restriction of Th to the
invariant subspace H g (which is nothing else but Tk ) is ergodic in the Gaussian sense. Thus ®(A)

belongs to G—/EEG(’H) - f('H) On the other hand, if A is countable then, by Lemma 3.31, Ty

has no hypercyclic restriction. Hence ®(A) belongs to B(H) \ffb(?—l) C B(H)\T(H). So we have
proved that

07! (Pu(H) ) = Koo(E) \ Kul(B):

Since K, (F) is notoriously non-Borel in IC(E) (see [38, Section 27.B]) and hence also in K (FE)
because the latter is Borel in K(E), this concludes the proof. ]

REMARK 3.32. The same proof shows that GTDHXM(H), the family of all operators T €
B (H) admitting a restriction which is mixing in the Gaussian sense, is non-Borel in the space
(Bar(H),S0T*). Instead of working with the class IO, (E) of countable subsets of E, one has to
consider the class Uy N K(E) of compact subsets of E which are sets of extended uniqueness, also
called Uy-sets. By definition, a compact set A C T is a Up-set if it is negligible for every probability
measure o on T whose Fourier coefficients vanish at infinity. It follows from the main result of [9]
that if A C T\ {1} is not a Up-set, then the Kalisch operator T has a restriction which is mixing
in the Gaussian sense, whereas if A is a Up-set, T is not mixing in the Gaussian sense. Moreover,
it is well-known that the class Uy N IC(E) is non-Borel in K(E) for any non-trivial arc E C T (see
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[39, Th. VIIL.2.6]). Using these facts, one can prove the aforementioned result in exactly the same
way as above: the key identity

o (Tar (M) = Koo (B) \ Ko
at the end of the proof of Proposition 3.29 is replaced by
o1 (T (1)) = Koo () \ Up.

REMARK 3.33. Let T'g(H) be a class of operators of H with the following two properties:
(i) G-ERG(H) € T'o(H);
(ii) if A is any countable compact subset of T\ {1}, the Kalisch operator T does not belong
to Iy (H)
Then, exactly the same proof as that of Proposition 3.29 shows the following: if I'(H) is a class
of operators on H such that G-ERG(H) C T(H) C To(H) then, for any M > 1, the set Ty (H) is
non-Borel in (B (H), SO0T).

Our aim is now to prove that for any M > 1, the class DCHj;(#H) of distributionally chaotic
operators in Bys(H) is non-Borel in (Br(H),S0T*). Note that this is in strong contrast with
Proposition 2.40, according to which the class of densely distributionally chaotic operators in
B (H) is Gs. The proof of this statement relies on the following observation:

LEMMA 3.34. An operator T € B(H) is distributionally chaotic if and only if it has a restriction
which is densely distributionally chaotic.

PROOF. If there exists a closed subspace & of H such that T'|¢ is densely distributionally
chaotic, T' admits in particular a distributionally irregular vector belonging to £, and hence T is
distributionally chaotic. Conversely, assume that T is distributionally chaotic, and let x € H be
a distributionally irregular vector. Let £ be the closed T-invariant subspace spanned by the orbit
of x, and denote by S the operator induced by T on £. As the vector x € £ has a distributionally
unbounded orbit under the action of S (i.e. ||S™x| — oo as n — oo along a subset B of N, with
dens(B) = 1), S admits by [11, Prop. 8] a comeager set of vectors with distributionally unbounded
orbit. Also, the orbit of 2 under the action of S is distributionally near to 0 (i.e. ||S™x| — 0 as
n — oo along a subset A of N, with dens(A) = 1). It follows that ||S™y|| — 0 as n — oo along A
for every vector y belonging to the linear span of the vectors SPz, p > 0. Hence S admits a dense
set of vectors whose orbit is distributionally near to 0. By [11, Prop. 9], it follows that the set of
vectors whose orbit under the action of S is distributionally near to 0 is comeager in £. By the
Baire Category Theorem, we conclude that S admits a comeager set of distributionally irregular
vectors, i.e. S is densely distributionally chaotic. (I

We will also need the following characterizations of (densely) distributionally chaotic Kalisch
operators:

LEMMA 3.35. Let A be a compact subset of T\{1}, and let Ty be the associated Kalisch operator
on Hy.
(1) The operator T is densely distributionally chaotic if and only if A is a perfect set.
(2) The operator Ty is distributionally chaotic if and only if A is uncountable.

PROOF. Let us start by proving assertion (1). If A is a perfect set then T is an ergodic
operator, so that it is in particular densely distributionally chaotic by [30]. Conversely, suppose
that A is not a perfect set, and let \¢ be an isolated point of A. Then the eigenfunction fy, does not
belong to H\1a,}, and Ha can be written as a topological direct sum H, = span[fx,] © Ha\ (a0}
Hence, there exists a non-zero vector go of Ha with (go, fx,) = 1 and g L Ha\x,}, and a bounded
projection @ of Ha onto Ha\qx,}, such that f = (go, f) fa, + Qf for every f € Ha. It follows
that TR f = (go, [)AG fro + TRQS for every n > 1, so that (go, Tx f) = {go, f)Ay. Hence ||TX f] >
[{g0, )|/ |lgoll for every n > 1. Thus, we see that the orbit under Tx of any vector f € H, with
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(90, f) # 01is bounded away from 0, and hence that no such vector can be distributionally irregular.
So Ty is not densely distributionally chaotic.

The proof of assertion (2) relies on Lemmas 3.31 and 3.34 above. By Lemma 3.34, T} is
distributionally chaotic if and only if it admits a restriction which is densely distributionally chaotic.
Since, by Lemma 3.31, any such restriction is of the form Tk € B(Hk), where K is a compact
subset of A, it follows from assertion (1) that T is distributionally chaotic if and only if A contains
a perfect set, which happens exactly when A is uncountable. This proves (2). [

With these tools at hand, we are ready to prove

PROPOSITION 3.36. For any M > 1, the class DCHy(H) of distributionally chaotic operators
in B (H) is non-Borel in (B (H), SOT).

PRrROOF. Consider the class T'(H) = T'o(H) := DDCH(H). This class I'o(#) satisfies the
assumptions of Remark 3.33: G-ERG(H) is contained in T'g(H) by a result of [30], and it follows
from Lemma 3.35 that whenever A is a countable subset of T\ {1}, the Kalisch operator T} is not
(densely) distributionally chaotic. Since G-ERG(#H) C I'(H) C TI'g(#), we conclude that for any
M > 1, T'p;(H) is non-Borel in (B;(H),S0T*). But [y (H) = DCHy(H) by Lemma 3.34, and
hence DCH;(H) is non-Borel in (B, (H), SOT*). O

COROLLARY 3.37. For any M > 1, the class DCH; (1) \DDCH;(H) of operators in B pr(H)
which are distributionally chaotic but not densely distributionally chaotic is non-Borel in the space

(B ar (M), SOT*).

ProoOF. Since DDCH )y (H) is a G5 subset of (HCps(#),S0T*) by Proposition 2.40, it is in
particular Borel. So one immediately deduces from Proposition 3.36 that DCHy, () \DDCH ;(H)
is non-Borel in (B (H), SOT*). O

REMARK 3.38. Corollary 3.37 formally yields the existence of distributionally chaotic operators
which are not densely distributionally chaotic. But the existence of such operators can of course
be deduced directly from Lemma 3.35: a Kalisch operator T} is distributionally chaotic but not
densely distributionally chaotic if and only if A is uncountable but not perfect.



CHAPTER 4

Ergodicity for upper-triangular operators

1. Definitions and setting

Let us fix an orthonormal basis (ex)x>1 of the complex separable infinite-dimensional Hilbert
space H. We will denote by Hgo the linear subspace of H consisting of finitely supported vectors
with respect to the basis (ex)r>1-

In this section, we concentrate ourselves on the study of the typical properties of operators
on ‘H which are upper-triangular with respect to the basis (ey)r>1, with diagonal coefficients of
modulus 1 and distinct. This class of operators will be denoted by To(H):

To(H) :={T € B(H); Vk >1 : Tey € spanley,...,ex] and |(Tey, ex)| = 1}.
For each T € To(H) and k > 1, we write A\ (T') := (Te, ex). We also define
T(H) = {T € To(H); Vi, k > 1 with j £k, \;(T) # \(T)}
and

Tina(H) := {T € T(H); the diagonal coefficients A (T") are rationally independent }.

Recall that if (Ax)xe; is a finite or infinite family of elements of T with A, = €2 for every k € I,

it is said to be rationally independent if for any finite subset F of I, the family (0j)rer consists of
Q-independent numbers.

For any M > 0, we denote by To ar(H), Tar(H), and Tina, v (H) the set of operators in B (H)
which belong to To(H), T(H), and Tinq(H) respectively. It is not difficult to check that these sets
are G5 in (B (H),S0T). So we may state:

Fact 4.1. For any M > 0, the sets o p(H), Tar(H), and Ting, v (H) are Polish spaces when
endowed with the topology SOT.

Note that (by the Gram-Schmidt orthonormalization process) any bounded operator on H
with spanning unimodular eigenvectors associated to distinct eigenvalues is upper triangular with
respect to some orthonormal basis (eg)r>1, and belongs to the associated class T(H). Hence, given
the importance in linear dynamics of unimodular eigenvectors, it is quite natural to investigate
typical properties of elements of the spaces (Tps(H), SOT), M > 1. Some interesting and unexpected
phenomena occur in this setting, which we will describe shortly. Meanwhile, we state for future
reference two elementary facts concerning the SOT-continuity of certain maps naturally associated
to operators in T(H).

When T belongs to T(H), there exists for each k& > 1 a unique vector u € spanley, ..., ex] with
(u, e) = 1 such that Tu = A, (T)u. We denote this vector by ug(T), so that Tug(T) = Mg (T)ug(T).
We also denote by ux(T') the normalized eigenvector uy(T") = ug(T)/||ur(T)|| of T. Here are some
useful observations concerning the functions A\p and wug:

LEMMA 4.2. For each k > 1, the functions T +— \e(T) and T — ug(T) are continuous from
(%(H),S0T) into T and H respectively.

45
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PROOF. The continuity of the function 7" +— A (T') is obvious from the definition of A\;(T"). As
to the function T+ ug(T), the fact that (ug(T),er) = 1 implies that
1 k
T)e) = —— 3 (Tej,eq) (ur(T), ¢;
<uk( )56 > )\k(T) _ >\1(T) j§_1< e] € > <uk( ) e]>
for every 1 < i < k — 1. A straightforward induction then shows that the scalar functions T +—
(up(T),e;), 1 <i <k —1, are SOT-continuous on T(H), from which Observation 4.2 follows. O

LEMMA 4.3. Let u € Hoo, and choose r > 1 such that u € span[ey,...,e.]. For anyT € T(H),
the vector u can be written as u =Y, _; ar(T)uk(T), where the functions T — ap(T), 1 <k <r,
are continuous from (T(H),S0T) into C.

ProoF. This follows directly from Cramer’s formulas and the continuity of the maps T +—
Uk (T), k Z 1. U

2. Perfect spanning is typical

The following result shows that within any class Ty (H), M > 1, the perfect spanning property
(equivalently, ergodicity in the Gaussian sense) is a typical property with respect to the topology
SOT.

PROPOSITION 4.4. For every M > 1, the set PSPANy (H) = G-ERGp(H) is comeager
in (Zp(H),80T). Consequently, ERGy(H), FHCp (H) and UFHCy (H) are all comeager in
(T (H),S0T).

For the proof, we will make use of the following useful criterion for perfect spanning, which
goes back to [28, Th. 4.1] (see also [30, Prop. 6.1]).

LEMMA 4.5. An operator T € T(H) has a perfectly spanning set of unimodular eigenvectors as
soon as the following property is satisfied: for every e > 0 and every k > 1, there exists [ > 1 with
l#k and o € C such that |Jug(T) — aw(T)]| < €.

PrROOF OF PROPOSITION 4.4. From Lemma 4.5, we deduce that the set

o= N U U {TeTu@); [lux(T) - am(T)| <27}

i>1 k>1 l#k a€C

is contained in PSPAN,,(H). Moreover, it follows from Lemma 4.2 that & is also a G5 subset of
(T (H),S0T). So we just have to prove that & is dense in Tjps(H); and for this, it is enough to
show that each open set

0= U T esu(): fulT) —oud@) <277}, ik =1
l#k «a€C
is dense in (Tps(H), SOT).

Let us fix i,k > 1 and A € Ty (H). We have to show that for any r > 1, there exists an
operator T' € ; j, such that Te; is arbitrarily close to Ae; for every j =1...,r. Without loss of
generality, we assume that r > k. Without loss of generality, we can suppose also that | A|| < M.
Indeed, if ||A|| = M, consider the function f : ¢ — ||D+t(A—D)|| defined on the compact set [0, 1],
where D is the diagonal operator given by the diagonal coefficients of A. The function f is convex
on [0, 1], so that its maximum is attained at either 0 or 1. Since f(0) =1 < M = f(1), f(t) < M
for every t € [0,1). If ¢ € [0,1) is sufficiently close to 1, the operator A’ := D + ¢(A — D) is upper-
triangular with respect to (ex)r>1, has the same diagonal coefficients as A, satisfies [|A’|| < M, and
is as close as we wish to A for the SOT topology. We thus suppose to begin with that || Al < M.

We set, for every r > 1, H, :=span|ey,...,e,], and denote by P, the orthogonal projection of
H onto H,.
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For every 1 < j < r, we denote by \; the j-th diagonal coefficient of A: \; = (Aej,e;). We
recall that |A\;| = 1. Let us denote by A, the set of all sequences A = (A;);>, with |A;| = 1 such
that all the elements A;, j > r are distinct and distinct from 1, A1,..., A, and A; — 1 as j — oo.
For any element A of A, and any unilateral weight sequence w = (w;);>1, we consider the operator
Axw on H defined by

A Ae; forevery 1 <j<r
e; =
Awhi wj—rej_r + Aje; for every j > 7.

Note that since [|Al| < M, [[Axu|| < M for every A € A, provided [lw|[oc := sup;>q |w;| is small
enough. Hence in this case Ay, belongs to Ty (H). Moreover, we have Ay ,e; = Ae; for every
Jj=1,...,r. Let us now fix a weight sequence w such that w; — 0 as j — 0o and |lw||oc is small
enough. We are going to show that Ay, belongs to O;j provided the sequence X is well-chosen.
This will prove the density of O; ; in (Tpr(H), SOT).

We first note the following fact concerning the eigenvalues of the operator Ay .

CrLamM 4.6. For any A € A,, the only eigenvalues of Ay, are A,...,\,, the terms of the
sequence A, and possibly the point 1. Moreover, for any ¢ > 1, the eigenspace associated to A; is
spanned by the vector u;(Ax ).

PRrROOF OF CLAIM 4.6. If ) is any complex number, solving formally the equation Ay ,x = Az
with z = 3.5, z;e;, yields that

I
(A= NP.x = ijijrrej and Tjpr = —x; for every j >r.
j=1
Since w; — 0 and A; — 1 as j — oo, we infer from these equations that there is no solution

xz € H\ {0} to these equations if X does not belong to the set {\;; 7 > 1} U {1}. This proves the
first part of Claim 4.6.

For the same reasons combined with the fact that the ); are distinct and distinct from 1, we
also observe that if a vector x € H satisfies Ay ,z = A\;x for some ¢ > 1, then x; = 0 for all j > 4.
Hence ker(Ay ,, — A;) is contained in H; for every ¢ > 1, which proves the second part of Claim 4.6
since Ay, belongs to T(H) and the eigenvalues A; of Ay ,, are all distinct. O

The key point is now the following observation. Recall that Aq, ..., A, are fixed, that 1 < k < r,
and that we are especially interested in Agx. Recall also that
Ukgr(Axw) = Ukr(Axw)/ [ue4r (Axw) -
CLAIM 4.7. There exists a positive constant v such that for any A = (X;);>, € A;,
[Agtr — Ak| > ’ydist(ﬂk_‘_r(A)‘,w),Span[uk(A)hw)]).

PROOF OF CLAIM 4.7. For any A = (\;)j>, € A,, the restriction of the operator Ay, to #,
is equal to P, AP,, which does not depend on A. Also, ker(Ay o, — Ax) = spanfug(Ax )] € Hy, and
the r eigenvalues A1, ..., A\, of P.AP, are distinct. These observations imply that there exist two
positive constants 6 and C' such that, on the one hand:

(8) VAeA, Ve eH, : ||[(Arw — Ax)z|| > 0 dist(x, spanfug (Axw)])
and, on the other hand:

C

: -\ >
(9) VA€ C\{,....; Ve eH, ¢ ||(Arw — N x”_dist()\,{)\l,...,)\r})

]]-

Now, a simple computation yields that
Vg + €ktr

Upgr (A w) = —————75
(||’Uk||2 + 1)1/2
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where v, € H, satisfies the equation (Ay, — Ak4r)Vk + wrer = 0. Since Agy, does not belong to
the set {A1,..., A}, we may write vy = —wi(Axw — Metr) €k, and (9) implies that

|| ||

dist (s (A -5 A ) Notr — M|
On the other hand, (Ax . — Ak)vk = (Akgr — Ak)Ux — Wieg, so that by (8)

>C

(10) [ox]| = €

|Notr — Ak| okl + |wr| > 0 dist (vg, spanfug(Ax w)])-
Hence

(IMr = Nl lJvg]] + for]) + 1

SN

dist (vk + €gir span[uk(A)\yw)]) <
and

dist (Wt (Arw), sPanfug(Ax w)])

1( [ vkl |wi| 1
< = [Megr — As T +

/2 1/2 1/2
0 (lox)l? + 1) (lox)l? + 1) (o lI? + 1)

1 1
<3 (Imr — el + '“”“') +

okl /- Nl
1 1 1
<N Apgr — Ml =+ 5+ 55— by (10).
<= MI(5+ 5+ o) y (10)
Setting 1/v:=1/+1/C+1/(C 1I<I11£1 |w;|) yields the desired inequality. O
<j<r

We now come back to our main proof: recall that our aim is to show that Ay ., belongs to O;

for some suitable choice of A € A,.. By Claim 4.7, we have
s Abar — A

(1) dist (s (Ar ), spanfun(Ax.0)) < 2=
We now choose A € A, such that A\r4, is so close to A\ that the quantity on the right hand side of
the inequality (11) is less that 27", where 1, = min(1, (2||ug(Axw)|) ™). Note that ), does not
depend on A since the restriction of Ay, to H, does not. With this choice of A, there exists a scalar
B € C such that [Tk (Axw) = Bur(Axw) || < 27"k Since [[U1r(Axw)|l = 1 and 27" < 1/2, we
have ||Bur(Axw)|l > 1/2, so that |5 > nx. It follows that ||awgtr(Axw) — wr(Arw)| < 277, where
a = 1/(B||urs+r(Axrw)l]), and this shows that Ay, belongs to O; .

Thus we have proved that O, is indeed dense in (Tp;(H),S0T) for every i,k > 1, which
concludes the proof of Proposition 4.4. O

for every A € A,

REMARK 4.8. It is natural to wonder whether the class of chaotic operators is also comeager
in Tpr(H). This does not look quite clear from the above proof.

3. Ergodicity vs ergodicity in the Gaussian sense

In this section, our aim is to show that ergodicity and ergodicity in the Gaussian sense are
not the same property. More precisely, we will show that there exist ergodic operators on H
which have only countably many eigenvalues, and hence are not ergodic in the Gaussian sense
since G-ERG(H) = PSPAN(#). This result will follow from a Baire category argument performed
in a suitable class of upper-triangular operators on #, namely operators which are the sum of a
diagonal operator and a weighted backward shift operator (with respect to some fixed orthonormal
basis of H).
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3.1. Statement of the main result. Let (e;)r>1 be as usual a fixed orthonormal basis of
the Hilbert space H. To every pair (A\,w) = ((/\k)kzh (wk)kzl) of bounded sequences of complex
numbers, we associate the operator T} ,, defined by

T}\,w = D)\ + Bw,

where D) is the diagonal operator with diagonal coefficients Ay, k& > 1, associated to the basis
(er)k>1, and By, is the backward shift operator with respect to (ey)r>1 with weights wg, k& > 1.
Each operator T) ,, belongs to T(H). Now, let us introduce the following notation: we denote by

A the set of sequences A = (A;)k>1 of distinct complex numbers of modulus 1 such that (Ag)r>1
tends to 1 as k tends to infinity, and for every M > 0, by Qj; the set of all weight sequences
w = (wk)r>1 such that 0 < wy < M for every k > 1. We also set Q := ;.o Q-

We endow the set A with the topology induced by £°°(N). Since A is contained in the separable
closed subspace ¢(N) of £°°(N) consisting of all convergent sequences, and since A is easily seen
to be a G5 subset of £>°(N), it follows that A is a Polish space. As for the spaces Qu, M > 0,
we endow them with the product topology. Each Q) being a G subset of RN, it is thus a Polish
space as well.

Our aim is to investigate the properties of the operator Ty, for a typical choice of parameters
(A w) € A x Q. For every M > 0, we consider the following two sets of parameters:

Ey = {(A,w) EAXQu; Ty is ergodic}

and
Dy i={(Aw) € A xQu; 0p(Thw) C { M, k> 1} U {1}},

where 0,(T) denotes the point spectrum (i.e. the set of eigenvalues) of an operator T' € B(H). The
operators belonging to D), are those which have the smallest possible set of eigenvalues among the
operators T ,, (A\,w) € A x Q. In particular, they have countable unimodular point spectrum.

Our main result can now be stated as follows:
THEOREM 4.9. For any M > 2, the two sets €y and Dy are comeager in A x Q.
As an immediate consequence, we obtain

COROLLARY 4.10. There exist ergodic operators on H, of the form Ty o, (A,w) € A x Q,
which have countable unimodular point spectrum. In particular, these operators are ergodic but not
ergodic in the Gaussian sense.

Theorem 4.9 consists of two statements (that € is comeager, and that D) is also comeager)
whose proofs turn out to completely independent of each other. The remainder of this section is
organized as follows. We first prove in Subsection 3.2 some simple facts concerning the eigenvalues
and the eigenvectors of the operators T} . Then we prove in Subsection 3.3 that D, is comeager
in A x Qpy; this proof is actually rather straightforward. Subsection 3.4 contains an auxiliary
proposition which will be crucial for showing the comeagerness of £,;. And finally, we prove in
Subsection 3.5 that £, is comeager in A x ;.

3.2. Preliminaries on the eigenvalues of T} ,,. The following simple lemma gives a com-
plete description of the eigenvectors of the operators T} 4.

LEMMA 4.11. Fiz (A,w) € A xQ, and A € C. Then X is an eigenvalue of Tx ., if and only if
the vector

e WY
E)"w(A) = €1+Z(H o )en
n>2  j=1 J

is a well-defined vector of H. In this case, ker(Ty o — X) =span[Ej ,(\)].

ProOF. It suffices to solve formally the equation Ty ,z = Az in CN. O
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REMARK 4.12. From Lemma 4.11, we see in particular that for every k > 1,

k n—1 )\k Y
Exw) = e+ Y ([T 2 )en
n=2 j=1 J

is an eigenvector of T) ,, with eigenvalue A, and hence is proportional to ug(Th,w)-

The next lemma provides necessary conditions for the point spectrum of T} ., to be either
“maximal” or “minimal”. For any element w of ), we denote by R, the radius of convergence of

the series
>
“ .. wj

w
j>1 1

LEMMA 4.13. Let (A,w) be an element of A x 2.

(1) If Ry > 2, the map X — Ex o()) is well-defined and analytic on o neighborhood of the
unit circle T. Consequently, span [Ey () ; k > ko] = H for every ko > 1.
(2) If R, =0, the eigenvalues of Ty ,, are contained in the set {\y; k> 1} U{1}.

PROOF. The first part of assertion (1) is a direct consequence of Lemma 4.11: since R, > 2,
the series defining Ej () is convergent in #H for every A belonging to the open disk D(0, Ry, — 1),
and the map A — Ej () is analytic there. In particular, this map is analytic in a neighborhood
of T. Since the sequence (Ag)r>k, has an accumulation point in D(0, R, — 1) for every ko > 1, it
follows from the analyticity of Ej, that the closed linear span of the vectors Ey (), k& > ko,
coincides with the closed linear span of all the eigenvectors Ey (), A € T. Since Ej o(Ax) is
proportional to ug(Th ) and since the vectors ug(Th o), k > 1, span a dense subspace of H, this
proves the second part of assertion (1).

As to assertion (2), suppose that R, = 0. Let us show that the series defining Fj ,,(\) does
not converge when A € C does not belong to {\r; & > 1} U{1}. So let fix such a complex number
A. Since A tends to 1 as k tends to infinity, there exists a number 6 > 0 such that |A — \g| > §
for every k > 1. Hence

n—1

A=\ P §2n=1)
H Ll > 5 for every n > 2.
i=1 Wi (wl ...wn_l)
Since R, = 0, it follows that
n—1 2
S =
n>2 | jo1 Wi
and hence Ej ,()) is not defined as a vector of H. O

3.3. Comeagerness of D,;. Observe that the set of all w € ,; such that

R, = liminf(w; ...w;)"7 =0
j—o0
is G5 in Qy, and that this set is dense in £, because it contains all sequences w € Q;; such that
w; tends to 0 as j tends to infinity. Hence the set {(A, w) € A X Qpr; Ry, = 0} is G5 and dense in
A x Q). By part (2) of Lemma 4.13, it follows that D, is comeager in A x Q.
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3.4. An auxiliary result. The next proposition will be a key step to prove that ergodic
elements are typical in A x Q;; for any M > 2.

In what follows, we fix M > 2. For any w € Q,/, any open set U # () in H and any « > 0, we
set

0o = {AEA;HTZl I(ay,...,a,) €C" :

Zakuk(TA,w) €U and Z lag [ |Jur(Th,w)||? < a}.
k=1 k=1

Note that O , is an open subset of A: this follows from the continuity of the map (A, w) — T o
from A x Qs into (Tar41(H), SOT), combined with Lemma 4.2.

PROPOSITION 4.14. Let U be a non-empty open set in H, and let a > 0. If w € Qpy is such
that Ry, > 2, then the open set O , is dense in A.

PROOF. This relies on some arguments used in [30], more precisely in the proof of [30,
Th. 5.12].
Let us fix @ € A and € > 0. We are looking for an element A of Of , such that ||]A — 0| <e.

Writing 0 as @ = (0y)k>1, we fix kg > 1 such that |8, — 1| < &/3 for every k > k¢. By assertion
(1) of Lemma 4.13, the linear span of the vectors Eg ,(6s), s > ko, is dense in H, so there exists

an index @ > 1 and complex numbers by 41,. .., bg 44 such that the vector
ko+Q
z = Z bs Eg,,(0s) belongs to U.
s=ko+1

We now proceed as in [28] or [30], and replace each coefficient bs by a certain sum of scalars of
the form Z;V:_Ol Cs+jo With Z;V:_Ol les+jq|? sufficiently small. More precisely, we define

1
CstjQ = N bs and vsijo = Fg w(0s)

for every ko +1 < s <kyp+ @ and every 0 < j < N — 1, where N > 1 is an integer so large that

ko+NQ 1 ko+Q
(12) o lewPllonl® = N Y b 1Ee,w (0, < a.
k=ko+1 s=ko+1
ko+NQ
Observe that > c¢xur = z by construction, so that we have
k=Fko+1
ko+NQ
(13) Z cvr € U.
k=ko+1

The next step in the proof is to define A € A with ||]A—0||« < ¢, in such a way that each vector
Uk, ko +1 < k < ko + NQ, can be approximated by the eigenvector E o, (A;) of Ty ., associated
to the eigenvalue \g, and the \g, ko +1 < k < kg + NQ, are all distinct. The sequence A is defined
as follows: we keep Ay = 0, for every 1 < k < kg+ @Q and every k > kg + NQ, so that in particular
A —lask — o0 Forkg+1<s<ky+Qand1l < j <N -1, wechoose A\s4jQ extremely
close to 0, in such a way that these new coefficients A\, are all distinct and distinct from all the
0r. Since we already know that A\, — 1 as k — oo, the sequence A defined in this way belongs to
A. We can certainly ensure that [Asj41 —0s| <eforallky+1<s<ko+Qand1<j<N-1,
and thus that

Astj@ — Ostjql <e/3+10s1jo — 1 +16s — 1] <e

since s > k. All the remaining coefficients of A and 8 coincide, and hence ||A — 8]« < €.

Let us now show that the quantities

HE/\,w()‘SvLjQ) - Us+jQ|| = ||Ez\,w()‘s+jQ) - Eﬂ,w(QS)Ha
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where kg +1 < s < kg+Q and 0 < j < N — 1, can be made as small as we wish, provided each
coefficient ¢4 ;¢ is close enough to 6,. We consider separately two cases.

- Assume that kg +1 < s < kg + @Q and j = 0. In this case A\; = 6, by definition, so that
EA,w()‘s) = Eo,w(9s)-

- Assume now that kg +1 < s < kg+Q and 1 < j < N — 1. In this case, we use the explicit
expression of the eigenvectors provided by Lemma 4.11 and write

s n—1 n—1
ExwAstiQ) — Eg,w(ls) = Z [ H <>\s+]fj)\l> ; H (05w9i)}en
i i=1 ’

n=2 i=1
s+jQ n-—1 )\
£ (e
n=s+1 i=1

Fix an arbitrarily small number 6 > 0. The integers s and j being fixed, and the numbers A; and 6;
being by definition equal for every 1 < i < kg+ @, the norm of the first sum in the above expression
can be made less that 6/2, provided that the difference |\ ;o — 05| is sufficiently small. As for the
second term, observe that s belongs to the set {1,...,n— 1} for every s+ 1 <n < s+ j@, so that
the term ;10 — As = As+j@ — 85 always appears in the product H?:_ll(AsHQ — A;)/w;. Thus if
[As+jg — 05| is sufficiently small, the norm of the second term is less than 6/2 too. Hence one can
ensure that [|[Ey o»(Astj0) — Eo,w(ls)|| <dforall kg+1<s<ky+Qand1<j<N-1L

So we have proved that for any ¢ > 0, one can construct A € A such that ||A — || < € and
lEx w(Ax) —vgl] < 6 for every ko + 1 < k < ko + NQ. If § is now chosen small enough, the two
conditions

ko+NQ ko+NQ
Z Ck E)\,w()\k) €U and Z |Ck|2 HE)\,wO\k)”Q <
k=ko-+1 k=ko+1

simultaneously hold true, by (13) and (12) respectively. Remembering that each vector ux (T, w)
is proportional to Ej (), we eventually obtain that there exist complex coefficients ay, ko +1 <
k < ko 4+ NQ@, such that

ko+NQ ko+NQ
Z ag ug(Th,w) €U and Z lag | Juk (T, ) I < a.
k=ko+1 k=ko+1
Hence A belongs to O ,, and this concludes the proof of Proposition 4.14. |

3.5. Comeagerness of £);. The proof that £, is comeager in A x ), ultimately relies on
the the following ergodicity criterion proved in [30, Cor. 5.5].

PROPOSITION 4.15. Let X be a separable Banach space, and let T € B(X). Assume that for
any open set Q # O of X with T~1(Q) C Q, any neighborhood W of 0, and any ¢ > 0, there
exists a T-invariant probability measure p on X with compact support such that u() = 1 and
pw(W)>1—e. Then T is ergodic.

In order to apply this criterion, we need the following lemma, which makes the link with
Proposition 4.14.

LEMMA 4.16. Let T € T(H), let U be a non-empty open set in H, let € > 0, and let W be a
neighborhood of 0 in H. Let also r > 1, and assume that the eigenvalues A1 (T), ..., \(T) of T are
rationally independent. Finally, let aq,...,a, be r complex numbers and assume that the vector
S hey akug(T) belongs to U. If the quantity Y ;_, |ak|?||uk(T)||? is small enough, there exists a
compactly supported T-invariant measure i on H such that

e u(Qu) =1, where Qu =,5, T "(U), and
o u(W)>1-e.
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PrROOF. We only sketch the proof, since the argument is already essentially given in [30].
Let (xx)r_; be a sequence of independent random Steinhaus variables defined on some standard
probability space (2, F,P), and let u be the measure on H given by the distribution of the H-
valued random variable >, _; xxarur(T). This measure y, which may be called the Steinhaus
measure associated with the vector u = 22:1 arug(T), is T-invariant and has compact support.
As observed in [30, Fact 5.16], the independence of the unimodular numbers A\ (T'), ..., A.(T) and
the condition Y, _, agui(T) € U imply that p(Qy) = 1. Also, we have by orthogonality of the
Steinhaus variables xx, 1 < k < r, that

/ ]|*du(x) = E (Z Xkakuk(T)> = Jarl® ux(T)]>.
H k=1 k=1

It then follows from Markov’s inequality that p(W) > 1 — e provided that the quantity

D lanl? (D)
k=1
is sufficiently small. O

We can now proceed to the

PROOF THAT €7 IS COMEAGER IN A x Q3. Let (Up)p>1 be a countable basis of non-empty
open subsets for H. For each w € Q;, define the following G5 subset of A:

Gw = ﬂ m O[Ljpgﬂ“

p>1 q>1

and set

G:={(A\w) eAxQ;AecG,}.
CLAIM 4.17. The set G is a dense G subset of A x Q.

PRrROOF OF CLAIM 4.17. The fact that G is Gs in A x Q,; is immediate. As to its density, we
first observe that since M > 2, Proposition 4.14 implies that G, is dense in A as soon as w; = M
for j sufficiently large. It follows that the set {w € Qps; Gy, is dense in A} is dense in Qj. Since
this set is also clearly G in Qjy, it is thus comeager in ©j;. The Kuratowski-Ulam theorem then
implies that the G5 set G is comeager and hence dense in A x ;. O

It is now easy to show that the set £,; is comeager in A x Qj;. Indeed, it follows from
Proposition 4.15 and Lemma 4.16 that T} ,, is ergodic as soon as A belongs to G, and the terms
Ak, k > 1 of the sequence A are rationally independent. Hence the set

Ginga = {(/\7 w) € G; the unimodular numbers A\, k > 1 are rationally independent}

is contained in £€);. Since the conditions that the numbers Ay should be rationally independent is
easily seen to define a dense G subset of A, Claim 4.17 implies that Gi,q is a dense G subset of
A x Q)/, and it follows that £,/ is indeed comeager in A x Q. O

REMARK 4.18. To show that the ergodic operators are comeager in A x ), we have used
in a crucial way the fact that the terms Ag, k& > 1 of the sequences A € A involved in the proof
are rationally independent. This is not so surprising in view, for instance, of [30, Fact 5.16]. Yet
the role of independence in these issues remains rather mysterious. We develop this a little bit in
Section 4 below.
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3.6. Some comments on ergodicity and unimodular eigenvalues. Corollary 4.10 pro-
vides examples of hypercyclic operators on a Hilbert space with a spanning set of unimodular
eigenvectors but only countably many unimodular eigenvalues. The question of the existence of
such operators was raised by Flytzanis in [23, p. 8], and answered recently in [40]. Indeed, the
chaotic non-frequently hypercyclic operators constructed there have only countably many eigen-
values, which are all roots of unity, and the associated eigenvectors span the space. Corollary
4.10 strengthens this by showing that there even ergodic operators with the above properties, and
that such examples are in some sense much less exotic than suggested by the rather technical
construction of [40].

However, since all the operators we have been considering here have infinitely many eigenvalues,
Corollary 4.10 leaves open the question of the existence of ergodic operators on H without any
etgenvalue.

Such operators are known to exist on the Banach space Cy([0, 27]) of continuous functions on
[0, 27] vanishing at the point 0. One example is the Kalisch operator T, again defined by the
formula

)
TF(0) = ¢ (9) - / it f(t) dt,

but now considered as acting on Cy([0, 27x]). It is shown in [6] that T is ergodic in the Gaussian
sense (see also [8, Section 5.5.4]), but T does not admit any unimodular eigenvalue since its L?
eigenfunctions are not continuous.

On the other hand, an operator on a Hilbert space which is ergodic in the Gaussian sense
definitely has a lot of unimodular eigenvalues (recall that G-ERG(H) = PSPAN(#)); but a general
ergodic operator might possibly have no eigenvalue at all.

4. Additional remarks

In this section, we present a short discussion of some questions motivated by the results
obtained above, as well as some further results concerning dynamical properties of the “diagonal
plus shift” operators T} .

4.1. Some natural questions. Two questions concerning the existence of operators on a
Hilbert space with particular ergodic-theoretic-like properties remain unanswered at this stage of
our work. The first one is

QUESTION 4.19. Do there exist U-frequently hypercyclic operators on H which are not fre-
quently hypercyclic?

It was proved by Bayart and Rusza in [10] that such operators do exist on the space ¢y, but the
question was left open for Hilbert (or even reflexive) spaces. In the light of the discussion carried
out in Chapter 3, it seems natural to conjecture that the two classes UFHC(#H) and FHC(#) should
have different descriptive complexity, and hence should be distinct; but we have been unable to
solve the question using this approach. The second question runs as follows:

QUESTION 4.20. Do there exist frequently hypercyclic operators on H which are not ergodic?

This question comes from [30], where it is proved that frequently hypercyclic non-ergodic
operators do exist on the space ¢g. The proof of this result again relies on a construction of [10]:
it is proved in [30] that the frequently hypercyclic bilateral weighted shifts T on ¢g(Z) defined in
[10] satisfy ¢(T') < 1, and thus cannot be ergodic. For some reasons, we found it rather tempting
to try to attack this question by Baire category methods; but again, we did not succeed in this
way.

We do solve Questions 4.19 and 4.20 in Chapter 7 below, but using widely different methods.
The operators we will use are generalizations of those introduced by the third named author in

[40] in order to solve the question of the existence of a chaotic non-frequently hypercyclic operator.
The two main results we will obtain are that indeed, there exist U-frequently hypercyclic operators
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on H which are not frequently hypercyclic, as well as frequently hypercyclic operators which are
not ergodic. All our examples turn out to be chaotic; and we will complement these results by
showing that there also exist on H operators which are chaotic and topologically mixing but not
U-frequently hypercyclic.

In another direction, the role of rational independence in all that concerns the links between
unimodular eigenvalues and ergodicity properties of operators needs to be clarified. To be a little
more specific, let us consider the class Ting(H) of operators in T(H) whose diagonal coefficients
are rationally independent. Rather surprisingly, it seems that very little is known concerning such
operators. For example, to our knowledge the following question is open:

QUESTION 4.21. Let T be a hypercyclic operator belonging to Tina(H). Is T necessarily
ergodic? frequently hypercyclic? U-frequently hypercyclic?

The only currently known examples of hypercyclic operators with spanning unimodular eigen-
vectors which are not frequently hypercyclic or not ergodic are those constructed in [40] and the
ones that will be considered in Chapter 6. As already mentioned, all these operators are chaotic.
Moreover, for many of these operators, the only unimodular eigenvalues are roots of unity and for
some of those, each eigenvalue has multiplicity one. So these operators belong to T(H) for some
suitably chosen orthonormal basis (e)r>1, but not to Tina(#H) for any basis (ex)r>1. A positive
answer to Question 4.21 would show that this is not accidental, i.e. that there must be a strong
amount of dependence between the eigenvalues of any of the operators constructed in [40] or in
Chapter 6 of the present work.

As a matter of fact, Question 4.21 seems to be open even for the operators Ty ,, = D + By,
considered in Section 3. Even more prosaically, it seems quite desirable (and perhaps not too
difficult) to determine when exactly an operator of the form T} ,, is hypercyclic.

4.2. More on the operators T),. We finish this section by collecting some simple facts
that we do know concerning operators of the form T} ,. Let us introduce the following notations.

e If w is a unilateral weight sequence, we set a1 (w) := 1 and

1
a;(w) == ——  for every j > 2.
wl ... w]71

Also, using the same notation as in Section 3 above, we denote by R, the radius of convergence
of the series ) a;(w)z’:

Rw = hIIllIlf |w1 c ‘w]‘_1|1/j.
j—o0

e To each A € TN, we associate polynomials Py j, j > 1, defined as follows: Py 1(A) =1 and

j—1
Py ;i(N) = H(/\ Ar) for every j > 2.
k=1

PROPOSITION 4.22. Let w be a unilateral weight sequence, and let X € TN,

(0) A complex number A is an eigenvalue of Ty, if and only if

Zlag w)? [P (V) < 0.

In this case, ker(T — \) = span [Ek,w()‘ﬂ where
Bxw(N) =) a;w)Pr (Ve
j=1

(1) If R, =0, then op(Taw) C {A; k> 1}.
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(2) If o(By) = {0} (e.g. if wj = 0 as j — o0), then 0(Th,) C {Ax; k> 1}. More generally,
0(Thw) is contained in the set {\ € C; dist(\,{\x}) < r(Bw)}, where r(By) denotes the
spectral radius of B,,.

Assume now that X belongs to A, i.e. that the elements N\, k > 1 are distinct and that A\, — 1 as

k — oo.

(3) If Ry > 0, then op(Th ) contains {\x; k > 1} U D(1, Ry) and is contained in {\g; k >
1} U D(1, R,).
(4) If Ry > supy>q | Ak — 1], then Tx, is ergodic in the Gaussian sense. Moreover, the map
A= By (A) is analytic on the open disk D(0, Ry, — 1).
(5) If Ry < supysq |Ax — 1], then Ty, is not hypercyclic.
(6) If Ry = supy>q | Ak — 1, let ko be the largest integer k > 1 such that [\, — 1| > Ry,. If
2
wl .. w.771
< 00,
jz%—&-l ()‘ko - Ako-‘rl) e (/\ko - /\])

then Ty ., is not ergodic in the Gaussian sense.

PROOF. (0) This is the content of Lemma 4.11.

(1) If A € C does not belong to the closure of {\g; k> 1}, then infy>1 |A — Ag| =0 > 0, and
thus |P;(A)| > 677! for all j > 1. If R, = 0, assertion (0) implies that A is not an eigenvalue of
Tyo-

(2) Let A € C. We have Ty, — Al = D¢ + B,,, where & = (§)>1 is defined by &, = A\, — A for
every k > 1. If § := dist (A, {\x}) > 0, then Dy is invertible and Ty, — AI can be written as

Thw — Al = De(I + Dg ' By) = De(I + Bg-1,),

where £ lw = (& 'wy)r>1. Moreover, since SUpy>1 &' = 1/4, the spectral radius of B, is at
most 7(B,,)/d. It follows that Ty, — Al is invertible as soon as § > r(B,,).

(3) We already know by assertion (0) that o,(Th ) contains {\x ; k> 1}. Now, let A belong
to the open disk D(1, R,), and choose r such that |A — 1| < r < R,,. Since A\ — 1, there exists
ko > 1 such that |\ — \g| < r for all & > ko. It follows that there exists a constant C' > 0 such
that |P;(\)| < CrJ for every j > 1, so that Ejy () is well-defined and analytic on D(1, R,,).

Conversely, assume that A does not belong to the set {\, ; k¥ > 1} UD(1, R,). Since A\ — 1,
one can find r > R, such that |[A—Ag| > r for k sufficiently large; and since A # Ay, for all k£ > 1, it
follows that there exists a constant ¢ > 0 such that |P;j(\)| > c¢r? for every j > 1. Hence Ej ()
is not well-defined.

(4) By assertion (3), the map A — Ej ., () is analytic on the disk D(1, R,,); so it is enough to
show that the vectors Ej ,(A), A € D(1, R,), span a dense subspace of H. Let y = ijl yje; be
a vector of H which is orthogonal to all the vectors Ejy (), A € D(1, R,,). We thus have

Zgjjaj(w)P)\yj()\) =0 for every A € D(1, R,).
j=1

The series above is convergent on the disk D(1, R,,), which contains all the points Ay by assumption.
So

Zgjjaj(w) Py j(Ax) =0 for every k > 1.
j=1

Since Py j(Ax) = 0 whenever j > k and P () # 0, it follows that ;a;(w) = 0 for every j > 1,
so that y = 0.

(5) Let ko > 1 be such that |[Ag, — 1| > R,. Then Ay, is an isolated eigenvalue of Ty, by
assertion (3), which is easily seen not to belong to the essential spectrum of Ty ,,. It then follows
from [35] that T, cannot be hypercyclic.
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(6) By assertion (1), we can assume that R, > 0, since otherwise the point spectrum o, (T )
of Ty, is countable, and T}, is certainly not ergodic in the Gaussian sense in this case. It suffices
to show that the unimodular eigenvectors of T} ,, are not perfectly spanning. Since (o,(T)NT) \
D(1,R,,) is a finite set by assertion (3), it is in turn enough to show that the vectors Ej «()),
A € D(1,R,,), do not span a dense subspace of H. So we have to find coefficients ¢;, j > 1, with
the property that

chP)‘J()\) =0 for every A € D(1, R,,),
j=1

with the additional requirement that
2
< 00, i.e. that Z lejwr - ~wj,1|2 < 00.
j=2

oo

(14) >

=1

aj(w)

We define the coefficients c; by setting c¢; = 0 for every 1 < j < ko, cx, = 1 and

J
cj = H (Mg, — Ni) "' for every j > k.
i=ko+1

Then condition (14) is satisfied by assumption. Moreover, the coefficients ¢; have been defined in
such a way that

N N A A
> PN =P, - [ (S for all N > ko + 1.
; ’ ’ Ako — Ak
j=1 k=ko+1

Since |Ag, — 1| > R, and Ay — 1 as k — oo, it follows that Z;‘;l ¢; Py ;(\) = 0 for every A such
that |[A — 1| < Ry,. This completes the proof of assertion (6). O






CHAPTER 5

Periodic points at the service of hypercyclicity

In this chapter, we depart from our standing assumption and work in the general context of
Banach spaces over K = R or C, not restricting ourselves to the Hilbertian setting. Actually, most
of our results hold in the framework of arbitrary Polish topological vector spaces, as should be
clear from the proofs.

Let thus X be a real or complex separable Banach space. Our aim is to obtain general sufficient
conditions for an operator T' € B(X) to be frequently hypercyclic or U-frequently hypercyclic.
These criteria are rather different from the classical ones, since they involve the periodic points of
the operator T'. They will greatly contribute to simplify some proofs in the next section, and they
might hopefully be useful elsewhere also. For any bounded operator 7' on X, we denote by Per(T')
the set of its periodic points, and by pery(x), or simply per(x), the period of a periodic point z of
T.

1. Precompact orbits and topological mixing

We start by giving a very simple criterion for an operator T' € B(X) to be topologically mixing,
which involves the points of X with precompact orbit under the action of T. We denote by Prec(T)
the set of points with precompact orbit.

PROPOSITION 5.1. Let T € B(X). Assume that Prec(T) is dense in X and that for every
neighborhood W of 0 in X and every non-empty open subset V of X, the set Npo(W, V) is cofinite.
Then T s topologically mixing.

PROOF. It suffices to show that for any vectors y € Prec(T), z € X, and any € > 0, the set
N7 (B(y,e), B(z,¢)) is cofinite. Since y is a vector with precompact orbit, there exists a finite
subset {y1,...,y4} of X such that any point of Orb(T,y) lies within distance less than €/2 of the
set {y1,...,ya}. In other words, there exists for any n > 1 an index i, € {1,...,d} such that
1Ty~ gl < /2.

By assumption, each set Nt (B(O, e), B(x —y;, 5/2)) is cofinite. Hence, one can find an integer
N such that for every n > N and every 1 <14 < d, there exists z,; € X such that

llznill <e and 1T" 20, — (& —yi)|| <e/2.
For every n > N, we then have
IT"(y + 2n,i,) — 2ll < NT"y = yi, [l + [T 20, — (@ —i,)[| <&

Hence y + 2y, belongs to B(y,e) and T"(y + 2, ) belongs to B(x,¢), which shows that every
integer n > N lies in the set N7 ((B(y,¢), B(z,¢)). O

Since periodic points have a finite orbit, Proposition 5.1 immediately implies the following
result.

COROLLARY 5.2. Let T € B(X). If Per(T) is dense in X and if for every neighborhood W of
0 in X and every non-empty open subset V of X, the set Np(W, V) is cofinite, then T is chaotic
and topologically mizing.

We also obtain in a similar fashion.

59
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COROLLARY 5.3. Let T € B(X). If there exists a dense set of points x € X such that T'x — 0
as i — oo and if for every neighborhood W of 0 in X and every non-empty open subset V of X,
the set Np(W, V) is cofinite, then T is topologically mizing.

Finally, the linearity assumption on the system (X,T) implies the following strengthened
version of Proposition 5.1.

COROLLARY 5.4. Let T € B(X). Assume that Prec(T) is dense in X and that there exists a
subset Xo of X with dense linear span such that the following property holds true: for any xo € Xo
and every € > 0, there exists N > 1 such that for every n > N, one can find z € X satisfying
lIz|| <& and || Tz — xo|| < e. Then T is topologically mizing.

PRrROOF. Let V' C X be a non-empty open set. Since X, spans a dense subspace of X, there
exist € > 0 and x = Z,I::l arrr € V with 2, € Xg and af # 0 for every 1 < k < K such
that B(x,¢) is contained in V. Moreover, by assumption, there exists N > 1 such that for every
1 <k<K,every n> N, one can find 2z, € X such that

€

€
z < ——7 and |T"zp; — k|| < —-
|| n,k” K|Oék| || n,k k” K|O[k‘
The vector z := Zszl agznk then satisfies ||z]] < € and ||T"z — z|| < ¢, and the desired result
follows from Proposition 5.1. O

REMARK 5.5. Unlike in Corollary 5.8 below, it is not possible, in Proposition 5.1, to replace
the assumption that all the sets N7 (W, V) are cofinite (W and V non-empty open subsets of X
with 0 € W) by the assumption that all the sets Np(U, W) are cofinite (W and U non-empty
open subsets of X with 0 € W), even if one assumes additionally that 7" is hypercyclic. Indeed,
every unilateral weighted backward shift has a dense set of points with finite orbit and is such that
Nr(U, W) is cofinite for every neighborhood W of 0 and every non-empty open set U; but there
exist hypercyclic weighted shifts which are not topologically mixing.

2. Uniform recurrence and topological weak mixing

In this section, we give a simple criterion for an operator T' € B(X) to be weakly topologically
mixing. It involves the uniformly recurrent points of T. Recall that a point € X is said to
be recurrent for T if, for any neighborhood O of z, the set Np(x,0) = {i € N; Tz € O} is
non-empty (or, equivalently, infinite). A point x € X is said to be uniformly recurrent for T if,
for any neighborhood O of z, the set Nr(x,0) has bounded gaps. For example, every periodic
point is obviously uniformly recurrent. The following more general fact will be useful. Recall
first that a compact, T-invariant subset K of X is said to be minimal if it has no proper (non-
empty) closed T-invariant subset. For example, if x is a periodic point of T' with period N, then
K = {z,Tx,..., TN "'z} is minimal. Recall also that we denote by &(T) the set of all unimodular
eigenvectors of T

LEMMA 5.6. Let T € B(X). If K is a compact minimal T-invariant subset of X, then every
point of K is uniformly recurrent for T. In particular, every point z € span&(T) is uniformly
recurrent for T'.

PROOF. The first part of the statement is well-known (and has nothing to do with linearity;
see e.g. [24, Theorem 1.15]). As for the second part, it is enough to show that if z belongs to
span E(T), then its closed T-orbit K = {T™z; n > 0} is a compact minimal T-invariant set.

Write z as z = SN

j=1Uj, where for every 1 < j < N, Tu; = ~yju; for some v; € T. Let I' be the
closed subgroup of TV generated by the N-tuple v := (71,...,vn). Then K = {Z;\;l Wily; w =
(w1,...,wn) € T}, so that K is compact (and, of course, T-invariant). So we just have to
check that K is minimal for the action of 7. Let a € K be arbitrary. We have to show that

any point y € K can be approximated as close as we wish by points of the form T"a, n > 0.
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Write a and y as a = Zjvzl wju; and y = Zjvzl n;u; respectively, where w = (w1,...,wn) and
n = (n,...,nn) belong to I'. For any integer n > 0, we have T"a = Z;\f:l Yjwjuj. Since the
N-tuples v = (7f,...,¥x), n > 0, are dense in T" (this follows from the fact that since the group
TV is compact, the closed semigroup generated by v is in fact a group), there exists an integer
n > 0 such that ™ is as close as we wish to w™1n = (wflm, e ,w;,lnN). Then T"a is as close as

we wish to y, as required. (Il

We can now state our criterion for topological weak mixing.

PROPOSITION 5.7. Let T € B(X), and let Z be a T-invariant subset of X consisting of
uniformly recurrent points. Assume that for every nom-empty open subset V. of X and every
neighborhood W of 0 in X, one can find a vector z € Z and an integer n > 0 such that z € W and
T"z € V. Then T is topologically weakly mizing and Z is dense in X.

PRrROOF. That Z is dense in X is clear from the assumption since Z is T-invariant. In order to
prove that T is topologically weakly mixing, we are going to show that Ny (U, W) NN (W, V) is
non-empty for any non-empty open subsets U, V of X and any neighborhood W of 0 in X. The so-
called three open sets condition (see for example [8, Ch. 4]) will then imply that T is topologically
weakly mixing.

Let us first show that for any neighborhood W of 0 and any open set V # 0, the set N (W, V)
has bounded gaps. Choose a vector z € Z and an integer n > 1 such that z belongs to W and T"z
belongs to V, and then an open neighborhood O of z such that O C W and T"(0O) C V. Since 2
is uniformly recurrent, the set N (z,0) has bounded gaps. Then n + N7 (z,0) has bounded gaps
as well, and the result follows since n + Np(z,0) C Nr(z, V) C Np(W, V).

We show next that Np(U, W) is non-empty for any non-empty open subset U of X and any
neighborhood W of 0 in X. By assumption, one can find a point x € W and an integer n > 1
such that z is a (uniformly) recurrent point of 7" and w := T"z lies in U. Since x is recurrent, one
can find an integer p > n such that TPx lies in W. Then TP~"u = TPx belongs to W, and hence
Nz (U, W) is non-empty.

It is now easy to conclude the proof: all the sets Np(W, V) have bounded gaps, and all the
sets N (U, W) contain arbitrarily large intervals, because they are all non-empty and the sets W
are neighborhoods of the fixed point 0. Hence any set of the form N (W, V) meets any other set
of the form N (U, W). O

As a first consequence of Proposition 5.7, we show that for operators having a dense set of
uniformly recurrent points, topological weak mixing is equivalent to some formally much weaker
“transitivity-like” properties.

COROLLARY 5.8. Let T € B(X), and assume that uniformly recurrent points of T are dense
i X. The following assertions are then equivalent:
(a) T is topologically weakly mixing;
(b) for every non-empty open subset V of X and every neighborhood W of 0 in X, the set
Nr (W, V) is non-empty;
(¢) for every non-empty open subset U of X and every neighborhood W of 0 in X, the set
Nr(U, W) is non-empty.

PRrOOF. Obviously, (a) implies both (b) and (c). Moreover, since the uniformly recurrent
points of T' are assumed to be dense in X, it follows at once from Proposition 5.7 (taking as Z
the set of all uniformly recurrent points for T') that (b) implies (a). So it remains to show that (c)
implies (b).

Suppose that (c¢) holds true, and let U and W be two non-empty open subsets of X with
0 € W. By (c) and since uniformly recurrent points of T" are dense in X, one can find a uniformly
recurrent point v € U and an integer n > 0 such that z := T™u belongs to W. Since u is in
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particular recurrent, one can find p > n such that TPu belongs to U. Then TP™"z = TPu lies in
U, so that Ny (W, U) is non-empty. O

As another consequence of Proposition 5.7, we now state a criterion for topological weak mixing
which formally resembles the ergodicity criterion stated as Proposition 4.15 above.

COROLLARY 5.9. Let T € B(X). Assume that for each non-empty open subset Q of X such
that T~1(Q) C Q and each neighborhood W of 0, one can find a minimal T-invariant compact set
K such that K NQ N W is non-empty. Then T is topologically weakly mizing.

PRrOOF. By Lemma 5.6, every point z in the above compact set K is uniformly recurrent for 7.
We apply Proposition 5.7, taking as Z the set of all uniformly recurrent points for 7. Let V be a
non-empty open subset of X. Applying the assumption of Corollary 5.9 to Q :=J,~, T "(V), we
immediately see that the assumption of Proposition 5.7 is satisfied, and hence that T is topologically
weakly mixing. O

COROLLARY 5.10. Let T € B(X), where X is a complex Banach space. Assume that for every
x € X and e > 0, there exist z € spanE(T) and n > 0 such that ||z|| < e and |T"z —z|| < e. Then
T is topologically weakly mizing and span&E(T) is dense in X.

PROOF. This follows from Lemma 5.6 and Proposition 5.7 applied with Z := span&(T). O

Our last corollary is the result on which we will elaborate to state our U-frequent hypercyclicity
and frequent hypercyclicity criteria.

COROLLARY 5.11. Let T € B(X). Assume that for every v € X and ¢ > 0, there ewxist
z € Per(T) and n > 1 such that ||z|| < e and ||[T"z — z|| < e. Then T is chaotic.

PROOF. Since periodic points are uniformly recurrent, exactly the same proof as that of the
previous corollary shows that T is topologically weakly mixing and has a dense set of periodic
points. [l

Corollary 5.11 can also be proved by a more constructive argument. Since the flexibility of
this alternative proof will prove extremely important below for the proofs of some (U-) frequent
hypercyclicity criteria, we present it here.

DIRECT PROOF OF COROLLARY 5.11. Before starting the proof, we note that the assumption
of Corollary 5.11 obviously implies that || T|| > 1 and that Per(T) is dense in X.

The first step of the proof is to observe that the assumption of Corollary 5.11 can be reinforced
as follows:

Cram 5.12. For any z € X, any € > 0, and any integers N, M > 1, there exist z € Per(T")
and n > 1 with n = M (mod N) such that ||z|]| < € and ||T"z — z| < e.

PrROOF OF CLAIM 5.12. Assuming (as we may) that x is non-zero, choose z’ € Per(T) and
n' > 1 such that ||| < ¢ and ||[T"2' — z|| < &, where ¢ > 0 has to be specified. Then
|T|1™|12]] > ||| — €, so that ||T||™ > ”z‘li,_s, It follows that if €’ is small enough, then n’ > N.
Let then 0 < r < N be an integer such that n :=n’ —r is equal to M (mod N), and set z =T"2’.
Then ||z|| < ||T)"e" < ||T||Ne', so ||z]| < e if € is small enough. Also, T"z = T™ ~"T"2 = T" 2/,
so that ||[T"z —z| <&’ <e. O

Let now (z;);>1 be a dense sequence of vectors of X belonging to Per(T"). A straightforward
induction shows that there exists a sequence (z;);>1 of elements of Per(T), as well as a strictly
increasing sequence (n;);>1 of integers such that, for every j > 1,

() N1zl < 277 T+ |
(i) 77925 — (25 — 2icy 20) | < 2775

(iii) n; is a multiple of the period of the vector >, . z;.
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Now, set
(o]
z = E Ziy
i=1

which is well-defined by (i). Let us now show that z is a hypercyclic vector for T. For every j > 1,

we have T (Z zi) = Z z; by (iii), so that
i<j i<j
Thz —xj = ZZZ + Tz + ZT”J}ZZ- — ;.
i<j i>j

It follows that
772 = il < |72 = (05 = 3 ) |+ 0TI
i<j 1>7

<277+ T 2T T <2707 by (i) and (i),
i>7

This terminates our direct proof of Corollary 5.11. ]

To conclude this section, we prove a slightly stronger version of Corollary 5.11.

COROLLARY 5.13. Let Xo be a subset of X with dense linear span. Suppose that for every
xo € Xo and every € > 0, there exist z € Per(T) and n > 1 such that ||z|| < € and |T"z — xo|| < €.
Then T is chaotic.

PRrROOF. It is suffices to show that the assumption of Corollary 5.13 can be extended from
vectors g of X to arbitrary vectors = of X: once this is done, Corollary 5.11 applies.

Since the linear span of Xy is dense in X, it suffices to consider vectors x of the form z =
> r—1 akxk, where z, € Xo and aj, € K\ {0} for every 1 < k < r. An induction on k, 1 <k <r,
allows us to construct, using (an obvious modification of) Claim 5.12, vectors z, € Per(T) and
integers I, 1 < k < r, with the following properties:

. 9
e
0) llall < ;s

(i) 71+ = | < ——
r|ag|
k—1
(iil) I is a multiple of di_1 = H perp(z;).
i=1

Now, set z := >, _; apzx: this z is clearly a periodic vector for T, with ||z|| < & by (i). Set also
n:=1I+---+1.. We have

I ™
Tz = Z apT"z, = Zalel+“'+l"'zk by (iii),
k=1

k=1
so that
T
|77z — 2f| <) Jap] |7 oz, — 2yl <& by (i)
k=1
This concludes the proof of Corollary 5.13. O

In the next two sections, we will give two “variations” of Corollary 5.11, where we show that
if the assumption || 7"z — z|| < ¢ is replaced by the requirement that the orbit of z approximates
that of = during a sufficiently large time, i.e. ||[T"t*2z — T*z|| < € for a large number of indices k,
then T is U-frequently hypercyclic, and even sometimes frequently hypercyclic.
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3. A criterion for U-frequent hypercyclicity

Here is the version of our criterion for U-frequent hypercyclicity that we will use in Chapter 6.

THEOREM 5.14. Let T € B(X). Assume that there exist a dense linear subspace Xo of X with
T(Xo) C Xo and Xy C Per(T), and a constant o € (0,1) such that the following property holds
true: for every x € Xg and every e > 0, there exist z € Xg and n > 1 such that

(1) llzll <&
(2) |IT"*F2 — Tkz|| < € for every 0 < k < na.

Then T is chaotic and U-frequently hypercyclic.

PROOF. Since X is dense in X, the periodic points of T are dense in X. So we only have to
show that T is U-frequently hypercyclic.

As in the direct proof of Corollary 5.11 given above, we first show that given N > 1, the integer
n appearing in the assumption of Theorem 5.14 can be supposed to be a multiple of N. Given
z € Xg and ¢ > 0, there exist 2/ € X and n’ > 1 such that ||2/|| < ¢’ and ||[T" %2 — Tkz|| < &’ for
every 0 < k < an’, where ¢’ > 0 has to be specified. Taking ¢’ small enough, we can assume (see
the proof of Claim 5.12) that n’ > N. Let then 0 < r < N be such that n := n’ —r is a multiple
of N, and set z = T"2’. Then z belongs to Xy because T'(X,) C Xo. Also |z|| < ||T||Ve’ < e if &
is small enough; and T"+*z = Ttk 5o that ||T" 2z — T*z|| < e for every 0 < k < an’. Since
n < n/, the inequality holds true a fortior: for every 0 < k < an.

Let now (z;);>1 be a dense sequence of vectors of Xy, and let (I;);>1 be a partition of N into
infinite sets. We define a sequence (y;);>1 of vectors of Xy by setting y; = x; for every j € I;.
In other words, the sequence (y;);>1 enumerates infinitely many times each point of the dense
sequence (2;);>1, and I; denotes the set of all indices j > 1 such that y; = ;.

By induction on j > 1, we construct a sequence (z;);>1 of vectors of X and a strictly increasing
sequence (n;);>1 of integers such that

(i) IT%2;]| <277 for every 0 < k < (1 + a)nj_1;

(11) ||T7.lﬂ'+kzj - .Tk(yj — ZKj.zi)H < 277 for every 0 < k < anj;
(iii) n; is a multiple of the period of the vector Zi<j Zi.
We set z := 2221 z;, which is well-defined by (i), and prove that z is a U-frequently hypercyclic
vector for T. Fix [ > 1. For every j € I, and every k > 0, we have by (iii)

Tnj+kZ — X = Tk (Z Zi> + Tnj+k2j — yj + Z Tnj+k2i.
i<j i>]
Moreover, if k is a multiple of per(x;) = per(y;), say k = mper(z;), we can write
m per(z1) (Z Zz) —y; = m per(w) (Z 2 — yJ)
i<j i<j
Hence we obtain that for any m > 0,
[t mer s gy < [[zmmeeten sy e (4 -3 |
i<j

o S

i>j
By (i) and (ii), it follows that for every j > 1 and every 0 < m < an;/per(z;), we have

|Tmatmeer(@) ;g < 277 + ZQ—i =9-U~-1),

i>]
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We deduce from this inequality that for any € > 0,

dens N (z, B(zy,€)) > limsup #{n; + mper(z;); 0 <m < an;/per(z;)}
jen (1+a)n;

> 2 59
(1+ a)per(a)
Hence z is a U-frequently hypercyclic vector for T', and Theorem 5.14 follows. (|

REMARK 5.15. The proof of Theorem 5.14 shows that T admits U-frequently hypercyclic
vectors z € X with the property that for every [ > 1, there exists §; > 0 such that

dens Np(z, B(xy,€)) > 8§ for every e > 0

(the point being that ¢; does not depend on €). Hence there exists, for every | > 1, a sequence
(ng,1)k>1 of integers of positive upper density such that 77!z tends to x; as k tends to infinity.
As x; is a periodic point for T, there is no contradiction in this (see [30, Rem. 4.8]).

3.1. Uniform recurrence, almost periodic points and U-frequent hypercyclicity.
Even if this is not quite clear at first sight, the following result generalizes Theorem 5.14 (see
Corollary 5.19 below).

THEOREM 5.16. Let T € B(X). Assume that the uniformly recurrent points of T are dense in
X, and that there exists a > 0 such that the following property holds true: for any e > 0 and any
non-empty open subset O of X, one can find x € O and an arbitrarily large integer n such that
|Tn**z|| < e for every 0 < k < an. Then T is U-frequently hypercyclic.

PROOF. It is enough to show that for any non-empty open subset V of X, there exists a
constant ay > 0 such that, for every N > 1, the open set

Gy,N ::{ueX; Im >N : #{i <m; TiueV}Zozvm}

is dense in X. Indeed, if (V,),>1 is a countable basis of open subsets of X, the density of each of
the sets Gy, v implies that G := ﬂN’q Gy, n is a dense G subset of X consisting of U-frequently
hypercyclic vectors for T.

So let V' be a non-empty open subset of X. Choose a uniformly recurrent point v € V', and

e > 0 such that B(v,e) C V. Since v is uniformly recurrent, the set
Dy :={k>1; |[T"v —v| < ¢/2}

has bounded gaps. Observe that we may call this set Dy since € depends on v and V', and v depends
on V. So there exist a constant ¢y > 0 and an integer My > 1 such that #(Dy NJ) > cy #J for
all intervals J of N of length at least My . We set
vy
Cl+a’
and we show that with this choice of ay, all the open sets Gy, n, N > 1, are dense in X. Let us
fix N > 1, and a non-empty open subset U of X. We have to show that G'y,; N U is non-empty.
Set O := U — v, which is a non-empty open subset of X. By assumption, one can find x € O and
an integer n > N such that an > My and | T"*z|| < ¢/2 for every 0 < k < an. Then u := z + v
belongs to U and our aim is to show that u belongs to Gy . For any 0 < k < an, we have

T 4w — o) < [T a]| + [Ty - o] < e/2 4+ [T" v - v]|;

ay o

in other words,
Vien,(1+a)n] @ |Tu—o|| <e/2+ [T — vl
Moreover, since the interval J = [n, (1 4+ «)n] has length at least My, we know that # (J N Dy ) >
Cv#J, 1.€.
#{ien,(1+a)n]; |Tv —v| <e/2} > cvan.
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It follows that ‘
#{1<i<(Q+am; |[T'u—2v| <e}>cyan,
and hence that u belongs to Gy n. (I

We now state and prove a few consequences of Theorem 5.16. For the first one, we need a
definition: if 7" is a bounded operator on X, a point = € X is said to be almost periodic for T if,
for every € > 0, the set

Dpc:={n>1Vk>1: ||T" e — TFz|| < &}

has bounded gaps. Thus, periodic points are almost periodic and almost periodic points are
uniformly recurrent. The following fact is more interesting.

EXAMPLE 5.17. Let T' € B(X). Then any vector x belonging to span £(T) is almost periodic
for T

PrOOF. We first recall that since z belongs to span&(T), it is uniformly recurrent for T°
(Lemma 5.6); so for any n > 0, the set D" := {n > 1; ||T"x — z|| < n} has bounded gaps.
Now, assuming that z is non-zero, we write z as * = .., u;, where u1,...,u, belong to &(T)
and are linearly independent. Then the restriction of T to the finite-dimensional subspace E :=
span (uq,...,u,) is power-bounded, being diagonalizable with only unimodular eigenvalues. Since
FE contains the T-orbit of z, it follows that there exists a finite constant C such that, for every
k>0,

| T+ — Tha) = | 75T — 2))| < C | - .
So the set D" with n := ¢/C is contained in D, ., which concludes the proof. O

From Theorem 5.16, we now deduce

COROLLARY 5.18. Let T € B(X). Assume that there exists some constant o > 0 such that,
for every non-empty open subset O of X and every € > 0, there exists an almost periodic point
x € O with the following property: for anyn > 0, one can find z € X and n > 1 such that ||z|| <n
and ||[T"Fz — T*z|| < € for all0 < k < an. Then T is U-frequently hypercyclic.

PROOF. By assumption, the uniformly recurrent points are certainly dense in X. In order to
check the second assumption in Theorem 5.16, let us fix a non-empty open subset O of X and € > 0.
Let us choose a non-zero almost periodic point zy € O satisfying the assumption of Corollary 5.18,
and then an integer M > 1 such that any interval of N of length M contains a point of the set

D:i={n>1;Vk>1: |T" gy — TFz|| < e/2}.

Now, choose 2z € X with ||2’| arbitrarily small and an arbitrarily large integer n’ > M such that
|77 +F 2 — Thag|| < /2 for every 0 < k < an’ (since x is non-zero, one can ensure that n’ be
arbitrarily large by taking ||2’|| small enough.) Having fixed 2z’ and n’ in this way, we can pick
0 < p < M such that n := n’ — p belongs to D. Then z := TPz’ has arbitrarily small norm, so
x = xg — z belongs to O. Moreover, since n < n/ and T"z = T2, we have for every 0 < k < an:

1T )| < [Tz — Thao|| + |T 20 — TV 42| < /2 + /2 = .
The assumptions of Theorem 5.16 are thus satisfied. O

Here is an immediate consequence of Corollary 5.18, whose statement is a bit less convoluted.
This result shows in particular that in Theorem 5.14, one can replace the assumption that the
vectors of X are periodic by the assumption that they are almost periodic. Moreover, it also
shows that it was in fact unnecessary to assume that X, was a linear subspace of X.

COROLLARY 5.19. Let T € B(X). Assume that there exist a dense subset Xo of X consisting
of almost periodic points for T and a constant « € (0,1) such that, for every x € Xo and every
e > 0, one can find z € Xo andn > 1 satisfying ||z|| < € and | T" *2—T*z|| < & for all0 < k < an.
Then T is U-frequently hypercyclic.
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Since Corollary 5.19 is so similar to Theorem 5.14, it is natural to ask whether one can provide
a “constructive” proof of it resembling that of Theorem 5.14. We do so now, with the additional
assumption that the above dense set X is a linear subspace of X.

CONSTRUCTIVE PROOF OF COROLLARY 5.19. Define sequences (x;);>1, (I;)i>1 and (y;);
as in the beginning of the proof of Theorem 5.14. By induction, we construct a sequence (z;);
of vectors of X and an increasing sequence of integers (n;);>1 such that
(i) IT%2;]| <277 for every 0 < k < (1 +a)nj_1;
(ii) | T2 — T*(y; — Diej i)l < 277 for every 0 < k < any;

(i) [T (i, 20) = TH(Eiey 2) | < 277 for all k> 0,

Let 5 > 1. Assume that the construction has been carried out up to the step j — 1, and let us
construct n; and z;. Since the vector ), j i lies in Xo, it is almost periodic; so one can find an
integer M > 1 such that every interval of N of length M contains a point of the set

Pe(5e) - 1(50)

1

>
>1

D:=<Xn>1VEk>1 :‘

‘<2‘j

By assumption on T', there exists n’ € N with n’ > n;_; + M and 2’ € X, such that
- |IT*2|| < 277 for every 0 < k < (14 a)nj—1 + M;
- "tk =3 2| < 27 for every 0 < k < an'.
TR - TRy — Y, 273 f v0<k<an
Choose now 0 < p < M such that n; := n’ — p belongs to the set D, and let z; := T?2’. Then
(iii’) holds true by the choice of n;, (i) clearly holds true, and (ii) holds true as well because
Tmithz; = T 2 for every k > 0 and every n/ > n;. This concludes the inductive step.

Let us prove that the vector z := )., % is a U-frequently hypercyclic vector for T'. This
time, we write for every [ > 1, j € I and k > 0:

Pt = (D) -1 () e (- £

i<j i<j 1<j
—I—Tkl‘l —x + Z Tnj+kzi.
i>j

Since n; belongs to D, we deduce that if 0 < k < an;, then

[Ty — || <279 4279 + | T*2y —ay|| +279 =3 279 4 || T*2y — 2.
Now, since z; is uniformly recurrent for 7', the set

Dy = {k>1; ||TFz — x| < e/2}
has bounded gaps. So one can find a constant ¢; . > 0 such that #(D;. N J) > ¢ #J for all
sufficiently large intervals J C N. From this, it follows that if j is large enough, then
#{n; <i< (A +a)ny; [Tz — x| <e} > cqeany,

and hence that
anj _ Cea

dens N (z, B(x,€)) > ¢ limsu =
r( (21,€)) = e1.e j_}oop I4+a)n; 14+«

Finally, here is a somewhat unexpected consequence of Theorem 5.16.

COROLLARY 5.20. Let T € B(X). Assume that the uniformly recurrent points of T are dense
in X, and that there also exists a dense set of points x € X such that T'x — 0 as i — co. Then
T is U-frequently hypercyclic.

Proor. This follows immediately from Theorem 5.16. (]
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REMARK 5.21. Corollary 5.20 shows in particular that if a unilateral weighted backward shift
on fP(N) or ¢o(N) has a dense set of uniformly recurrent points, then it is U-frequently hypercyclic.
However, a much stronger result is true: if a weighted backward shift has just a single non-zero
uniformly recurrent point, then it is in fact chaotic and frequently hypercyclic.

PROOF. Let B, be a weighted backward shift on X = ¢o(N) or £,(N), 1 < p < o0, associated
to the weight sequence w = (wg)k>1, and assume that B, has a non-zero uniformly recurrent point
x € X. By the classical Frequent Hypercyclicity /Chaoticity Criterion (see [8] or [32]), it is enough
to show that the sequence (szl w,:l) belongs to the space X. We check this in the case where

X = ¢o(N), the ¢, case being similar. So we have to show that [[,_; wi — o0 as n — oco. Since
T =) .~ Tke) is non-zero, there exists ky > 1 such that |zx,| > 0. Let 0 < € < |z,]/2. Since z
is uniformly recurrent for B, there exists a strictly increasing sequence of integers (nj)j>1 and a
positive integer M such that n; 11 —n; < M and ||By’x — z|| < € for every j > 1. In particular,
we have

ko+nj

H Wk | Thodn; — Tho| < €
k=ko+1

and hence
ko +n;

I fewl >

k=ko+1 |xk0+n]‘

Since z belongs to ¢g(N), we deduce that
k‘o-‘rﬂj

H |wk| = 00 as j — oo.
k=ko+1

Moreover, if n is a sufficiently large integer, there exists an integer j > 1 such that kg 4+ n;_1 <
n < kg +n;. Since nj41 —n; < M, this implies that

ko+n;
I ot > T b
=l
k=ko+1
and this concludes the proof. O

REMARK 5.22. A natural question that comes to mind in view of Corollary 5.20 is whether
any chaotic and topologically mixing operator has to be U-frequently hypercyclic. We will prove
in Section 4 that it is not the case.

3.2. More about U-frequent hypercyclicity and ¢(T). Corollary 5.20 says in essence that
lots of uniformly recurrent points plus lots of orbits tending to 0 imply U-frequent hypercyclicity.
In the same spirit, we now prove the following result, which again may look rather surprising at
first sight.

THEOREM 5.23. Let T € B(X) be hypercyclic, and assume that T has a dense set of uniformly
recurrent points. Then T is U-frequently hypercyclic if and only if ¢(T) > 0.

PROOF. One implication is clear: if T is U-frequently hypercyclic, then ¢(T") > 0 by the very
definition of ¢(T').

Conversely, assume that ¢(7") > 0. Then there is a comeager set G C X such that, for every
r € G, one can find a subset D, of N with dens D, > ¢(7T) such that |[T"z| — 0 as n — oo
along D, (see [30, Prop. 4.7]). The key step of the proof lies in the next fact, where we use for
convenience the following notation: if V' is an open subset of X and B = B(u,¢) is an open ball
of X, we write B < V if there exists ¢’ > € such that B(u,e’) C V.
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CLAM 5.24. Let g € X be a uniformly recurrent point for 7', and let V' be an open neigh-
borhood of xg. Let also B be an open ball with center xy such that B < V', and choose an integer
N such that every interval I C N of cardinality at least N intersects N (zg, B). Then, for every
y € zo + G, we have dens Nr(y, V) > ¢(T)/N.

PROOF OF CLAIM 5.24. Write y = g + 2, with € G. Since dens D, > ¢(T') and

N-1

U (Wr(zo, B) — k) =N
k=0

by the choice of N, one can find k € {0,..., N—1} such that dens (D, N (N7 (zo, B)—k)) > ¢(T)/N;
equivalently, dens (D, + k) N Nrp(zg,B)) > ¢(T)/N. Now, we have T"y = T"zq + T"x for all
n € N, and T"z — 0 as n — oo along D, + k. Since B < V, it follows that all but finitely many
integers n € (D, + k) N Np(zo, B) belong to N (y, V), and hence that Np(y,V) > ¢(T)/N. O

It is now easy to conclude the proof of Theorem 5.23. Let (V,),>1 be a countable basis of
(non-empty) open sets for X. Choosing for each p > 1 a uniformly recurrent point z, € V,
and an open ball B, with center x, such that B, < V), we see that the following holds true:
for each p > 1, there is an integer N, and a comeager set G, C X (namely, G, = z, + G)
such that dens Ny (z,V),) > ¢(T)/N, for every z € G,. Then every vector z in the comeager set
Gy = ﬂp>1 G, is a U-frequently hypercyclic vector for T'. O

REMARK 5.25. In Theorem 5.23, one cannot replace the assumption of U-frequent hyper-
cyclicity with that of frequent hypercyclicity. Indeed, as we shall see in Theorem 7.10, there exist
operators which are chaotic and U-frequently hypercyclic (hence, hypercyclic with a dense set of
uniformly recurrent points and such that ¢(7T") > 0) but not frequently hypercyclic.

When the operator T is chaotic, the proof of Theorem 5.23 gives a more precise statement,
which says that if ¢(T") > 0, then T is “U-frequently hypercyclic with estimates”.

COROLLARY 5.26. Let T' be a chaotic operator on X with ¢(T) > 0. For any open set V # ()
in X, let us denote by N (V') the smallest period of all periodic vectors of T belonging to V.. Then
there is a comeager set of vectors z € X such that

densNp(z,V) > o(T) for every open set V # (.

ProOF. Note that if the point x in Claim 5.24 is a periodic point of T', then one can take as
N the period of zg. Then follow the proof of Theorem 5.23. ([l

From Corollary 5.26, we immediately deduce

COROLLARY 5.27. If T € B(X) is chaotic and ergodic, then there is a comeager set of vectors
z € X such that densNr(z,V) > 1/N(V) for every non-empty open subset V of X.

PRroOOF. This is clear since ¢(T") = 1 for any ergodic operator T'. O

REMARK 5.28. All vectors z € X satisfying the conclusion of Corollary 5.27 are U-frequently
hypercyclic for T', but none of them is frequently hypercyclic. Indeed, if V}, is any open ball centered
at 0, then N(Vp) = 1, so that dens Ap(z,Vy) = 1. Hence, one must have dens N (z,V) = 0 for
any open set V disjoint from V.

To conclude this section, we now proceed to prove a generalization of Corollary 5.27 to ergodic
operators T € B(X) which are not necessarily chaotic: we require that T belongs to SPAN(X),
i.e. that the unimodular eigenvectors of T' span a dense subspace of X.
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We first need to introduce some notation. To every A € T, we associate the rotation-invariant
measure vy on T defined as follows:
N—-1
1 e N
— Z dpaky i AT =1 for some N > 1,
Uy = N =0
the normalized Lebesgue measure on T otherwise.

Suppose now that T € B(X), and that u = (uy,us,...) is a finite or infinite sequence of
linearly independent eigenvectors associated to unimodular eigenvalues A1, Ao, .... Let us denote
by £ the linear span of the vectors u;, j > 1. Any vector u € £ may be written in a unique way
as

T
u= Z ayp (w)uyg,
k=1

where the coefficients aj}(u), 1 < k < r, are complex scalars. To any such vector u, we associate
the T-invariant measure v, 7 on X defined by

vyr(A4) = H 2% ({(Hh ce ) €T Za};(u)ukuk € A})
k=1 k=1

for every Borel subset A of X. Note that if the unimodular numbers ) are not roots of unity (and
X is a Hilbert space H), then V, 1 1s nothing but the Steinhaus measure associated to u considered
in the proof of Lemma 4.16.

Finally, for any open set V # (), we define

6V = sup {vy p(B(u,€)); € >0, ue &, Blu,e) <V}

As in Fact 5.24, the notation B(u,e) < V means that B(u,e’) CV for some &’ > ¢.

We may now state

PROPOSITION 5.29. Let T' be an ergodic operator on X belonging to SPAN(X), and let u =
(ug)k>1 be an infinite linearly independent sequence of unimodular eigenvectors whose linear span
EM is dense in X. Then, there exists a comeager subset G of X such that every vector z € G
satisfies

dens N'p(2,V) > 0y for every open set V # 0.

The key step in the proof of Proposition 5.29 is Lemma 5.30 below.

LEMMA 5.30. Let T be an ergodic operator on X, and let u = (uy,...,u,) be a finite sequence
of linearly independent unimodular eigenvectors for T. Let also u be a vector belonging to EV.
Given any €, v > 0, there exists a T-invariant measure m on X, ergodic for T and with full
support, such that

m(B(u,€)) > (1= 7) v (Bu, (1 -9)e)).

Since the sequence u is fixed, we will remove any reference to it in the proofs of Proposition
5.29 and Lemma 5.30; so we will write for instance ax(u) instead of aj}(u), and so on.

PROOF. Let mg be an ergodic measure with full support for 7. For each R > 0, consider the
probability measure mp defined on X by setting

mp(A) = / mo(R(A — z)) dv, r(x) for every Borel subset A of X,
Ky

where K, := {Z;Zl ap(w)prug, pur €T, 1<k < r}. Note that K, is a compact subset of X and
contains the support of the measure v, r. It clearly satisfies T(K,) = K,. The measure mp thus
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defined is T-invariant. Indeed, we have for every Borel subset A of X

ma( ) = [

mo(R(T™A — &) dvy r(x) = / mo(R(T™H(A — Ta))) dvy 7 (x)
K,

Ky

= / mo(R(A — z)) dvy,r(z) = mg(A).
T(Ku)
The next step of the proof is to show that mz(HC(T)) = 1. Since

mp(HC(T)) = / mo(R(HC(T) — 2)) dvy ()
Ky
and mo(HC(T')) = 1, it suffices to show that HC(T') C HC(T) — x for every vector z € K,, i.e.
that HC(T') + « C HC(T) for every such z. Write z as @ = >, _, axpuuk, where a = aj(u) and
ux belongs to T for every 1 < k < r, and fix a vector z € HC(T'). In order to show that z + x
belongs to HC(T'), we need to show that for every y € X and every 6 > 0, there exists an integer
n > 1 such that ||T™(z + x) — y|| < . Now, a result of Shkarin [48] states the following: given a
hypercyclic operator S on a Banach space Z, and a compact topological group G generated by an
element g € G, the set
{(S"z,g"), n > 1}

is dense in Z x G for every vector z € Z which is hypercyclic for S. We apply this result to the
operator T and to the subgroup G of T" generated by g := (A1, ..., A). Since the r-tuple (1,...,1)
belongs to G, and z € X is a hypercyclic vector for T, there exists for every § > 0 an integer n > 1
such that ||T"z — (y — x)|| < §/2 and maxi<p<, |ak| . |ukll . [AF — 1] < §/(2r). It follows that

mn _ - n 0
|77z —z|| = H’;ak()\k *1)UkH < 3

so that ||T™(z + z) — y|| < §. This proves our claim, and shows that mr(HC(T')) = 1 for every
R>0.

Let us now estimate from below the quantities mg(B(u,£)). By the definition of mp, we have
mp(B(u,e)) > / mo(R(B(u,e) — x)) dvy ().
K, N B(u,(1—v)e)

Now, observe that for every € B(u, (1—v)e), the set B(u,&)—a contains the ball B(0,~e). Indeed,
every y € X with ||y|| < e can be written as y = u+(y—u+z)—z with ||[y—u+z| < ye+(1—7v)e = €.
It follows that

me(Bu,) > [ mo(B(O, Roe)) divy ()
K, NB(0,(1—v)e)
=mo(B(0, Rve)) - vy r(B(u, (1 —7v)e)).
Since mo(B(0, Rve)) tends to 1 as R tends to infinity, there exists Ry > 0 such that
mp,(HC(T) N B(u,€)) = mp,(B(u,€)) > (1 — ) vy, 7 (B(u, (1 —7v)e)).

Applying the Ergodic Decomposition Theorem (see e.g. [46, Th. 2.5]) to the measure mp,, we
obtain that there exists an ergodic measure m for T" such that

m(HC(T) N B(u,€)) > (1 — ) vy, r(B(u, (1 —7)e)).

Since m(HC(T')) > 0, the measure m has full support, and this concludes the proof of Lemma
5.30. O

We can now prove Proposition 5.29.
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PRrROOF. Let (V,),>1 be a countable basis of (non-empty) open sets for X with the following
property: for any open set V' and any open ball B such that B < V, one can find p > 1 such that
B <V, C V. This additional property implies that for any open set V # ), we have
(15) dy,r = sup {oy, r; V, €V}

For each p > 1, one may choose a sequence (up)r>1 of vectors of &%, a sequence of positive
numbers (g, 1 )k>1 and a sequence of positive numbers (v, 1 )r>1 tending to 0 as k tends to infinity
such that

B(upk,epr) <V, forevery k>1and oy = z/upykyT(B(upﬁk, (1- vp,k)sp,k)) k:; ov,.T-

By Lemma 5.30 and the pointwise ergodic theorem, we see that for each fixed pair (p, k) of
integers, the set of all vectors z € X such that

dens N7 (2, B(up,: €p,k)) = (1= Ypk)tp,i

is dense in X. In particular, the set
G =) U {Z €X; #{1<i<n;T'z € Blupg,epr)} > (1— 'Yp,k)ap,k}
N>1 n>N

is a dense G subset of X. Hence G := ﬂp w>1 Gp.k is a dense G5 subset of X too, and by the
definition of G, every vector z € G satisfies

dens Nz (z,Vp) > oy, 1 for every p > 1.
Property (15) then allows us to conclude the proof of Proposition 5.29. O

4. A criterion for frequent hypercyclicity
In this section, our aim is to prove a criterion of the same kind as Theorem 5.14 for frequent
hypercyclicity.
Before stating the result, we isolate a purely combinatorial lemma showing that some sets of
integers constructed in a rather complicated way have positive lower density.

LEMMA 5.31. Let (d;)j>1 and (nj)j>1 be two strictly increasing sequences of integers and
0 < a <1 such that for all j > 1:
4dj,1 < Oédj <n; < dj7
where dy = 1. Let also (jm)m>1 be a strictly increasing sequence of integers with bounded gaps,
i.€. SUP,,>1 (Jm+1 — Jm) = 7 < 00. Finally, let p € N. For each m > 1, define a family of sets
(Arn,j)0<j<jmii—jm @S follows:

d; d;
Am,O = {”jerkdjerk’p;OSk/SM, 0§k§w72}7
p Jm

and, for 1 < j < jm+1 — Jm,

A j = U (Am,j—l + kdjm+j)-
Jm+41—Jm—1
Then, the set A := U U Ay, has positive lower density.
m>1 j=0
PROOF. In what follows, we use the notation
j7n+1_j7n_1
A= |J  Amy
j=0

We start by listing a few remarks on the structure of the sets A,, ; and A,,.
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CLAIM 5.32. The sets A, ; and A,, have the following properties.
(a) Am,o - [njm,adjm_ﬂ] and Am,j - [djm+j,Oédjm+j+1] forl1 <j< Im+1—Jm- In particular,
the sets A,, ; are contained in successive (disjoint) subintervals of N.
(b) Inside each set A,, ;, j > 1, the translates A,, ;_1 + kd;,,+; are pairwise disjoint.
(¢) Am C [nj,,,ad;,,.]. In particular, the sets A,,, m > 1 are contained in successive
subintervals of N.

PrOOF OF CLAIM 5.32. (a) The second assertion follows from the first because av < 1. As for
the first assertion, since obviously min A,, 9 > n;,, and min A,, ; > d;,,+; if j > 1, it is enough to
check that

(16) max Am,j < adjm-‘rj-i-l for 0 < J< jm-‘rl — Jm-
For j = 0 we have max A, o < n;,, + adj, 11 — 2d;,, + ad;,, < adj,,+1 because nj, < dj, and
a < 1. Then (16) follows by a straightforward induction on j < jm41 — Jm.

(b) This is clear since max(A,, j_1 + kdj, +;) < ad; +; + kd;, +; < (k+ 1)d;, +; by (a),
whereas Inin(Am,j_l + (k + l)djm-‘rj) Z (k + l)djm-‘rj'

(c) This follows from (a) and since ad;,,,, < nj,,.,,- O

CrAIM 5.33. There is no redundancy in the definition of A,, . In other words, any n € A,, o
can be written in only one way as n = n;, + kd;,, + k'p with 0 < k < adj,,4+1/d;,, — 2 and
0 S k‘/ S Oédjm/p.

PROOF OF CLAIM 5.33. Assume that n = n;, + kd;,, + k'p = n;,, + Edjm + K'p. Then
(k — k)dj,, = (K" — K')p, so that |k — k|d;,, < ad;,, because 0 < k',k' < ad,, /p. Hence k = k
because o < 1, and hence k¥’ = k. O

Next, we estimate from below the size of the sets A, ;. Recall that r is the maximal gap in
the sequence (j,)-

Zd‘
CrLAIM 5.34. For all m > 1, we have #A4,, ¢ > % and
P
a™? dy, i . .
#Am. > or+1 % v 1 <7 <UJmg1 = Jm.

PrOOF OF CLAIM 5.34. Let us fix m > 1. By Claim 5.33 and since adj,,+1 > 4d;,,, we have

B A0 > ady,, (adij _ 1) > o . adj, 41 _ azdjmﬂ_
' dj’ﬂl p Zdjfyn 2p

Moreover, if 1 < j < jy+1 — jm then, by Claim 5.32 (b) and since ad;,, +,+1 > 4d;, +;, we see that
ad; i ad; i
#HAm; > (jiw - 1) HAm -1 > 2;7% HAm j—1-
Jm+J Jm+J
It follows that for all 1 < j < jm41 — Jm, We have
a alt?

I dj, +j+1 dj,, +j+1
A ,>(,) Lim i1 g s O Dt
# m,j = 2 djm+1 # m,0 = 2]+1 D )

and since jm41 — Jjm < 7 and /2 < 1, this eventually gives

ar+2

#Am,j Z 2r+1

i1
p
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We are now going to show that there exists some positive number § such that
1
(17) —#(1,n]NA)>§ for every n € A.
n

This will be enough to ensure that A has positive lower density. Indeed, if we denote by A =
{aq; ¢ > 1} the increasing enumeration of A, then (17) means that ¢/a, > ¢ for every ¢ > 1, i.e.
aq < q/0; and this is easily seen to imply that A has positive lower density.

Let us fix n € A, so that n € A, for some m > 1. We consider separately two cases.
CASE 1. n € Am70.

By the definition of A, ¢, we may write
d; d;
n=mn,, +kd;, +k'p, where(0<Fk< w—2and0§k'§ A,
Note that, by Claim 5.32, the set [1,n] contains A,,_1 because n > n; > ad;, . Since A,,_1 is
disjoint from A, o (again by Claim 5.32), it follows that we have in particular

#([Ln]NA) > # A1 g1+ # (L] N Apo).
Moreover, the set [1,n] N A,, ¢ contains all integers of the form n; + sd;,, + s'p, where 0 <

s < kand 0 < s < % (since all of them are in A0 and the largest is not greater than
n;,. + (k—1)d;,, +ad;,, <nj, +kd;, <n). Hence, by Claim 5.33,

d.
# ([0 0 o) > - =
By Claim 5.34, it follows that
at2d; ad; a2 (k+1)d,
1 N A > Jm k Im > . Jm
# ([ ’n] ) — 2r+1p + P — or+l P

we conclude that
a7'+2

Since n < n;, + (k+ a)d;,, <2(k+1)d;

m?

CASE 2. n € A, ; for some 1 < j < fm41 — Jm.
In this case, we may write

adj, +j+1

n= kdjm+j +i, withl <k< —land: € Am,j—1~

Jm+J
By Claim 5.32, we know that max A,, ;_1 < min A,, ; < n. Hence [1,n] contains A4,, ;_1 and

#([Ln]NA) > # Ap 1 +# ([Ln] N A ).
Moreover, since n > kd;, +; > (k — 1)d;, +; + max A, j—1 and the translates A, j_1 + Id;,. +;,

| < k are pairwise disjoint (and contained in A,, ;) by Claim 5.32, we also have

# ([1,71] n Am,]) Z (/{3 — 1) #Am}jfl.
By Claim 5.34, it follows that
a2, 4
# ([Ln] OA)Z kw%
and since n < (k + 1)d;,,+; (because n = kd;, +; + i and max A, j_1 < d;, +j), we conclude that
r+2

[e%
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We have thus shown that

# ([1,n] N A)> o

PR for every n € A,

which concludes the proof of Lemma 5.31. ([l

We now state our criterion for frequent hypercyclicity. At first sight, this criterion looks
very much like Theorem 5.14. The main difference is the following: instead of requiring that
| Ttk 2z — T*z|| should be small for a duration proportional to the “time” n needed for the orbit
of z to come close to x, we have to require that these quantities should be small for a duration
proportional to a certain multiple d of the period of z. (This is indeed a much stronger requirement,
see the beginning of the proof of Theorem 5.35). The criterion reads as follows.

THEOREM 5.35. Let T € B(X). Assume that there exist a dense linear subspace Xo of X with
T(Xo) C Xo and Xo C Per(T), and a constant a € (0,1/2) such that the following property holds
true: for every x € Xg, every € > 0 and every integer dg > 1 which is the period of some vector y
of Xo, there exist z € Xo and integers n, d > 1 such that

(0) d is a multiple of dy and of per(z);
(1) |IT*z|| < & for every 0 < k < ad;
(2) |IT"*F2 — Tkz|| < e for every 0 < k < ad.

Then T is chaotic and frequently hypercyclic.

PrROOF. We first note that upon subtracting some multiple of d to n (where d and n are
given by the assumptions of Theorem 5.35), we can always assume that d > n. The assumption
of Theorem 5.35 is thus seen to be stronger than that of Theorem 5.14. Also, we can require
that n > ad and the same argument as in the beginning of the proof of Theorem 5.14 (taking e
very small) shows that, given N > 1, we can always add to the assumption of Theorem 5.35 the
additional hypothesis that the integer n is a multiple of N.

Let now (z;);>1 be a dense sequence of vectors of X contained in Xy, and let (I;);>1 be
a partition of N such that each set I; is infinite and has bounded gaps. We denote by r; the
maximum size of a gap between two successive elements of I;. As usual, we define the vectors y;,
J > 1, by setting y; = x; for every j € I;. By induction on j > 1, we construct a sequence (z;);>1
of vectors of X and two strictly increasing sequences of integers (d;);>1 and (n;);>1 such that

(i) d; is a multiple of per ( 1;11 z;) and of per(z;);

(ii) [|T%2;]| < 277 for every 0 < k < ad;;
(iil) |Tmitkz; — Tk (y; — Zz;ll z)|| < 279 for every 0 < k < adj;
(iv) n; is a multiple of per(zg;ll z;) and ad; < n; < dj;
(V) Oédj > 4dj,1.

We set z = > z;, and show that z is a frequently hypercyclic vector for T'.

i>1

Let us fix [ > 1, and write I; as I} = {jn,; m > 1}, where (j,)m>1 is strictly increasing and
Jm+1 — Jm < 1 for every m > 1. For each m > 1, we define a family of sets (A, j)o<j<jnii—jm 85
in Lemma 5.31, with p := per(z;):

O[djm 7 0 S L S Oédjm+1 B 2},
per(x;) d;,.

Ao = {”jm + kd;,, + k'per(x;); 0 <k <
and, for 1 < j < jim+1 — Jm,

d. )
1<k<aim¢‘+1_1
- = Jm+J
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Since we will need this below, we recall from the proof of Lemma 5.31 that for all m and
0 <J <Jm+1— Jm, we have

(18) max Apj < adj, 4ji1-
CrLAM 5.36. For every m > 1 and every n € Ay, 5, 0 < j < jms1 — Jm, We have
|T"2 — o) < 27Um=D),

PrOOF OF CLAIM 5.36. For any n € A,, ;, we have

Jm~+J
(19) 1Tz — 2| < HT"(Z %)~ H + 3 T
s=1 $>Jm+J

Since n < adj;,, yj+1 < ad, for every s > j, +j by (18), the second term in (19) is easy to control:

ST el < Y 270

8>jm+J 8>jm+J
Jm+J
We now have to estimate the term H T”( Z zs) —x H The index m being fixed, we show by
s=1

induction on 0 < j < jmy1 — Jm that

Jm~+J

20) |7(3 =)~ < D 2mmeo.
u=0

- Suppose first that n belongs to A, o, so that

d; d;
n=mn;, +kd;, +k per(r;) with 0<k< Xntl 9 and 0< K < Sm
dj., perx;
Then
jm, , jm
Tn(z Zs) — = T Mim +k'per (z1) (Z Zs) — 1 by (1)
s=1 s=1
Jm—1
— T P TR Per(z) 2, — T K'per(z1) (331 _ Z Zs) by (iv).
s=1

Since k'per(z;) < ad;

m?

Jm
we deduce from (iii) that HT”(Z zs) —x H < 27Im,
1

- Suppose now that (20) has been proved up to the index j — 1 for some 1 < j < jm41 — Jm, and
that n belongs to A,, ;. Write

d: L.
n=kd;, ,;+i with i€ Ay, and 0<k< SdmtHl g,

Jm+J

Then

Jm+J Jm+J Jm+J

T”( Z zs> — ;= TFim+iti ( Z zs> —q =T (Z zs) —q by (i)
s=1 s=1 s=1
Jm+i—1
= Tl ( Z Zs> —x + Tiij+j.

Thus =1

Jm~+J

7j—1
[ (3 ) =« o2 755,50
=1 u=0
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by the induction hypothesis. Now, i < ad,, 1; by (18) since i belongs to A,, ;—1, and thus
T2, 4+l <27Um+9) by (i). Hence

Jmti i
(552 o] < Sroeen
s=1 u=0
which concludes our induction. The inequality (20) being proved, we deduce that

77—l < 3 2-Gmb) — 9-Gn=t)
u>0

for every m > 1 and every n € Ay, 5, 0 < 5 < jmt1 — Jm- a

It follows from Claim 5.36 that given € > 0, there exists mg > 1 such that Np(z, B(z,¢€))

contains the set
jm+1 _jm -1

U U A
m>mg 7=0

By Lemma 5.31, the latter set has positive lower density. Hence N (z, B(z;,¢€)) has positive lower
density for each [ and every € > 0, which concludes the proof of Theorem 5.35. O

REMARK 5.37. The restriction that the integer dy above should be the period of some vector y €
Xo may seem rather artificial. The reason for stating Theorem 5.35 as we did is to be found in the
proof of Theorem 6.9 below: we will use Theorem 5.35 as stated to prove the frequent hypercyclicity
of the operators involved there without having to impose certain divisibility conditions on the
numbers A(k), k> 1.

REMARK 5.38. The constant « involved in the statement of Theorem 5.35 cannot be greater
than 1/2. Indeed, otherwise one could find a periodic vector z such that more than half of the
points in the orbit of z are close to 0 and more than half of these points are close to some periodic
orbit far away from 0. So at least one point in the orbit of z would have to be both close to 0 and
far away from 0, which is impossible.

4.1. Link with the Operator Specification Property. We conclude this section by a
result which shows that many operators which are known to be frequently hypercyclic satisfy
the assumption of Theorem 5.35. This is the case for all operators which satisfy the Frequent
Hypercyclicity Criterion and, more generally, for operators with the so-called Operator Specification
Property.

This last property, which has been recently introduced and studied by Bartoll, Martinez-
Giménez, and Peris ([1], [2]), is the linear version of the classical Specification Property for compact
dynamical systems introduced by Bowen in [16]. The definition reads as follows: an operator
T € B(X) has the Operator Specification Property (OSP) if there exists an increasing sequence
(Km)m>1 of T-invariant subsets of X with 0 € K7, the union of which is dense in X, such that for
each m > 1, the restriction of T to K, has the Specification Property in the sense of [16], which
means that the following holds true:

(%) for every 6 > 0, there exists an integer N5, > 1 such that for every finite family yi,...,ys
of points of K,,, and any integers 0 = j; < k1 < jo < ko < -+ < js < ks with jr1 — kr > N5y
for every 1 < r < s —1, there is a point x € K,, such that for every 1 < r < s,

sup ||T'x —Tiy.|| <6 while TNomtkeg — g
Jr<i<kr

Stated in an informal way, () means that arbitrary large pieces of the orbits of finitely many
points of K, can be approximated by the orbits of a single periodic point of K,,, provided that
the gaps between the different sets of indices where we require this approximation are sufficiently
large.
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It is proved in [2] that operators with the OSP are chaotic, topologically mixing, and frequently
hypercyclic. Moreover, any operator satisfying the general version of the Frequent Hypercyclicity
Criterion given in [14] has the OSP. We prove in Theorem 5.39 below that operators with the OSP
satisfy the assumption of Theorem 5.35. This was pointed out to us by Alfred Peris, who kindly
allowed us to reproduce his proof here. This improves on a previous observation (proved in a pre-
liminary version of this work) according to which operators satisfying the Frequent Hypercyclicity
Criterion also satisfy the assumptions of Theorem 5.35.

THEOREM 5.39. Let T € B(X) be an operator with the OSP. There exists a dense subspace
Xo of X with T(Xo) C Xo and Xo C Per(T), such that, for every a € (0,1/2), every x € Xp,
every € > 0, and every integer dg > 1, there exist z € Xy and integers n, d > 1 such that properties
(0), (1), and (2) of Theorem 5.35 hold true.

PROOF. Let (K., )m>1 be an increasing sequence of T-invariant subsets of X with 0 € K,
the union of which is dense in X, such that (x) above holds true for every m > 1. We define
Xo :=span|{J,,~; Km N Per(T)], which is clearly T-invariant and dense in X.

Let us fix x € Xg, € > 0 and dg > 1. The vector z can be written as x = 20:1 AmTm, Where
am is a scalar and x,, is a vector belonging to K, for every 1 < m < mg. By [2, Prop.10], the
map induced by T on the set K = > "% | a,, K,, has the Specification Property. So we can assume
without loss of generality that x belongs to K,, for some m > 1. Let now N.,, be such that
property (x) above holds true, and let d > 1 be a multiple of dy so large that ad + N, ,,, < d/2.
We then define d’ to be the integer part of ad, n = N, +d’, y1 = 0, and y» = T'~"x, where [ is
any multiple of per(z) such that { > n. We also set j1 =0, k1 = d’, jo = n, and ko = d — Ne ..
As jo — k1 = n —d = N, the Specification Property on K, implies that there exists a point
z € K,,, such that

Tk 2 — T y || = [|IT*2|| <& for every 0 <k < d;

HTkz — Tky2|| <e forevery n <k < ko;
TNemthay —Tdy — 5,
In other words,

|T*z|| <& forevery 0 <k < ad;
| T *z —TFg|| < forevery 0 <k <ky—n

since T"Fky, = Trtktl=ng — Tky: and d is a multiple of the period of z. Since ky — n =
d—2N; ., —d' > ad, this shows that assumptions (0), (1), and (2) of Theorem 5.35 are satisfied. [

REMARK 5.40. The converse of Theorem 5.39 is not true; that is, operators satisfying the
assumptions of Theorem 5.35 need not have the OSP. Indeed, we will construct in Chapter 6
(more precisely, in Example 7.7) some operators which satisfy the assumptions of Theorem 5.35
and yet are not topologically mixing.

To conclude this section, we essentially show that the OSP implies ergodicity. This is coherent
with what happens in the non-linear setting: it is proved in [51] that compact dynamical systems
with the Specification Property are ergodic. They actually enjoy a much stronger property: given
such a system (X,T), the ergodic measures with full support for (X,T') are comeager in the set
Pr(X) of T-invariant probability measures endowed with its natural Polish topology. On the other
hand, we do not know whether operators with the OSP are mixing (i.e. admit mixing measures
with full support), whereas it is known that the Frequent Hypercyclicity Criterion does imply
mixing, and in fact mixing in the Gaussian sense (see [42] and [9]).

PROPOSITION 5.41. If T € B(X) satisfies the OSP, and if the sequence (Kp)m>1 of T-
invariant subsets of X appearing in the definition of the OSP consists of compact sets, then T is
ergodic.
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The assumption of Proposition 5.41 that the sets K,,, m > 1, be compact seems to be no real
restriction. As mentioned in [2], all known examples of operators with the OSP do satisfy the OSP
with respect to a sequence of T-invariant compact subsets (Ky,)m>1 of X.

PROOF. Let us denote by P(X) the space of all Borel probability measures on X endowed
with its natural Polish topology (a sequence (f,,)n>1 of elements of P(X) converges to p € P(X)
if and only if f « Jdun tends to f « Jdp as n tends to infinity for every bounded continuous function
f from X into R), and by Pr(X) C P(X) the set of all T-invariant measures. Then Pr(X) is a
Polish space, being a closed subset of P(X). We denote by Er(X) C Pr(X) the set of all ergodic
measures for T. For any family of measures M C P(X), we denote by M* the family of all
measures p € M with full support. Finally, for any subset M of P(X) and any Borel subset A of
X, we set M(A) :={p e M; u(4) =1}

Let (K, )m>1 be an increasing sequence of compact T-invariant subsets of X with Um>1 K,, =
X such that T|g,, has the Specification Property for every m > 1. By a result of [51], we know
that for each m > 1, the set £5(K,,) of all measures u € Er(X) with support equal to K, is dense
in Pr(K,,). Let us now denote by M the closure of |J,,~, Pr(K) in Pr(X).

CLAIM 5.42. The set Ep(X) N M is a dense Gs subset of M.

PRrROOF OF CLAIM 5.42. It is known that Ep(X) is a Gs subset of Pr(X) (see [43] for a
detailed proof), so that Er(X) N M is G5 in M. Moreover, since Er(K,,) is dense in Pr(K,,) for
each m by [51], it is clear that Er(X) N M is dense in M. O

CLAIM 5.43. The set M™* is a dense Gs subset of M.

PRrROOF OF CLAIM 5.43. Let (Op)p>1 be a countable basis of non-empty open subsets of X.
Set, for each p > 1, O, := {u € P(X); u(Op,) > 0}. Then each set O, is open in P(X), and

moreover
M =mn () 0,).
p>1
So we just have to show that each set M N O, is dense in M. Let us fix p > 1, and let U/ be
a non-empty open subset of M. Since the sequence (K, )n>1 is increasing, the definition of M
implies that U N Pr(K,,) is non-empty for all m sufficiently large. Moreover, since J,,~; K, is
dense in X and (K,,)m>1 is increasing, K,, N O, is non-empty too for all m sufficiently large.
So there exists m > 1 such that K,, N O, and U N Pr(K,,) are both non-empty. Since &} (K,,)
is dense in Pp(K,,) and U N Pr(K,y,) is open in Pr(K,,), it follows that there exists a measure
p € Er(X) with support equal to K, such that u belongs to U and u(O,) > 0. Hence, we have
shown that ¢/ N O, is non-empty. |

The two facts above combined with the Baire Category Theorem applied in M imply that
Er(X) N M* is non-empty. In particular Er(X)* is non-empty, i.e. T is ergodic. a

REMARK 5.44. We will see in Chapter 6 that the assumptions of Theorem 5.35 (which are
sufficient for frequent hypercyclicity) do not imply ergodicity. So Proposition 5.41 makes the
difference between the OSP and our criterion for frequent hypercyclicity all the more tangible.






CHAPTER 6

Operators of C-type and of C -type

In this chapter, we introduce some particular classes of operators, which are defined on any
space £,(N), 1 < p < co. We do not restrict ourselves to the Hilbertian case p = 2, because
the general case adds no extra complication. It is within these classes that we will exhibit oper-
ators which are chaotic and frequently hypercyclic but not ergodic, operators which are chaotic
and U-frequently hypercyclic but not frequently hypercyclic and operators which are chaotic and
topologically mixing but not U-frequently hypercyclic (see Chapter 7).

A word of caution: for technical reasons, we have decided that N starts at 0; that is, N =
{0,1,2,...}. Accordingly, the canonical basis of £,(N) will be denoted by (e)r>0. Also, we denote
by coo the linear span of the vectors ey, k > 0, i.e. the subspace of £,(N) consisting of all finitely
supported vectors.

1. Operators of C-type: basic facts

In view of our criteria for U-frequent hypercyclicity and frequent hypercyclicity relying on the
existence of periodic points, we would like to find a rich family of operators for which we can easily
find a large supply of periodic points. For example, we could consider operators T, ; defined by

T Wg+1€k+1 ) ifk e [bn, bn+1 — 1)
wbChk = (H?’:b;ﬁ wj) ey, ifk=bp —1withn>0

where w = (w;);>1 is a weight sequence and b = (b,,),,>1 is a strictly increasing sequence of integers
with by = 0. Indeed, with this definition it is clear that (whatever the choice of w and b) every
basis vector e; and hence every vector x € ¢y is periodic for T} p.

However, none of these operators is hypercyclic since they are direct sums of finite-dimensional
operators, and there exist no hypercyclic operators in finite dimension. It is thus necessary to
perturb the operators T, in order to obtain an interesting family of hypercyclic operators in
which finite sequences are still periodic. For reasons that will be explained below, the operators
in this family will be called operators of C-type. Any operator of C-type will be associated to four
parameters v, w, p, and b, where

- v = (Un)n>1 is a sequence of non-zero complex numbers such that >, -, [v,| < oo;

- w = (wj);>1 is a sequence of complex numbers which is both bounded and bounded
below, i.e. 0 < infi>1 |wg| < supysq |wi| < oo;

- ¢ is a map from N into itself, such that ©(0) = 0, ¢(n) < n for every n > 1, and the set
e Y1) ={n > 0; ¢(n) =1} is infinite for every [ > 0;

- b = (bn)n>0 is a strictly increasing sequence of positive integers such that by = 0 and
b1 — by is a multiple of 2(by(n)4+1 — by(n)) for every n > 1.

81
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DEFINITION 6.1. The operator of C-type T, w,,, 5 on £,(N) associated to the data v, w, ¢,
and b given as above is defined by

Whi1 €ht1 if k € [bn,bpy1 — 1), n >0,
bn+171 _1
Un €b, 0y — ( H wj) ey, fk=bpt1—1, n>1,
Ty w, 0,6 €k = j=bn+1
blfl 1
—(H U]j) €0 lfk:bl—l
Jj=bo+1
Note that by convention, an empty product is declared to be equal to 1; more precisely,
bn+171
H wj =1 when b,y =b, +1
j=bn+1

(which can happen only for n = 0).

Without any additional assumption on the parameters, these formulas define a linear map on
coo only. The first issue is of course the boundedness of Ty w, ¢, 5 -

LEMMA 6.2. The operator Ty, , o, b is well-defined and bounded on £,(N) as soon as
21 i ; .
(21) it I fwil>0

b <j<bni1
ProOOF. This is rather clear. Indeed, it appears that T, ., 4, can be written as
T’U, w,p, b = @ Cw, b,n + Rv,bv
n>0
where R, 3 is the operator defined by
Ry px = Z UnTh, 1 —1€b, s T € Lp(N)
n>1

which is clearly bounded (and even compact) because ) - |v,| < oo, and, for each n > 1, Cyy . »
is a finite-dimensional cyclic operator acting on F,, := spanley; b, < k < b1 — 1]. Condition
(21) implies that sup,,»q [|Cw, b, n|| is finite, and T, w, o, is thus bounded. O

From now on, we will always assume that Condition (21) is satisfied. Also, when no confusion
arises, we will write simply T instead of Ty, w, ¢, 5 -

REMARK 6.3. We call such operators operators of C-type for two different reasons. On the
one hand, “C” stands for “cyclic”: as we have just explained, each operator T, ,,,5 is a compact
perturbation of an infinite direct sum of cyclic finite-dimensional operators @, -, Cw,s,n, Where
Cuw,b,n is defined on E,, = spanfey; b, < k < b,11 — 1]. On the other hand, we will see in a
moment that, as a consequence of their particular structure, the operators 7T, ., »,» happen to be
chaotic under a very mild restriction on the parameters; so, “C” stands for “chaotic” as well.

The following identity will be used repeatedly: if T = T}, w, ,,s is an operator of C-type on
£,(N), then bria1

(22) Tonti=bue —o, ( H wj> €b,ny — €b, for every n > 1.
j=bn+1
This allows to show that operators of C-type always have plenty of periodic points:

LEMMA 6.4. If T =Ty, w, 4,5 s an operator of C-type on £,(N), then every basis vector ey, is
periodic for T, ., b ; more precisely,

T20nt1=bn)e, — o if k € [bn,bpt1), n>0.
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Consequently, every vector x € coo is periodic for Ty w, .5, and hence Ty, o v has a dense set of
periodic points.

PROOF. Since ey is a non-zero multiple of T’“*b"ebn for every b, < k < by,1, it suffices to
prove that T2(n+1=00) ¢ — ¢, for every n > 0. We prove this by induction on n.

~If n =0, then T" 7% ¢y = —¢y by definition of Tey, 1, and thus T2(b1=bo) ¢ = ¢.
— Let n > 1, and assume that the result has been proved for all m < n. We know that b, 1 — b, is
a multiple of 2(by(r)41 — by (n)) and since p(n) < n, it follows by (22) and the induction hypothesis
that

bn+171

j=bn+1 O

Using the above result and Corollary 5.13, we can now obtain the following sufficient condition

for an operator of C-type to be chaotic.

PROPOSITION 6.5. Suppose that

limsup |vy| H |w;j| =00 for every n > 0.
N—o0 L
Ne p—1(n) J=bn+1

Then the operator of C-type T =T, w, »,5 0n €,(N) is chaotic.

PrOOF. We apply Corollary 5.13 with Xy := {ex; k > 0}. Fix k > 0 and ¢ > 0. We are
looking for a vector z € Per(T') and an integer m > 1 such that ||z|| < ¢ and ||T™z — eg|| < e. Let
n > 0 be such that k belongs to [b,,b,1). By assumption, there exists N € p~!(n) such that

bn41—1 1 k _1
23) onl TT byl > (L fsl) ™ masf, oo
j=bn+1 j=bn+1
The vector
bny1—1 1 k 1
Z;:'U;,l( H w]’) H wj) Ebn
j=bn+1 J=bat1

is periodic by Lemma 6.4, and satisfies ||z|]| < & by (23). Moreover, since ¢(N) = n, we have by
(22):

byi1—1
T on+1=bn+k—bn €by = UN H w; Tk=bn e, — Tk=bn Ebx
j=bn+1
byy1—1 k by +k—by,
= UN ( H U)j)( H wj) €L — ( H wj> Cobn+k—b, -
Jj=bn+1 J=bn+1 Jj=bn+1

By definition of z, this implies that

by+k—by, bn+1—1 1 k 1
b —bn+k—by, . _ -1 ]
T OoN+170N Z=er — ( H wj> (N ( H U)j) ( H wj) Cbn+k—bys
Jj=bn+1 j=bn+1 Jj=bn+1

and by (23), it follows that ||ToN+1=bx+k=bn » ¢, || < 2. The assumptions of Corollary 5.13 are
thus satisfied, and T is chaotic. ([l

Recall that every chaotic operator is topologically weakly mixing [8, Ch. 4] and reiteratively
hypercyclic [13]. In the following sections, we will be interested in frequent hypercyclicity, U-
frequent hypercyclicity and topological mixing for operators of C-type.

To this end, we will often consider operators of C-type for which the data v, w, ¢ and b have
a special structure.
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DEFINITION 6.6. An operator of C-type T}, v, 4, is said to be an operator of Cy-type if for
every integer k > 1,

-~ pln) =n — 21 for every n € [2¢°1,25), 50 that o((28,25)) =[0,2°);
- the blocks [b,,,bn11), n € [2F71,2F), all have the same size, which we denote by A*):

boi1 — by = AW for every n € [2F—1 2F);
- the sequence v is constant on the interval [2°71, 2F): there exists v(*) such that
vy = v®) for every n € [28—1, 2F);
- the sequences of weights (wp, +i);1<;<a® are independent of n € [2k=1 2F): there exists

))1§i<A(1c) such that

Wy, 47 = wgk) for every 1 <i < A% and every n € [2F1, 2F).

(k
a sequence (w;

REMARK 6.7. By definition, the map ¢ is the same for all operators of C,-type, so it is no
longer a “parameter”. However, we will continue using the notation T, «, ¢, 5 -

2. Operators of C,-type: how to be FHC or UFHC

Our first result concerning operators of C-type gives a sufficient set of conditions for a C-
type operator to be U-frequently hypercyclic. This will be deduced from Theorem 5.14. In the
proof, we will make use of the following formula: for every k > 1, every [ < 2F~1 and every
1<s<A® we have

A 1 AR g -1
s k k
(24) T eka—lﬂJrl*S = U(k) ( H wz( )) €h, — ( H wz( )> eka—lJrl

i=AK) 541 i=1
This holds true because for every I < 2871 we have ¢(2F~1 +1) =1I.

THEOREM 6.8. Let T = Ty w, o, be an operator of Cy-type on £,(N). Suppose that there
exists a constant a > 0 such that the following property holds true : for every C' > 1 and every
integer ko > 1, there exist two integers k > ko and 1 < m < A®) such that

AR AR
[o®)| H |w£k)| >C and l®)| H \wl(k)| >C  for every 0 <m' < am.
i=AK) —m i=m’+1

Then T is chaotic and U-frequently hypercyclic.

PRrROOF. We are going to show that the assumption of Theorem 5.14 is satisfied with Xy =
span [ex ; k > 0]. So let us fix x € Xy and € > 0. We choose kg > 1 such that x may be written as

bl+1—1
xr = E E xjej.
I<2ko j=b

Let C' > 0 be a very large number, to be specified later on in the proof. By assumption, there
exist k> ko and 1 < m < A® such that

AR _q
(25) w1 I ei®l>c
i=AK) —m
and
AR 1
(26) [u(®)| H w™|>C  for every 0 < m/ < am.

i=m/+1
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Note that since the sequences v and w are bounded, it follows from (25) that the integer m can
be chosen as large as we please, provided that C' is large enough. So we may assume from the
beginning that m > 2A%0) . We will also assume that a < 1, which will be useful below.

We set

-1

bry1—1 AR _1 j—b 4
2= 3 3 4y (o [T o) (ITwns) e .
J i 1+ bok—1,, —m+i—b
l<2ko  j=b i=AF) —m4j—b+1 1=1

Our aim is to prove that if C' has been suitably chosen, then
2] < e and [T 2 —T™z|| <& for every 0 < m/ < am/2.
Theorem 5.14 will then conclude the proof.
The first of these two claims is the easiest one to prove. Indeed, since the weight sequence w
is bounded and bounded from below, it follows from (25) that
1 A ko)
Izl <l -C7" - A%,
where A is an absolute constant. So ||z|| < ¢ if C is large enough.

Let us now estimate the norm of the vector T™+™ 2 — ™'z for every 0 < m’ < am/2. Note
that if 0 <1 < 2% — 1 and b < j < b1, then m — (j — b)) > 1 since 0 < j — by < Ako) and
m > Ao) . Applying (24) with s := m — (j — b;), we get

AR _1

N 0 (k)
ok—14p 41— m+i—bi — v w; b,
i=AF) —m+j—b+1

AR it by -1
_ w® e
i bgk—1+lv
i=1

AR _q j—by

) k
Tm@bgk,umfmﬂ*bz - (U(k) H wl( )> ( H wb,+i) €;
i=1

i=AF) —m4j—b+1

AR _mt b, -1
(I ) e
i byk—1,,+5—bi

i=j—b;+1

Tm*(j*bz)eb

and hence

j—b _ j—bi ) ) j—b _ j—bi (k) )
because 77" " ey, = ( i=1 Wbi+i ) €j and T l€b2k—1+1 - i=1 Wy €byr—1, +i—bi
Moreover, if 0 < m' < am/2, then

j—bi+m’

m’ _ (k)
T Cbyr—1,+i—bi = ( H w; eka_1+l+jsz+m’;
i=j—b;+1

because j — by +m/ < b1 — b+ am/2 < Ako) 4 m/2 <m < A®) . So we get

AR 1

J—bi
m—+m’ _ k (k) m’
T Ebok—1 )y —mti—b (U( ) H w,; H Wy, 44 ) T e
i=1

i=AK) —m+j—b+1

A® —mtj—b; —1/ j—bi+m
_ (k) (k) ,
w; w; Cbyi—1+i—bitm’

i=j—b+1 i=j—b+1
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By definition of z, it follows that for any 0 < m/ < am/2, we have

bip1—1 AR _q -1
ey (o )
l<2k0  j=b; i=j—b;+m’/+1
J—b

-1
( H wbz+i) L€y 1y +ij—bi+m’
i=1
By (26) and since the weight sequence w is bounded and bounded below, this implies that
Jm s = T e < Jlef - 01 A8

where (as above) A is an absolute constant. So we have || z — T™ z|| < & for every 0 < m/ <
am/2 if C is large enough.

The assumptions of Theorem 5.14 are thus satisfied, and this concludes the proof of Theorem

6.8. ]

Using Theorem 5.35 instead of Theorem 5.14, we can obtain sufficient conditions of the same
kind as above for operators of C,-type to be frequently hypercyclic.

THEOREM 6.9. Let T = Ty w, o, be an operator of Cy-type on £,(N). Suppose that there
exists a constant o > 0 such that the following property holds true: for every C > 1 and every
ko > 1, there exist two integers k > kg and 1 < m < AK®) such that

AR 1
(27) CR | B e
and J=AEmm
AR 1
(28) [®)] H \w§-k)| > C  for every 0<m' <aA®,
j=mi+1

Then T is chaotic and frequently hypercyclic.

PRrROOF. The proof of Theorem 6.9 is so similar to that of Theorem 6.8 that we only sketch
it very briefly. The role of the integer d in the assumption of Theorem 5.35 is played by the
integer 2A() | which is a period of z. If k is chosen sufficiently large at the beginning of the
proof, A®) can be supposed to be a multiple of the period of any fixed vector y € Xy: indeed,
such a vector always has a period of the form A1) for some integer k; > 1, and 2A*1) divides
A" as soon as k > k; since AF) = bor—1 gk1-141 — bor—14 9k -1, Alk1) = boki-141 — bor—1 and
p(2F1 4 2k —1) = gk —L, 0

Now that we have obtained sufficient conditions for the frequent and U-frequent hypercyclicity
of operators of C.-type, we need to find necessary conditions as well. This we do in the next
section.

3. Operators of C-type: how not to be FHC or UFHC

Since U-frequent hypercyclicity and frequent hypercyclicity are strong notions of hypercyclicity,
one might think that it is easier to prove that an operator T € B(H) does not have one of these
properties, than to prove that an operator has it. However, instead of exhibiting a single U-
frequent or frequent hypercyclic vector, we now need to prove that no vector of H whatsoever can
be U-frequent or frequent hypercyclic; and put in this way, this no longer looks that easy.

In this section, we are going to single out some conditions ensuring that an operator of C-type
T is not U-frequently hypercyclic or not frequently hypercyclic. As suggested in the few lines
above, the arguments will be rather more technical than in the previous section. However, we can
give the basic idea immediately: if for every hypercyclic vector x for T, we are able to find some
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g > 0 such that the set Np(z, B(0,¢)) has upper density (resp. lower density) equal to 0, then T
will not be U-frequently hypercyclic (resp. frequently hypercyclic).

3.1. The main criterion, in abstract form. The following notation will be used through-
out this section: given an operator of C-type T' = T}, 4, o, 5, We denote for each n > 0 by P, the
canonical projection of ¢,(N) onto E,, = spanfey, b, <k < byq1]: if z = > xrer € £,(N), then

k>0

brg1—1

P,x = E TLEeL-
k=b

The following theorem provides sufficient conditions for an operator of C-type to be non-U-
frequently hypercyclic or non-frequently hypercyclic. These conditions are stated in terms of the
projections P,.

THEOREM 6.10. Let T be an operator of C-type on €,(N). Suppose that for every hypercyclic
vector x € £,(N) for T, there exist
- a positive constant C,
- a non-increasing sequence (0;);>1 of positive real numbers with Y, /B < 1,
- a sequence (X});>0 of non-negative real numbers, -
-a non-decreasmgisequence (Ny)i>1 of integers tending to infinity,
such that the following conditions are satisfied:

(1) ||Poz| £ X, for every n > 0;
(2) sup ||P, TP, z|| < CB X, for every | > 1 and every 0 <n < I;
Jj=0

(3) sup ||P,TIP x| < CB||Pzx| for everyl > 1 and every 0 < n <;
0<j<NV

(0) lilrgiogf kgl};l #{0<j<k; ||I€Pf;jpl z|| > 2CX;} _
Then T is not U-frequently hypercyclic.
If Condition (C) is replaced by
#{0<j<k;||PTIPz|>20X}

C7 hmlnf 1nf - 17
( ) l=oo k2N i e-10)) Rl

then T is not frequently hypercyclic.

The usefulness of this result lies in the fact that the lower bounds for the densities are given
in terms of norms || P,T7 P,x|| which are easily computable. Moreover, since P,z is periodic, we
can determine the cardinality of the sets {0 < j < k; || P, TV P,z|| > 2CX,,} by examining only a
fixed finite number of iterates (independent of k).

Theorem 6.10 will follow very easily from the next lemma, which provides, under conditions
(1), (2), and (3) above on the projections P,,, lower bounds for the upper and lower density of some
sets Np(x, B(0,£)¢), where z is any non-zero vector of £,(N) and ¢ is a positive number depending
on z. Here, of course, B(0,¢)¢ denotes the complement of the the ball B(0,¢) in £,(N).

LEMMA 6.11. Let T be an operator of C-type on £y(N). Fiz x € £,(N)\ {0} and suppose that
there erist
- a positive constant C,
- a non-increasing sequence (0;);>1 of positive real numbers with Y, /B < 1,
- a sequence (X;);>o0 of non-negative real numbers, N
- a non-decreasing sequence (Np);>1 of integers tending to infinity,

such that the following conditions are satisfied:
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(1) [Pzl X for every n > 0;
(2) sup ||P, TP, z|| < CBX; for every | > 1 and every 0 < n < I;
Jj=20
(3) sup ||P,TIP x| < CB||Pzx| for everyl > 1 and every 0 < n <I;
0<j<N;
(4) sup Y ||P, T Pz|| > CX,, for every n > 0.
7j>01>n

Then there exists € > 0 such that

0<ji<k;||RT/Pz|>20X
dens Np(z, B(0,¢)°) > liminf inf #Ho<j<k; | 2l 2 1}
— oo k>N, k+1
and
#{0<j<k;||PRTIPz||>20X}

S B ¢) > liminf inf .
dens Nz (e, B(O,€)) 2 limint  inf b

Before giving the proof of Lemma 6.11, let us first show how it implies Theorem 6.10.

PROOF OF THEOREM 6.10. For every n > 0 and every x € £,(N), the vector >, ,., P is
a periodic vector for T'. Hence, if x is hypercyclic for 7" then

(29) sup Z | P, T7 P, x| = oo.
iz I>n
Indeed, otherwise we would have
sup ||P,T7 z|| < sup HTj( Z Pl:c)H + sup Z | P.TIP x| < oo,
Jj=0 Jj=0 0<i<n 720 50
a contradiction with the hypercyclicity of x.

By (29), condition (4) of Lemma 6.11 is satisfied for any choice of the sequence (X,)n>0. It
follows that if condition (C) in Theorem 6.10 is satisfied, then, for any « € HC(T'), one can find
e > 0 such that dens (N7 (z, B(0,¢)) = 0; whereas if (C’) is satisfied, then, for any z € HC(T),
one can find € > 0 such that dens (NT(x, B(0, 5)) = (. This concludes the proof. O

Let us now go back to the proof of Lemma 6.11. Before giving it, let us first explain the general
idea. The starting point is given by the inequalities

[ T72|| > (| PaT? || > || P T’ Poz| — Z | P Pr||.
>n

In other words, we get a lower bound for ||77z| as soon as we have a lower bound for some
quantity || P,T7 P,z|| and an upper bound for ||P, 77 Px||, I > n. The role of the lower bound for
| P, T7 P,z| will be played by 2CX,,, which will be bigger than 2¢. Assumption (3) will provide
us with an upper bound for ||P,T7 P,x|| when j is smaller than N;. However, condition (4) tells us
that || P,T7 P,x|| will be large for some j > 0 and some [ > n. Assumption (2) will then be used
to deduce that X; > X,,, which will allow us to deduce that 2CX; > 2¢ and to repeat the above
arguments for || P77z, and so on.

ProOOF OF LEMMA 6.11. If z is a non-zero periodic vector for 7', one can obviously choose
€ > 0 such that

dens Nr(z, B(0,¢)°) =1

and the conclusion of Lemma 6.11 is satisfied. So we henceforward suppose that x is not a periodic
vector for T

We first note that there exists an integer [y > 1 such that

1Py 2|l > v/Bio llz — Po .
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Indeed, since Y _,~; v/A < 11t is impossible to have || P, z|| < /5 ||z — P x| for every [ > 1. Since
x is not periodic, x+ — Py x is non-zero. Assumption (1) of Lemma 6.11 implies thus that X, is
non-zero and we set € = CX,.

We now construct, by induction on n > 1, a strictly increasing sequence of integers (1,,)n>1
such that if we set

v immin {2 00 Y |p TR > 0xi,
I>lp—1
then
jn—l > Nln and Xl,,, 2

X; for every n > 1.

1

/ﬁln n—1
Observe that this does make sense: the set involved in the definition of j,_; is non-empty by
assumption (4).

Suppose that the integers ly,...,l,—1 have already been constructed. Then there exists an
integer [l,, > l,,—1 with the property that
(30) ||‘Pln71Tj7171Pln xH >C V /BlnXlnfl'

Indeed, if we had ||P,_, TP z| < C\/BiX,,_, for every I > l,_1, this would imply that
s, 1P, T/ Pz|| < CX,_,, violating the definition of j, 1.

n—19

By assumption (2), we have

1 , 1
Xln Z ~a Bn— T]n_lﬂn x Z o Xlnf N
B 1P, [ o .
In order to show that j,_1 > N, we observe that for every 0 < j < N,
: Ch, Ch,
1P, TP, x| < OBy, |12, || < CB, |z — Pox|| < Py af < Xy,

VB VB

by assumption (3) and the definition of ly. Since the sequence (5;);>¢ is decreasing, this yields that
|Py, ,T7P, || < C\/Bi, Xi,- Also, the induction hypothesis implies that X;, < X;, <--- < X,
so that ||P, \TIP, z| < C\/Bi, Xi,_, for every 0 < j < N, . Inequality (30) thus implies that
Jn—1 > N;, and this finishes the induction. Note that the sequence (j)n>0 tends to infinity as n
tends to infinity. -

For any integer s > 1, let us denote by ns; be the smallest integer such that s belongs to
[jn.—1,Jn.)- Then ng tends to infinity as s tends to infinity. Since

IT7 || > |PaT7 | > | PaTI Pl = Y|P T7 Pra|
for every j > 0 and n > 0, we have e
|Tix| > |P, TP, x| - CX;, forevery0<j< jp,.
It follows from this inequality and the fact that j < j,. for every j < s that
{0<j<s;|P, TP, =) 220X, } C{0<j<s;|T/z|| >CX,, }
c{0<j<s:|T72] = CX,, }.

Hence, since ¢ = CXj,, we have

0<j<s;|P, TP >2CX
dens NT(:U,B(O,E)C) > lim inf #{ <j<si P, b, 2l 2 l"s}-

S§—00 S+1
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Now Nj, < jn.—1 < s, so that s belongs to the interval [N;_,c0) for each s > 1. Thus
#{0<j<si P, TR, 2| 220X, }

s+ 1 -
#{0<j<k;||P, TP, z||>2CX,, }

s

inf
KN, k+ 1
and

0<j<k;|P, TP > 20X
dens NT (I7 B(O,E)C) > liminf inf #{ =J= || bng lng QZ‘H = lns}
- §—00 kZNlS k+ 1
0<j<k;|PTIPz|>20X
> liminf inf #HO<j<k; IRT P x| > 20X}
l—oo k>N, k+1

since l,,, — 00 as s — 0o0. This proves the first part of Lemma 6.11.
As for the second part, we proceed in the same way, starting from the inequality

_ 0<j<s;|P, TP > 20X,
dens NT(LU,B(O,€)C) > lim sup #{ <j<sil lns+ : L, 2l > lng }
S—00 S

Our first observation is that min(¢~1(l,)) < l,41 for every n > 1. This follows, in a slightly
roundabout way, from the fact that P, 79 P, is non-zero. Indeed, the definition of 7" implies
that there exists an integer i > 1 such that ¢*(l,11) = l,. Then ¢*~1(l,,+1) belongs to p~1(l,),
and since '~ (l,41) < lpy1, it follows that min(¢=1(1,,)) < ly1-

We now claim that there exists a strictly increasing sequence of integers (s;);>1 such that
$i 2 Nmin(p-1(1,, )) for every ¢ > 1. Recall that Ni, ,, < jn, for all ¢ > 1. Thus there exists
8i € [Jni=1,Jn;) such that s; > N
and thus s; > NlnSi+1 > NInin(Lp—l(ln%)).

(s;)i>1 strictly increasing, we obtain the sequence we are looking for.

As s; belongs to the interval [j,, 1, jn,), we have ns, < n,,
Extracting if necessary in order to make the sequence

ng+1e

We now have
#{0<j<sis|B,, TR, | >2C0X,, }

dens Np (x,B(O,&)C) > liminf

1—00 Si + 1
> lim inf inf #{OSj <k |, TR, x| > QCXI"}
- n—oo kZanill(¢71(17L)) k * !
Lo #{0<j<kiIATIRa) 220K
T looo E2Nio-10y kAl
This concludes the proof of Lemma 6.11. )

3.2. How to check the assumptions. The assumptions of Theorem 6.10 are partly of an
“abstract” nature, since they involve the projections P, and not explicitly the parameters v, w,
@, and b defining T'. We now provide concrete conditions on v, w, ¢, and b which imply that the
operator of C-type T}, ,,,» satisfies the assumptions of Theorem 6.10.

As a rule, conditions (1), (2), and (3) will be obtained by requiring that the products of weights

J

|vn| - sup H |ws|

TE€e(n) bem)+1) s=p,, ) +1

decrease sufficiently rapidly and by setting, given a hypercyclic vector  for T, w, . b,

bip1—1 byp1—1

Z ( H ws)xkekH, [ >0.

k=b, s=k+1

X[Z:‘

More precisely, we have the following result, which generalizes Claims 5 and 6 in [40].
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PROPOSITION 6.12. Let T =T, , 4,5 be an operator of C-type on £,(N), and let (Cp)n>0 be
a sequence of positive numbers with 0 < C,, < 1. Assume that
J
|vn] - sup < H |ws|) <C, foreveryn > 0.
TE€Dp () be(m)+1) “s=p 1 +1

Then, for any x € €,(N), we have for every Il > 1 and every 0 <n <,
biy1—1 biyi—1

4 p=1
(1) swp |PTPal < Crlbia —0) 7 | 0 (T we) onen
jz0 k=b, s=k+1
and
) b1 bl+171
() sw IPTIRall < Coa =) F (s T fwl)iRal
J<N biy1—N<k<biii

s=k+1
for every 1 < N < bj41 — ;.

PROOF. Fix [ > 1 and 0 < n < I. We first remark that if n # @ (I) for all M > 1, the
definition of T implies that P,T7 P,z = 0 for every j > 0 (this argument was already used at the
end of the proof of Lemma 6.11). So the required inequalities are obvious in this case.

Suppose now that n = ¢ (I) for some integer M > 1. In this case, we claim that
biy1—1
(31) sup P77 exll < foul (T fwsl) sup [1PaTen, |
320 s=k+1 320

for every k € [bj,b41). This inequality will allow us to run an induction procedure in order to
estimate the quantity sup ||P,T7P, z|.
>0

In order to prove (31), we fix jo > 0 and we consider separately several cases.
- Suppose first that 0 < jo < bj;1 — k. Then T7° ¢}, is a scalar multiple of Ch+jo, and P, T7o e, =0.
- Now, suppose that bj41 — k < jo < bj+1 — k + b1 — b;. Then

br41—1
P, T ¢ — PnTJ()—(lerl—k') (Ul ( H ws) ebww)’
s=k+1
so that
br41—1
12,7 < Jul (T ) sup (P77 o]
s—hil j=0

- Finally, suppose that bj11 — k + bja1 — b < jo < 2(bje1 — by). In this case, we write

k
. -1
Tioe, = ( H ws) Tiotk=big,
s=b;+1
By assumption, we have 2(bj41 — b)) < jo+k — by < 2(by41 — bi) + (bi41 — by); that is,
j0+k—bl:i+2(bl+1—b1) with 0 <@ < by — by

Since T'2(01+1=0) ¢, = ¢, it follows that

k 1 k 1 I+1
Tjoek = ( H ws) Tlebl = ( H ws) ( H ws) Co,+i
s=b;+1 s=b;+1 s=b;+1

and hence that P, 77 e;, = 0.
We have thus proved the required inequality for every 0 < jo < 2(bj1 — b;). Since
T30t g = ey,

it holds true in fact for every j > 0, and this proves (31).
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Let now My be the minimum of the integers M > 1 such that ¢ (1) = n. We start from the
straightforward estimate

biy1—1
sup ||P,T7 P z| < Z |xk| sup || P, T el
i>0 = J>0
and apply (31). This gives
biy1—1 biy1—1
sup P77/ Pal < 3 Jaul - ful - (T lwsl) sup BT ey,
320 k=bi s=k+1 320

biy1—1 byy1—1

3 (I1 )

k=b, s=k+1

b

1

fal - sup IPAT 1] - |

where ||z]|; denotes the ¢! norm of a vector z € cgp.

By induction, we obtain

My—1 bory+1—1
swp [P Pl < ful - [T (gl TT lwsl) -
320 r=1 s=bgr1)+1
. bip1—1 brp1—1
sup 1P T ey, | - ‘ Z ( H ws)mkekHl
320 k=b; s=k+1
Mo—1 bor@y+1—1
=11 (|%r—1<z>| II |ws|) [vgro-1 )|
r=1 s:bvr(l)-ﬁ—l

biy1—1 biy1—1

> (I we) ]

sup HPnTjeb"
j=0

k=b, s=k+1
Applying the assumption of Proposition 6.12, it follows that
Mp—1
sup ||P,T’P x| < ( H erfl(l)) Nvgmo-1y| - sup [P T ey, || -
>0 ol >0

biy1—1 biy1—1

3 (IT )],

k=b, s=k+1

Now, the definition of 7" and the fact that T'2(n+1=0) ¢, = ¢, show that
J

sup [|[PT7 ey, || < sup I lwsl-
>0 J€bubut1) (p1

Since n = ¢Mo(1), it follows (by the assumption of Proposition 6.12), that

Mpy—1 biy1—1 biy1—1

s;ug |P. TP x| < ( H C¢T71(1)> - Cunmp-1(py - ‘ Z ( H ws> Tpek H1
71z r=1

k=b; s=k+1

biy1—1 byy1—1

<o £ )

k=b, s=k+1

)

1
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because all the constants C,, are supposed to belong to (0,1) and ¢°(1) = I. By Holder’s inequality,
we conclude that

bip1—1 byp1—1

Z ( H ws) Trek

k=b, s=k+1

]

)

. _1
sup |PaTP x| < Cp - (bt — b)) - ‘
j=0

which proves assertion (1) of Proposition 6.12.

The proof of assertion (2) is now straightforward. Indeed, we have for every 1 < N < b;41 —b;
and every 0 < j < N:

bit1—N—-1 biy1—1
TJPZIZT]< Z xkek)—i-T]( Z .’L‘}gek).
k=b; k=biy1—N

Since the first term belongs to the linear span of th%x?gtlors e;, by <1i < by, it follows that
P, TP x=P,T7 ( Z TLeL ),
k:bl+1fN
and so, by the already proved assertion (1) of Proposition 6.12,

bip1—1  bp1-—-1

|P. T P z|| <Cy - (b —bl)k% : H Z ( H ws) l‘kekH

k=bi41—N s=k+1

. bl+1—1
<G -t s (T ) - B
b1 —N<k<biy1 s=k—+1
This concludes the proof of Proposition 6.12. (]

The next result provides conditions on the parameters of an operator of C-type ensuring that
assumption (C) or (C’) of Theorem 6.10 is satisfied. This generalizes Claim 7 of [40].

PROPOSITION 6.13. Let T' = T, w, 4,5 be an operator of C-type on ,(N), and let x € £,(N).

Fiz 1 >0, and define
biy1—1 bry1—1

(1 ) e

k=b, s=k+1
Suppose that there exist two integers 0 < ko < k1 < by41 — by such that

X =|

b1,+171
|we,+1| =1 for every k € (ko, k1) and H lws| = 1.
s=b;+ko+1
Then we have for every J >0
1 .
- <j<J:|PTiPz||>X 2}
1 Ho<i< AT P 2 X/
1 1
> 1= 2(bias — by — (b — ko)) - (5= + )
2> ( 141 — b — (k1 0)) T+1 b —h
PROOF. Fix j >0 and k € [b;,b;41), and set n:=j+k —b, mod (b1 — b;). Then
4 bl+1—1 bi+n bl+1_1 1
-PZTJ e == ( H ws) ( H ws) ( H ws) €b,+n
s=k+1 s=b;+1 s=b;+1
biy1—1 biy1—1 1
= :I:( H ws> ( H ws) €b;+n
s=k+1 s=bi+n+1

(the plus or minus sign appearing in these equalities depends on the parity of the unique integer
s > 0 such that n belongs to the interval [s(bj+1 — b;), (s + 1)(bi41 — br))).
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If we suppose that n belongs to [k, k1), we have

biy1—1 biy1—1
H ws| = H lws| =1,
s=b;+n+1 s=b;+ko+1

and thus there exists (;, € T such that

bH,l—l

PT ey =y - ( H ws) €y +n-
s=k+1
Setting, for every j > 0,

= {k € [bi,bis1): j+k—b mod (bisy — by) does not belong to [ko, kl)},

we obtain that

bipi—1
PTPz= > xPT7ex= Y  axPTler+ » x,PT7e
k=b, k€ [br,big1)\1; kel
satisfies
bip1—1
|PTIP x| > H Z xy PTY ey, H = H Z T Cj.k ( H ws) ek H
k€ [by,bi+1)\I; k€ [br,bit1)\I; s=k+1
bl+1* bz+1
= 3w (L ez x| X e (11 )|
k€ [br,bis 1)\ s=k+1 I; s=k+1
We now consider separately two cases:
bip1—1
- Suppose first that H Z Tk ( H ws) ek H < X;/2 for every j > 0. Then we have
kel; s=k+1

IATIPal| > X,/2  for every j > 0,

and thus
1 #{0<j<J;|PT'Pz|| > X,;/2} =1 for every J > 0.
- Now, suppose that there exists jo > 0 such that
z+1 1 X,
| 2 o (O] w)e] =5
kel s=k+1

Then we have for every integer j > 0 such that I; N I, is empty:

le 1 biy1—1
leripa > (T we)mer | 2| S (TT we)me | > 5
k€ brbiy)\I; s=k+1 keI, s=k+1

It follows that, for every J > 0,

1 .
5 #{0< i < T IRT IR = X0/}

J+1
1 )
(32) >1- = #{o<i<uinng, A0},
Now, we remark that if we set i; :== j mod (b41 — b;) for every j > 0, we have
[bl+]€1*ij,bl_._l)U[bl,kOfZ‘j) lfOSZ] < ko
I; = [bl+k1_ij7bl+1+ko—ij) ifkogijgkl

(b1, bi41 + ko —45) U [br1 + k1 — 25, b141) if by <ij <biy1 —b
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and #I; = by41 — by — (k1 — ko) for every j > 0. This particular structure of the sets I; implies
that
J
# {OSjSJ;IijjQ 75(0} < 2(bjp1 — by — (k1 — ko)) - ({J +1>.
bit1—b
Plugging this into (32) yields that

1 . 1 1
_ <7< J > >1— — b — _
o #{0 j<J:|PTiPa| > Xl/2} > 1= 2(bis — b — (ky ko))(J+1 i —bz)’

which is the inequality we were looking for. (]

Propositions 6.12 and 6.13 will be repeatedly used in Sections 2, 3 and 4 in order to exhibit
the desired counterexamples.

4. Operators of C-type: how to be mixing or not mixing

In this section, we give some conditions ensuring that an operator of C-type is or is not
topologically mixing. This will allow us to show in particular in Section 2.2 that the assumptions
of our criterion for frequent hypercyclicity (Theorem 5.35) do not imply the Operator Specification
Property.

PROPOSITION 6.14. Let T' = T, v, 5 be an operator of C-type on £,(N). Suppose that for
every n > 0 and every n > 0, the set

bmg1—1

1
Sy = | {se[l,bmﬂ—bm) ol ] |wi\>5} is cofinite,

meN, n 1=bmy1—5
where Ny, = {m € o71(n) : |vp] H e ! 1 Jwi| > 1} Then T is topologically mizing.

PROOF. Since T has a dense set of peI‘IOdIC points, Corollary 5.4 implies that it suffices to
show that for every k£ > 0 and every € > 0, there exists an integer M > 1 such that for every
m > M, there exists a vector z € £,(N) such that ||z|| < ¢ and | Tz — e < e.

Fix thus k£ > 0 and € > 0. Let also n > 0 be such that &k belongs to [b,,bn41), and let > 0
be a sufficiently small positive number, to be fixed later on in the proof. By assumption, the set
Sp.n is cofinite. So it suffices to show that if n is small enough, then, for every s € S, ,,, one can
find a vector z; € £,(N) such that

||Ts+1+k—b

lzs|| < e and nzs — el < €.

Fix s € Sy, so that s belongs to [1, by, 41 — by,) for some integer m of N, ,, and

bm+171
1
ol T il > =
i=bmi1—5 n
We define a vector z4 by setting
1
Zg = €bm+17571.

1
m+1
Um H] =b,+1 ’LU]H bmt+1—s8 Wy

Then
1 n
ll2s]l =

< )
. 1 k )
[Vm| H] bp+1 |wj H n+;+1 o lwjl Hj:bn+1 |wj|

so that ||z;s]| < € for every s € S, ,, if 1 is small enough. Moreover, since ¢(m) = n we also have

bm+k—bn
HJ b +1 w]

1
UmH T W) HJ —b,+1 Wj

Ts+1+k:—b

"Zs =€ — €y +k—by s



96 6. OPERATORS OF C-type AND OF C,-type

and hence (since m belongs to N, ,,)

bunth—bs bnth—by
I1 Il

||Ts+1+kfbnz _e ” _ Jj=bm+1 wj j=bm+1 wj‘
S k Hb7n+1—1 Hk . Hk |w| .
Um | 1j=p,,+1 Wi Llj=p,+1 Wj j=bn+1 1Wj
Since the sequence of weights (w,),;>1 is bounded by a positive constant M,

MOn+1—bn
"
Hj:bn+1 |w; |

and the quantity on the right hand side does not depend on s € S, ,,. So we also have

||Ts+1+k_b"2’5 _ ekH S

|TsTIFF=bny —ep|l <

for every s € S, , provided 7 is small enough. O

For operators of C-type, the statement of Proposition 6.14 can be slightly simplified.

COROLLARY 6.15. Let T = Ty w, 5 be an operator of Cy-type on €,(N). Suppose that for
every € > 0, the set

AR 1
1
Soi= | {nema®i p® IT 1>} s cofinite,
kek. i=Ak) —n ¢

_ . A® 1 (k) 1 : , -
where Ke = {k > 1 : |v|[[;2;  |w;"'| > 2}. Then T is topologically mizing.

Proor. This follows immediately from the special structure of C,-type operators and the
definition of the map ¢ in this case. O

We now use Proposition 6.12 in order to formulate sufficient conditions for an operator of
C-type to be not topologically mixing.
PROPOSITION 6.16. Let T = Ty w, o5 be a C-type operator on £,(N). Let (Cp)n>0 be a
sequence of positive numbers with 0 < C,, < 1 for every n > 0. Assume that
J
[vp] - sup ( H |ws|) <C, for everyn >0,
JE[by(n)sbp(n)+1) 5=by(n)+1

and that there exists a positive constant K such that for infinitely many integers n > 0, we have

biy1—1
1
(33) > Ci(bigr —bn)* p( sup [ |ws|) <K.
I>n bl+1_2(bn+1_bn)§i<bl+1 s=i+1

Then T s not topologically mixing.

PROOF. Recall that we denote for each [ > 0 by P; the canonical projection of £,(N) onto the
finite-dimensional space span[e;; by < j < bj41]. It is enough to show that if n > 0 satisfies the
assumption (33), then

1
HPOT2(bn+1—bn)xH <1 forevery z € B(O, ?)
Indeed, this will imply that 2(b,41 — b,) does not belong to N (B(0, 55 ), B(3eo, 1)) for every
such n, and hence that T is not topologically mixing.
Let us fix a vector z € B(O,ﬁ)

T2bnt1=bn)e — ¢ for every 0 < k < by+1, we have

and an integer n > 0 satisfying (33). Recalling that

n
pOTQ(anfbn)x =P Zplm + Py 23112(l7n+rl7n)1:>lm = Pyz + Z pOTQ(anfrbn)le_
=0 I>n I>n
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Moreover, if [ > n, it follows from Proposition 6.12 that

bi41—-1

| P2 P < (b — )5 ( sup IT lw.l) 1Pl
biy1=2(bnt1—bn)<i<bip1 ;1

So we get that
| P20 =ta]| < [ Poa] + 3[BT~ Pra| < ]| + K ] < 1,
I>n
which proves Proposition 6.16. (]






CHAPTER 7

Explicit counterexamples

1. Summary

In this chapter, we show how the general conditions for frequent hypercyclicity, U-frequent
hypercyclicity and topological mixing obtained in Chapter 6 allow us to exhibit interesting coun-
terexamples, namely:

- operators which are chaotic and frequently hypercyclic but not ergodic (Examples 7.7
and 7.19);

- operators which are chaotic and U-frequently hypercyclic but not frequently hypercyclic
(Example 7.11);

- operators which are chaotic and topologically mixing but not U-frequently hypercyclic
(Example 7.16).

We also show that, as far as the unimodular eigenvalues are concerned, C-type operators
can exhibit quite various behaviors: under rather general conditions on the parameters, a C-type
operator has only countably many eigenvalues, but at the other extreme, C-type operators can
also be mixing in the Gaussian sense (Theorems 7.22 and 7.30).

Finally, we use C-type operators to show that an infinite direct of frequently hypercyclic can
fail to be U-frequently hypercyclic (Theorem 7.33).

2. Operators of C ;-type: FHC does not imply ergodic

In this section, we restrict ourselves to operators of C-type for which the parameters v, w,
and b satisfy the following conditions: for every k > 1,

v(k):2_7(k) and w

%

w )2 if 1<i<s®
1 i 6% << AWK

where (7).~ and (6("));>1 are two strictly increasing sequences of integers with 6(*) < A% for
every k > 1. We call such operators operators of C ;-type.

If, in order to simplify matters, we assume that 6(*) = 27(®) for every k > 1, then the key

parameter of our counterexamples will be the quantity %, i.e. the proportion of weights equal

. . . . o)
to 2 in each block [b,,b,41). For instance, if we consider the vector x = 272 €byy 15 WE remark

that 72"z is close to e, and that the orbit of x follows the orbit of ey during an interval of
time proportional to ). Since the period of z is equal to 2A() | it seems plausible in view of
§(F)

Theorem 5.35 that 1" will be frequently hypercyclic as soon as limsupy_, ., x> 0. On the other

hand, we will show that if limsup,,_, . % is too small, T' cannot be ergodic.

2.1. How to be FHC or UFHC. Our first result gives a readable sufficient condition for
an operator of C, ;-type to be chaotic and frequently hypercyclic.

THEOREM 7.1. Let T =Ty w, o5 be an operator of Cy 1-type on £y(N).
(1) If limsup (6% — 7)) = oo, then T is chaotic.
k— o0

99
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y §k) _ (k)

PRrROOF. The first statement is a direct consequence of Proposition 6.5: for every n > 0, the

expressions of v(®) and (w§k))1§j<A(k> combined with the fact that ¢([2%,281)) = [0,2%~1) for
every k > 1 yield that

> 0, then T is chaotic and frequently hypercyclic.

P! (k) (k)
. . k) __(k
limsup |vn] - | I lwj| = limsup 2° ~7 = oo.
N—o00 - k—o0

Jj=bn+1

Nee-1(n)

As to the second statement, it is a consequence of Theorem 6.9. Let us fix a real number a with

1. §Uk) _ (k)
O0<ax< flllzrisolipw-

Fix also C > 1 and ko > 1. By our assumption and the fact that A®) tends to infinity as k tends
to infinity, there exists an integer k > kg such that

§k) _ (k)
Tk;— >2a and aA® >log, C.
We apply Theorem 6.9 with m = A®) — 1. We have
A1
R TT =207 s 9208® >
i=1

which gives condition (27) of Theorem 6.9. As for condition (28), we have for every 0 < m’ < aA®):

A _q
|v(k)‘ ) H |w5k)\ > 9 8™ —m/—r(® > 96M —an® —z )~
i=m/+1
It thus follows from Theorem 6.9 that T is frequently hypercyclic. O

The next result gives, under some additional assumptions, necessary and sufficient conditions
for an operator of C, 1-type to be U-frequently hypercyclic or frequently hypercyclic (which turn
out to be the same under the additional assumptions).

THEOREM 7.2. Let T = T, w, o,b be an operator of Ci 1-type on £,(N). We additionally

_ 9otk

1
assume that the sequence (v)r>1 defined by v : (A(k))l P 4s non-increasing, and

that the following two conditions are satisfied:

1i T(k) k. 1/2
1msup5(—k)<1 and ZQ v <L

k—o0 k>1

Then, the following assertions are equivalent:

(1) T is U-frequently hypercyclic;
is frequently hypercyclic;
2) T is fi ly h li
(3) limsup 6 /AR > 0.
k— o0

PROOF. Since lim sup % < 1, Condition (3) is equivalent to lim sup 5“177{)(“ > 0. It follows
k—o0

k—o00
from this observation and Theorem 7.1 that (3) implies (2), which of course implies (1). It remains

to prove that if lim sup % = 0, T is not U-frequently hypercyclic. Given a hypercyclic vector
k—oc0
x for T, we need to show that x cannot be a U-frequently hypercyclic vector for T, and for this

it suffices to find C, (81)i>1, (Xi)i>1, and (IV;);>1 satisfying assumptions (1), (2), (3) and (C) of
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Theorem 6.10. This is done thanks to Propositions 6.12 and 6.13. We first fix the sequence (5;);>1
by setting
By =4~ forevery [ € [2"'_1,2k)7 k>1.

Since the sequence (vx)x>1 is non-increasing, the sequence (/5;);>1 is non-increasing. Also

S VA=Y 2w <1

1>1 k>1
by assumption. We have for every k > 1 and every n € [2F71, 2F)

J
|op| - sup H |ws| < s V-1 ®

€ o) bem+1) s=b, ()41

(k=1) _(k)

If we set C,, = 29 for every n € [28=1 2F), Proposition 6.12 implies that for every k > 0,
every | € [2671 2F) and every 0 < n < I,

biy1—1 bp1—1

, _ _1
w1t <2 () e
720 i=b,  s=i+l

bH_lfl bH_lfl

<P (I v

i=b; s=i+1

and, for every 1 < N < A,

3 AR _1

i l k

swp PRl <5 (T ) - IRl
0sj<N i=AK) _N41

We now set N; := A®) —§(F) for every I € [28~1,2%) and every k > 1. Remembering that wgk) =1
if 6% < i < A% we obtain that

sup ||P, TP z| < @HPI z|| for every I > 1.
0<j<N; 4

Finally, we set for every k > 1 and every [ € [2F1, 2F)

bip1—1 biy1—1

Z < H ws) Ti€;

i=b; s=i+1

Xl::‘

Obviously, || P, z|| < Xj, and we have proved that for every 0 <n </,
J B j Bi
sup [P TIPal < %X, and  sup |PTIPx] < 2P
720 4 0<j<N; 4

It remains to check that condition (C) of Theorem 6.10 holds true, and for this we use Proposition

6.13.
We have wz(k) =1 for every i € (6%, A%) and HiA:(22151+1 wgk) = 1. The assumptions of

Proposition 6.13 are thus satisfied for kg = 6®) and k; = A®) if | € [2F—1 2K) and we get

e {o<i < T IPTIR ] > X2} 21— 20 (S o)

J+1 J+1 AWK
for every J > 0, every k > 1, and every [ € [2¢~1 2F). Therefore,
inf L#{o<'<J—||PTij||>X/2}>1—25<k>( ! T )
N T4 1 =J=J i rngl = ey = AR —5® 11 A®
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for every k > 1 and every [ € [2¢~1 2%) and it follows that

1 |
liminf inf —— #{o <j<J:|PTiPa| > Xl/2}

=00 J>N; J+]—
1 1
. _ os(k) =
2 lim inf (1 20 (A(k)—d(k>+1+A(k))) b

since lim sup % = 0 by assumption. Theorem 6.10 eventually yields that T" is not U-frequently
k—o0

hypercyclic, and this concludes the proof. O

REMARK 7.3. Theorem 7.2 implies the main result of [40], i.e. that there exist chaotic operators
on £,(N) which are not U-frequently hypercyclic.

2.2. A word about the OSP. In this short section, we show that there exist C i-type
operators on ¢o(N) which satisfy the assumptions of the criterion for frequent hypercyclicity stated
in Theorem 5.35, and yet do not have the Operator Specification Property (recall that we have
proved in Section 4.1 that operators with the OSP do satisfy the assumptions of Theorem 5.35).
The following corollary is a simple consequence of Proposition 6.16 applied to C ;-type operators.

COROLLARY 74. Let T = T, w, 4,5 be an operator of Ci1-type on £,(N) and let v, =
98T —r® (A(k))l_% for every k > 1. Assume that 7®) > 6=V for every k > 1 and that
there exists a positive constant K such that, for every kg > 1,

3 2k < K47
k>ko
Then T is not topologically mizing.

PROOF. Let n > 1 be an integer, and let k, be the unique integer such that 282 =1 < n < 2kn.

Then v, = v*n) = 27" and p(n) < 2¥~1, and setting
J
Ch = [v] ) sup ( H ‘ws‘)a

TEDem) Potm)+1) “e=b(, +1

we have 0 < C,, < 2-7"" 98% ™Y Moreover, if n is an integer of the form n = 2* — 1 for some

integer k > 1, then b,11 — b, = A®) | and moreover k; > k for every | > n. It follows that

biy1—1
1—1
E Cy (biy1 — br) ”( sup H |w5|)
P bip1=2(bnt1—bn)<i<bip1 gy

is less than

< 321 (A 928 < g
r>k
Hence Proposition 6.16 applies, and T is not topologically mixing. ([l

Since the condition appearing in Corollary 7.4 is compatible with those of Theorem 7.2 above
(see Example 7.7), and since operators with the OSP are topologically mixing, we immediately
deduce:

COROLLARY 7.5. There exist operators on £,(N) which satisfy the assumptions of Theorem 7.2
and yet do not have the Operator Specification Property.

Since the assumptions of Theorem 7.2 imply those of Theorem 5.35, it follows that there exist
operators on £,(N) which satisfy the criterion for frequent hypercyclicity stated in Theorem 5.35
without having the OSP. In particular, this criterion for frequent hypercyclicity is strictly stronger
than the “classical” one.
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2.3. FHC but not ergodic. We are now ready to give examples of operators of C i-type
which are frequently hypercyclic but not ergodic.

THEOREM 7.6. Let T' be an operator of Cy 1-type on £,(N), and set, for every k > 1, v =

o , _1
st —r® (A(k))l . Suppose that the sequence (Yi)k>1 is non-increasing, and that the following
three conditions are satisfied:
(k) sk 1
Kk 1/2 < . KA . o 1
22 v~ <1, limsup 5 <1l and O0<limsup AP S F

k>1 k—oc0 k—oc0

Then T is frequently hypercyclic but ¢(T) < 1, so that T is not ergodic.

PROOF. The frequent hypercyclicity of T' follows from Theorem 7.2. Let us show that ¢(T) < 1.
Recall that ¢(T') is characterized by the following property (see [30, Rem. 4.6]): for quasi-all
hypercyclic vectors = for T in the Baire category sense, we have

(34) o(T) = dens Ny (z, B(0,¢))  for every £ > 0.
Let us fix a hypercyclic vector = for T satisfying (34). By Lemma 6.11 combined with the end of
the proof of Theorem 7.2, we know that there exists an € > 0 such that

¢ . . 1 . ;
dens N (z, B(0,e)°)) > hlrgg)lf lenjgl T #{0<j<J; |PT'P x| > X;/2}
(recall that we proved above that under the assumption (3) of Theorem 7.2, the assumptions of
Theorem 6.10 are satisfied with C' = 1/4, so that 2CX; = X;/2). Using an inequality obtained at
the end of the proof of Theorem 7.2, we get

dens N (z, B(0,¢)°)> liminf (1 - 25(k)(A(k) 15(16) 1 + ! ))

k—oc0 A(k)
so that
_ ) 25(k) 25(k)
dens Ny (z, B(0,¢)) < lllzrisotip <A(k) s 1 + A(k)>
. 20(F) 1 25(k)
=timswp (X5 -+ am )
A NCING
It follows that
, 26(k) 1 26(k)
(35) o(T) < h/rcnjip (A(k) : 5 1 + A(k)>'
TAm T A®m

Our assumption thus implies that

25 2 1 2
T) < =_1 24
Msii5T5-a+5<b

which proves that T is not ergodic. O

EXAMPLE 7.7. Let C be a positive integer, and consider the operator of C 1-type T on £,(N)
associated to the parameters

7B = 9Ck ) — 9. 90k and A® =10.2°F k>1.

If C is sufficiently large, T is frequently hypercyclic but not ergodic. Besides, it is also not
topologically mixing.
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ProoOF. With this choice of parameters, and assuming that C' > 2, we have

e = 2229070229 gl gOk(=E) < 4. 9=5 27" 90k

for every k > 1. So it is not hard to check that if C' is sufficiently large, the sequence (vx)g>1 is
non-increasing and satisfies Zk21 2’“7,1/ 2 < 1. The other assumptions of Theorem 7.6 are clearly

satisfied, and hence T is frequently hypercyclic but not ergodic.

In order to show that T is also not topologically mixing if C' is large enough, we use Proposi-
tion 6.16. If n is any integer of the form n = 2% — 1, where ko > 1 is any integer, then

bt (b=1) __(k)
1-1 E—1o6F—1D _7(k E)y1—2
S Cr (b — by) p( sup I1 st|>=§ k=19 SRINCINE
I>n M+172Gm+17h0§k<h+1s:k+l k>k0
k—1
= E 25 v,
k>ko

If C is sufficiently large, then >~ 2F=1n, < 1; so we deduce from Proposition 6.16 (by considering
K :=1and n := 2k — 1 for every ko > 1) that T is not topologically mixing. Notice that T" also
satisfies the assumptions of Corollary 7.4. O

Since the conditions of Theorem 7.2 make no difference between U-frequent and frequent hy-
percyclicity, we will need to introduce another family of operators of C,-type in order to construct
examples of U-frequent hypercyclic operators on ¢,(N) which are not frequently hypercyclic. This
we do in the next section.

3. Operators of C_ >-type: UFHC does not imply FHC

In this section, we impose the following restrictions on the parameters v, w, and b of a C-type
operator Ty w, e, p: for every k > 1,

2 if 1<i<é®
1 if 60 << At —35k)

v® =27 and w® ={1/2 it AK) —360) << A _ 250
2 if AR —25(k) <j < AR — §(k)
1 if AR — k) <j < AR

where (T(k))k21 and (5(’“));@1 are two strictly increasing sequences of integers, satisfying 46% < A*)
for every k > 1. We call operators satisfying these conditions operators of C o-type. Observe that
we still have with this definition

AR _1
H wg"”') =29 for every k > 1.
i=1

This choice of weights is motivated by the differences between the assumptions of Theorem
5.14 and those of Theorem 5.35. If we assume for simplicity that 6*) = 27(%) for every k > 1

s5(k)

. . _ k) .
and if we consider the vector z := 27 = €y + AR _25(k), WE observe that T2%" z is close to eg

and that the orbit of z follows the orbit of ey during an interval of time proportional to ). In
view of Theorem 5.14, it thus seems likely that T will be U-frequently hypercyclic. However, if
limg_ oo % = (0, it also seems plausible that T will not satisfy the assumptions of Theorem 5.35,

and hence will possibly not be frequently hypercyclic.
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3.1. How to be FHC or UFHC. In this section, we present some sufficient conditions for
an operator of C; o-type to be U-frequently hypercyclic.
THEOREM 7.8. Let T =T, , b be an operator of Cy o-type on £,(N).
(1) If limsup (§(k) — T(k)) = o0, then T is chaotic.
k—o0

(k)
(2) If limsup T < 1, then T is chaotic and U-frequently hypercyclic.

§k) _ (k)
(3) If limsup AR > 0, then T is chaotic and frequently hypercyclic.
k—o0

PrOOF. The proofs of assertions (1) and (3) are completely similar to the ones given in the
proof of Theorem 7.1. As for (2), it is a consequence of Theorem 6.8. Let us fix

0 L1y o
<a< §_§ 1km_)so1<1>p6(—k)-
Fix also C' > 1, and an integer ko > 1. There exists an integer k > kg such that
(k)
% <1-3a and ad® > log, C.
We then have
AR 1
@ I e =20 s 230 s o
i=Ak) —25(k)
and, for every 0 < m’ < 2a6®):
AR 1
|U(k)| . H |U)£k)| > 2(1—2a)§(k)—r(k) > 2a6(k) > C
i=m’'+1
Applying Theorem 6.8 with m = 26®), it follows that T is U-frequently hypercyclic. O

We see from this proof that the new structure of the weights (w§k))1§j<A<k>, k > 1, compared
with the case of operators of C4 ;-type, allows us to provide different conditions for U-frequent
hypercyclicity and frequent hypercyclicity of operators of C; o-type. Our next result gives, under
some additional assumptions, a necessary and sufficient condition for frequent hypercyclicity of
operators of Cy o-type which, combined with (2) of Theorem 7.8, will ultimately allow us to
construct U-frequently hypercyclic operators of C >-type which are not frequently hypercyclic.

THEOREM 7.9. Let T =T, w, o, be an operator of Cy o-type on €,(N), and for every k > 1,

- : 1

set v 1= 9o =™ (A(k))l ?. Suppose that the sequence (Vi)k>1 @S non-increasing and that it
satisfies the following three conditions:

(k) §5(k)

<1, and lim

k. 1/2 : _
22 o<1, lim sup KO dim <y =

k>1 k—o0

Then T is frequently hypercyclic if and only if limsup 6 /A®) > 0.

k—o0
PROOF. Since limsup,,_, % < 1, the condition limsup,,_, % > 0 is equivalent to
i §) — (k) 0
msup ——7— > U
k—>oop Ak)

and by assertion (3) of Theorem 7.8, this condition implies that T is frequently hypercyclic.

The proof of the converse assertion proceeds exactly as in the proof of the implication (1) =

(3) in Theorem 7.2. Suppose that limsup;,_, . % =0, and let « € ¢,(N) be a hypercyclic vector
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for T. Our aim is to prove that x cannot be a frequently hypercyclic vector for T', using Theorem
6.10. We set

B =4~ forevery l € [2F71 2F) k> 1.
This sequence (f);>1 is non-increasing and satisfies )5, v/Bi < 1. Setting

biy1—1 bry1—1

Z ( H ws) Ti€;

i=b,  s=i+1

X, ::‘ for e [2671,25), k> 1,

we have | P, z|| < X;.

Also, by Proposition 6.12, we have for every [ > 0, every 0 < n < [, and every 1 < N < A,
where [ € 2871 2%) that

. 1
sup ||P,T7P x| < Zﬁle
j=0

and
1 A 1
sw |PTRal < 8- (T 1) - IRl
OsjsN i=A —N+1

At this point, we diverge from the proof of Theorem 7.2, and set N; := 6*) for every [ € [2F~1, 2F)
- 1
and every k > 1. We then have sup [P, T/P x| < Zﬂl | P x| for every I > 0 and every
0<j<N;
0 < n <. In order to check assumption (C’) of Theorem 6.10, we use again Proposition 6.13. We

have wgk) =1 for every i € (6 A®) —35(0)) and

AR 1
H wl(k) =1
i=6(F)+1
It follows from Proposition 6.13 that
1 j 1 1
— #{0< i< J; |PTTyz| > X;/2 >1_85(k>(7 7)
Je1 A0S TS ST 2 Xj) 2 T+1 7 Am

for every J > 0, every k > 1, and every | € [2¥71,2%). Now, we have min(¢~1(1)) = 2* for every
l € [2k_1,2k), SO that Nmin(&pfl(l)) = (5(k+1)_

For every k > 1, we have

. . 8§k 85(k)
0<j<J; AT/ Tial > X./2} >1- -

JZI(;I}kf,ﬂ) J+1 #{

Hence
1 .
im i i — <j<J; J >
imint i, T #1059 STIRT el 2 X2}
86k gs(k)
T _ B _
> timint (1 - 7y = Jy) = 1
since limy_s 0 5(6,5% = 0 and limsup;_, % = 0. Theorem 6.10 thus implies that 7" is not

frequently hypercyclic O
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3.2. UFHC but not FHC. As a direct consequence of Theorems 7.8 and 7.9, we now obtain

THEOREM 7.10. Let T' = T, v, 4,5 be an operator of Cy o-type on £,(N). For every k > 1,

_ _1
set yg = gt —r® (A(k))1 ?. Suppose that the sequence (yx)g>1 is non-increasing, and that the
following conditions are satisfied:

(k) 5(k) 5k
3 22 <1, limsup ;(T) <1, lim 0 and lim

k>1 k—00 hmroo 0D koo AR) 0.

Then T is U-frequently hypercyclic but not frequently hypercyclic.
Here is a concrete example, the proof of which is left to the reader.
ExAMPLE 7.11. If we consider the operator of C »>-type associated to the parameters
(&) — 201&7 sk —9Ck*+1 1 AR — 220k2+47 k>,

where C' is a sufficiently large integer, then T is U-frequently hypercyclic but not frequently hy-
percyclic.

4. Operators of Cs-type: chaos plus mixing do not imply UFHC
In this section, we introduce yet another class of C-type operators T' = Ty, 1, .5 0on £,(N).
We consider increasing sequences (ax)i>1, (fe)x>1, (0%))r>1, (T(k))kzl and (A®));>; of inte-
gers such that 0 < ay < fr, < A®) —45%) for every k > 1, and we denote by (Jk)k>0 the partition
of N into consecutive finite intervals defined as follows: Jo = {0} and #Ji = (fr — ak)(Zf;Ol #J;)
for every k > 1.
We then require that:

o(n) = {7";:1_12;% for every n € J;
the blocks [b,, bpt1), n € Ji, all have the same size AK):

the sequence v is given by

_r®
v, =277 for every n € Jy;

If j belongs to the interval [b,, b,+1) with n € Ji and (n — min J;) mod (fx — ax) =1,
then the weight w; is given by

2 if b, <j <b,+0"
1 if by 4+ 0% < j <bpypy —ap —1—260)
w; =<1/2  if byey —ar —1—26%) <j<b,—ap—1— 50
2 if bpyr —ap —1—60 <j<byi—ap—1
1 if bpiq —ap —1<j <bpir.

If these conditions are met, we call T' = T}, «, o, 5 an operator of Ca-type.

Note that the family of Cy-type operators contain that of C, o-type operators. Indeed, if we
consider the sequences (ax)r>1 and (fi)r>1 given by aj = ") and fi, = ap+1 for every k > 1, we
get back the definition of C >-type operators. The specificity of these new operators lies in the
fact that for every k£ > 1 and every n € {J,, ), Jx’, the set J;, contains fi —ay integers m for which
©(m) = n, and, for each of these integers, the central block of weights (1/2,...,1/2,2,--+,2) is
translated in a similar way.
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4.1. How to be topologically mixing. By using Proposition 6.14, we can show that un-
der suitable assumptions on the sequences (ay)r>1 and (fx)r>1, an operator of Ca-type can be
topologically mixing.

PROPOSITION 7.12. Let T be an operator of Ca-type on £,(N). Suppose that
(5(k) _ T(k)) = o0,

lim
k—o0
and that the set U [ax + §R) Fe 4 5(’“)) is cofinite. Then T is topologically mizing.
E>1
Proor. With the notations of Proposition 6.14, we have to show that the set S, ,, is cofinite.
First of all, observe that the set N, ,, contains, for every k > 1 such that 8 —r 1/nm, the set
@1 (n) N Jg. Since 6¢) —7(*) tends to infinity as k tends to infinity, there exists an integer ko > 1
such that Nmn contains the set

U (et (n) N Jy).

k>ko
Recalling that
bm41—1 1
Sun= U {s€Wbnir—ba)i lowl T fwil >},
meNy n i=bpy+1—8 N
we deduce that S, ,, contains the set
brmg1—1
U U {selbum—bwionl [ fwlz2""1
k>ko mep—t(n)NJy i=bmy1—5
which in its turn contains the set
bmg1—1
U U {se Lbmer —bn); [ lwil :25(“}
k>ko mep—t(n)NJy i=bmy1—5

(recall that v, = 277" for every integer m belonging to Ji). Fix an integer k > ko, and let m
be an integer of the form m = min Ji + n(fr — ax) + 1, where 0 < ! < fr — ai. Then m belongs

to Jg, p(m) =n and H?Z;l;l,ak,l,g(m |w;| = 20" Tt follows that Sy contains every integer of

the form ay, + [ + 6%), where 0 <1 < fx — ag, i.e. that

U lan +06%, fi +6%) C S, .
k>ko
Since the set on the left hand side is cofinite by assumption, the desired result follows from Propo-
sition 6.14. (]

4.2. How not to be UFHC. We now give some conditions ensuring that a Cs-type oper-
ator fails to be U-frequently hypercyclic. This will rely on the following more general version of
Proposition 6.13.

PROPOSITION 7.13. Let T be an operator of C-type on £,(N), and let x € {,(N). Fiz 1> 0,
and define

biy1—1 biy1—1

> (I v

k=b, s=k+1
Suppose that there exist three integers 0 < kg < k1 < ko < bj41 — by such that

Xl Z:‘

bH_lfl

|wy+k| =1 for every k € (ko, k1) U (k2,bi11 — b)) and H lws| = 1.
s=bi+ko+1
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Then we have for every J > 0

1 ,
_— <3< J; J >
1 Ho<i< IR P 2 X0/2)

1 1
>1—4(ky — ki + ko) - (J+1+bl+1_bl).

Proor. The proof is similar to the proof of Proposition 6.13 except that the sets I;, j > 0,
have to be defined as follows:

I = {k: € [b1,bis1); j+k—b mod (bipr — by) does not belong to [ko, k1) U [ka, bisr — bl)}.
We can then deduce that there exists an integer jo such that for every J > 0:

1 .
g #{o<i<TsIRTIPa] 2 X2

1 -
(36) 21— #{o<i<uinng, £0).

Now, we remark that if we set i; :== j mod (bj41 — b;) for every j > 0, we have
[bl,bl + ko — ij) U [bl + k1 — ij,bl + ko — ij) U [bl—i-l — ij,bl+1) if0 < ij < kg
by + k1 —i5,bp + ko — i) Ulbigr — 45, bi41 + ko — ;) if ko <5 <k
[bl,bl + ko — ij) @] [bl+1 — ij7bl+1 + ko — ij) U [bl+1 + k1 — ij,bl+1) if kb < ij < ko
[bH—l - ijabl-‘rl + ko — ij) U [bl-i-l + k1 — ij,bl+1 + ko — ij) if ko < ’ij < bl—i—l —b.
This particular structure of the sets I; implies that
. J
# {OSJSJ;IijjO #@} §4(k2*]€1+k0) . (\‘J +1>,
b1 — b
and this yields the desired result. (|

PROPOSITION 7.14. Let T be an operator of Cy-type on £,(N), and define as usual a sequence

_ 1
(Vk)k>1 by setting v, = 9ot =™ (A(k))l v for every k > 1. Suppose that the sequence (Yg)k>1
is non-increasing, and that the following two conditions are satisfied:

§5(k)

2 Z #Ji ’711/2 <1 and kILII;o . =0.
k>1

Then T is not U-frequently hypercyclic.

PROOF. Let x € £,(N) be a hypercyclic vector for T. Our aim is to prove that = cannot be a
U-frequently hypercyclic vector for T', using Theorem 6.10. We set

B =4~ for every [ € J, and every k > 1.
This sequence (f);>1 is non-increasing and satisfies 3,5, v/Bi < 1. Setting

bip1—1 byp1—1

Z ( H wj> mkekH for every [ € Iy, and every k > 1,
k=b, j=k+1

we have || P, z|| < X; and, by Proposition 6.12,

Xl ::‘

B 1
sup ||P,T7P x| < Zﬂle
j=>0

for every 0 < n < [, and

bl+171

, 1
sw |PTRal < A (s ] fwl) IR
0<j<N b1 —N<k<bi41 s—kt1
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for every 1 < N < A®) and 0 < n < [ with [ belonging to Jj,. Setting N; := ay, for every [ € Jj,
and every k > 1, we deduce that

, 1

sup | PT9Pa| < 7 6 |[Pio]
0<ji<N,

for every | > 0 and every 0 < n < [. In order to check assumption (C) of Theorem 6.10, we

use Proposition 7.13. Let n belong to Ji, and define » = (n — min Ji) mod (fx — ar). We have
wy, +j = 1 for every j € (6, AR —qp —p —26F)) U (AR — a5 —r, A®)) and

bn+1—1
H wj =1.
J=bn A+ 41
It follows from Proposition 7.13 that
1 j 1 1
- <5< J-IPTT > X,/2 >1_125(k)(7 )
J_i_l#{o—]f‘]vul leHi l/}f J_|_1+A(k)

for every J > 0, every k > 1, and every | € Ji. For every k > 1, we thus have

126(K) 126

1 ,
1 . . J - T X
#{OSJSJ,HPIT Tl:z;HZXz/?}Zl a AF)

inf
J>ar, J+1
Since limy,_, o % < limg_y00 % =0, it follows that

1 .
o o
limint inf = #{0<j < IRTITix| = X/2]

. 1260 125
> liminf (1- =7 - ) =
By Theorem 6.10, T is not U-frequently hypercyclic. (I

4.3. Chaotic and mixing operators which are not UFHC. From Propositions 7.12
and 7.14, we immediately deduce

THEOREM 7.15. Let T be an operator of Ca-type on €,(N), and for every k > 1, set v, =
_ _1
g8t —r® (A(k))l . Suppose that the sequence (yi)r>1 is non-increasing and that the following
three conditions are met:

¢
2 Z #Jy 7,1/2 <1, lim — =0 and lim (6® —7®) =,

k—oo Qg k— 00
k>1

If the set
Ular + 6%, fi + 64

k>1

1s cofinite, then T is chaotic and topologically mizing but not U-frequently hypercyclic.

Here is a concrete example of such a chaotic and topologically mixing operator which is not
U-frequently hypercyclic.

EXAMPLE 7.16. Let C' be a positive integer. Consider the operator of Co-type T on £,(N)
associated to the parameters

AR Z 920K +5 5k _ 9CR+1 (k) Z 9CK o s and f — %A(k)’ k> L

If C is sufficiently large, then T' is chaotic and topologically mixing but not U-frequently hypercyclic.
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PRrROOF. The operator T is well-defined since

AR y5k) — 22Ck2+5 _ 2Ck2+3 > 226’k2+4 =fi and fi = 22Ck2+4 > k2Ck2+1 — a

for every k > 1. Moreover, the set
Ulax + 6%, fi +6®)
E>1
is cofinite since f + 6% > apt1 + 8+ if £ is large enough. Indeed,
fo+ 6k —ags1 — skHD) > fr —2ak41 = 920K +4 _ kZC(k+1)2+2,
and the quantity on the right hand side tends to infinity as k tends to infinity. Finally, since
#Jr < AWk 47,1 and #Jy = 1, we have #.Jj, < H?:l FAU) < 28CK for every k > 1. Tt follows
that the remaining assumptions of Theorem 7.15 are also satisfied if C is sufficiently large. (]
REMARK 7.17. The operators constructed in [40] (which are chaotic and not U-frequently
hypercyclic) are never topologically mixing. Indeed, the parameters in this construction satisfy
the following three conditions:
- the quantity d,,/(b,+1 — b,) tends to 0 as n tends to infinity;
- for every n > 1, b,41 — by, is a multiple of 2(b,, — b,,—1);
- for every n > 1, 20n-1=Tn (b, 1 — b,) < 272(HD),

Therefore, for any such operator T, there exists an integer ng such that

1
Oon < §(bn+1 —b,) for every n > ng.

It follows that for every integer n > ng such that 1 does not belong to the set szo ©I(n), bpy1—by
does not belong to Np(B(0,1), B(3ep,,1)). Indeed, we have for any k > 0

- Thntr=buey = e if k < by;
- PyTbn+17%e; = 0 if k belongs to [by, byt 1[ since 1 does not belong to Uj>o @I (n);
- || Py Tn+1 =00 Pp|| < 27204 Pyx|| if I > n, by Proposition 6.12.

Hence, if x is any vector of the unit ball B(0,1), the vector y := T+ ~bng satisfies

_ 1
s, | < e, |+ > I[PT+ 0 P < 1 +Zm <2

I>n I>n

Thus y does not belong to the ball B(3ey,, 1). Since there are infinitely many integers n > ng such
that | >0 ©7(n) does not contain 1, this shows that T is indeed not topologically mixing.

5. Chaos plus mixing plus FHC do not imply ergodicity

We have seen in Section 2 that there exist operators which are chaotic and frequently hy-
percyclic but not ergodic. In this section, we show that one can even find topologically mixing
operators with this property. The examples we give are Co-type operators.

THEOREM 7.18. Let T be an operator of Ca-type on €,(N), and for every k > 1, set v, =

_ 1
g8t —r® (A(k))l . Assume that the sequence (Vi)k>1 18 non-increasing and that the following
conditions are satisfied:

(k) sk 1 1
1/2 - J ; im (Lst) _ 1)y —
2 kil #Jey' T <1, h]zrisip NG > 0, hlrcri}sip o < 51 and klgrolo(25 7)) = oo,
If the set

U law +6%), i +6%)
k>1
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s cofinite, then T is topologically mixing, chaotic, frequently hypercyclic and not ergodic.

PROOF. Since this proof is quite similar to others already given in detail, we only sketch it.
By Proposition 7.12, we already know that since limy_, o (6*) — 7(®)) = 00 and the set Upsq lar +
5%, fr 4 () is cofinite, the operator T is topologically mixing. On the other hand, for any k > 1
any n € Ji, we have

bp1—1
oal T lwyl =227 """ and
j=bn+1
et s (k)
|vn| H lw;| >27=2 77 for every 0 < m' < 160 — 1.
J=bp+m’/+1

Since limkﬁm(%é(k) - T(k)) = oo and limsup;_, % > 0, we can then deduce the frequent

hypercyclicity of T' as in Theorem 6.9. Finally, T is not ergodic because ¢(T") < 1. Indeed, there

exists ¢ € HC(T') such that ¢(T") = dens N(z, B(0,¢)) for every € > 0; and since 2 > #Jj 7,1/2 <
E>1

1, it follows from Lemma 6.11 combined with the end of the proof of Proposition 7.14 that there

exists € > 0 such that

- 1 ,
<1-—Ilimi i _ <7< J; J >
dens N(z,B(0,¢)) <1 hlrggjlf nglf\h 1 #{0<j<J;|PT'P x| > X;/2}

126 125 245()
<limsup —— 4+ —— < limsup <1
k—o0 ag A(k) k—o0 ag

EXAMPLE 7.19. If we take

k
A(k) — 26«]6-‘:—4)7 6(/(7) — 20]6) T(k) — %)’ ap = 2C(k+l) and fk — 2C(k+3)

for a sufficiently large constant C', then T is topologically mixing, chaotic, frequently hypercyclic
and not ergodic.

REMARK 7.20. In the above example, as well as in Example 7.7, we prove the non-ergodicity of
the operator T by checking that ¢(T') < 1. It would be interesting to know if there exist frequently
hypercyclic non-ergodic operators satisfying ¢(T") = 1.

6. C-type operators with few eigenvalues

In this section, we exhibit a class of C-type operators having only countably many unimodular
eigenvalues. This provides further examples of hypercyclic operators on £,(N) with only countably
many unimodular eigenvalues, and such that the associated unimodular eigenvectors span the space
(as mentioned previously, the question of the existence of such operators was raised by Flytzanis
in [23]).

The general idea of the forthcoming construction is the following: if T' = T, , 5 is an
operator of C-type on £,(N) and if the sequence v = (vy,)n>1 decreases extremely fast, then the
unimodular eigenvalues of T must be roots of unity. This is not such a surprising statement if one
considers what happens in the “degenerate” case where the sequence v is identically equal to 0:
indeed, in this case the operator T" has the form T' = @,,~, Cr, where the operators C,, n > 0, are

nt1—bn)

finite dimensional cyclic operators satisfying C,zl(b = I. Thus any eigenvalue A of 7" must

satisfy A\2(n+1=0n) — 1 for some integer n > 0.

Before starting our construction, we determine the spectrum of the operators of C-type on
£,(N) which we consider here:



6. C-type OPERATORS WITH FEW EIGENVALUES 113

LEMMA 7.21. Let T' be a hypercyclic C-type operator on £,(N) such that

bpsi—1
lim H |w;| = oo.
n—roo

j=bat1

Then the spectrum of T is the closed disk D(0, R), where

1/N
R := limsup sup sup (Wrp1Why2 - Wy N)
N—o00 n>0 b <k<bpy1—N
brnt1—bn >N

If T is either a Cy 1-type or a C4 o-type operator on £,(N), the spectrum of T is thus the closed
disk D(0,2).

PrOOF. Using the notation employed in the proof of Lemma 6.2, we observe that T is a com-
pact perturbation of the direct sum operator C' := €, Cw,b,n on £,(N). Also, the assumption
of Lemma, 7.21 implies that C is itself a compact perturbation of the forward weighted shift .S on
£,(N) defined by

Sep = {wkH ekt1 i k€ by, by —1),n>0
0 fhk=b,—1, n>1.
So T* is a compact perturbation of S*, and it then follows from the Fredholm alternative that if
A € C is any element of o(T%) \ o(5*), then X is an eigenvalue of T*. But as T is hypercyclic, its
adjoint has no eigenvalue, and it follows that o(T*) is contained in o (S*). Hence, o(T) is contained
in 0(5). Conversely, the same argument shows that any A € o(S)\ (T is an eigenvalue of S. But
the only eigenvalue of S is 0, so that ¢(S) is contained in o(T)U{0}. Now, it is well-known that the
o(9) is the closed disk D(0, R) (see for instance [47]), so that o(T) € D(0, R) C o(T)U{0}. Since
o(T) is closed, it follows that o(T) = D(0, R), and this concludes the proof of Lemma 7.21. O

We now come back to our construction of C-type operators with few unimodular eigenvalues.
In order to simplify the expressions involved in the results which we are about to state, we adopt
the following notation: if T =T}, ., ,,s is an operator of C-type, we set

Aby, :=bpi1 — by for every n > 0.
Also, we will say that an increasing sequence of positive integers (n(m))m>o is a p-sequence if
n(m) = p(n(m+1)) for all m > 0.

THEOREM 7.22. Let T = T, 5 be an operator of C-type on £,(N). Assume that for every
p-sequence (n(m))m>o, we have

m—1 |U ()| bn(j)+1*1
i n(m m n
(37) lim sup |Un(m)‘ 2 ( )(Abn(m)) Abij H |U),/| < 0.
m—00 j=1 n(j) v=b,(;)+1

Then each unimodular eigenvalue of T is a root of unity. More precisely, any such eigenvalue \
must satisfy N2 =1 for some integer n > 0.

This statement may not be particularly enlightening. Corollary 7.24 below should look more
intuitive.

For the proof of Theorem 7.22, we will need the following lemma.

LEMMA 7.23. Fiz A € T, and let (pm)m>1 be a sequence of positive integers tending to infinity
such that pm+1 is a multiple of py, for every m > 1. Assume that NP # +1 for every m > 1.
Then there exist infinitely many integers m > 1 such that
by

|AP7 £ 1] >
pm+1

for every 1 < j < m.
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ProOF. Writing A as A = €’ with # € R\ 7Z, we have for every j > 1

2 2p;
A5 £ 1| > [sin(p;0)] = sin (dist (p;0,7Z)) > = dist (p;0, 7Z) = 22 dist (0, 12).
s s pj
Since p,, is a multiple of p; for every 7 < m and every m > 1, it follows that

oy
|APi £ 1| > “Pi gist (0, LZ) for every m > 1 and every 1 < j < m.
™ Pm
So it suffices to show that there exist infinitely many integers m > 1 such that

dist (9, lz) >
Pm 2pm+1

Towards a contradiction assume that there exists an integer mg and, for every m > myg, an integer
k., such that
s

2pm+1

00— ——| <
Pm

kmm
‘ n for every m > my.

‘We then have
T T T

‘k‘mﬂ' kmaam

Pm Pm+1 2Pmy1 2Pmy2 pm—i—l,
and since p,,11 is a multiple of p,,, it follows that
kmm  kpgam

—— = ——— for every m > my.
Pm pm+1

Since p,, tends to infinity as m tends to infinity, we conclude that 8 = kp’"oﬂ, so that \Pmo = £1,

mQ

which stands in contradiction with our initial assumption. ([
We can now give the proof of Theorem 7.22.

PROOF. Let A € T be a unimodular eigenvalue of T, and towards a contradiction, assume
that A= = 1 for every n > 0. Note that since Ab, 1 is an even multiple of Ab,, we also have
\Abn £ 1 for every n > 0.

Let z € ¢,(N) \ {0} be an eigenvector of T  associated to the eigenvalue A. The equation
Tx = Az yields that for every n > 0 and every k € [by, b,41), we have

k
Hu:b,,,+1 Wy

(38) Tk = TRy, S
and
1
)\(Ebn = _7bn+1_1 xbn_Hfl + Z Ull'bl+1,1
Hu:anrl Wy lep=1(n)
bl+171
1 Hl/:bl-i-l Wy
(39) = _7)\Abn—1xb” + Z Ul 7)\Abl—l Ty, -
lep=1(n)
Since 27—l = 1, we deduce from the last identity that for every n > 0, there exists [ > n
I>n ’ y y )
with ¢(I) = n such that
bi41—1 1
-1 —1|yAby,
o TT hwwllon] 227 A+ x| s, | = 277030 41, .
v=b+1
Thus, if we set
En = ‘1 =+ >‘Abn|a
the following property holds true: for every n > 0, there exists [ > n with ¢(I) = n such that
2n—l6n

|z, | > |zp, |-

b -1
|v1] Hulié,+1 |w, |
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Let us choose an integer n(0) such that xp, , # 0 (since x is non-zero, such an integer does exist
by (38)). The argument given just above allows us to construct a ¢-sequence (n(m))m,>o such that

2n(m)—n(m+1)8n(m)
brn(m+1)+1—1

ED
[V (m+1)] Hu:bn(m+1)+1 |w, |

S |6,y for every m > 0.

We then have
n(0)—n(m m—1
9n(0)—n( )(Hj:o En(j))
m m bmy i1
T fonco ) (T TL20 5 o
and hence (by (38) again)

|p for every m > 1,

n(m)| > ( ) ‘xbn(o)‘

n(0)—n(m m—1
gn(0)—n(m) (szo 5n(j))
m m—1 [29¢} -1
[T;= |Un(j)|) (Hj:1 Hu:(b)nt;ﬂrl |w, |

|xbn(7n)+l_1 | = (

) |xbn(0) |

If we now set
(T tonn ) (T T o]
Oy 1= )
200)=n(m) (T3 €0y
it suffices to prove that «,, does not tend to infinity as m tends to infinity in order to obtain a
contradiction, since this would imply that = does not belong to ¢o(N). In view of our assumption
(37), this will be verified if we are able to show that

m—1 m—1
(40) H En(j) = (Abpmy) ™™ H Abyjy  for infinitely many m > 1.
j=0 §=0

At this point, we apply Lemma 7.23, considering the sequence (pp,)m>1 defined by setting p,, =
Aby,(m—1) for every m > 1. The conclusion is that there exist infinitely many integers m > 1 such
that N
gj = 1+)\Ab"(ﬂ| > =), for every 0 < j <m —1,
Abpy(m)

which gives (40). Theorem 7.22 is proved. O

Even though it does show up naturally in the above proof, the condition appearing in Theorem
7.22 may look a bit strange since it involves all p-sequences (n(m))m>o. However, its general
meaning is clear: v, should go to 0 quite fast as n goes to infinity. Here is a consequence of
Theorem 7.22 that makes it rather transparent. Recall that if 7" is a C ;-type or a C, o-type

operator on £,(N), then v, = 2" for every n € [2F71 2%) and every k > 1.

COROLLARY 7.24. Let T be a Cy1-type or a Ci o-type operator on €,(N). Assume that
AR JAE=D) tends to infinity and klog A = O(A(k_l)) as k tends to infinity. If
(41) klim 2= ATV — ¢ for every M > 0,
ede el

then all the unimodular eigenvalues of T must be roots of unity.

PROOF. Let (n(m))m>0 be a g-sequence, and for each m > 0, let us denote by «,, the quantity
appearing in (37), namely

m—1 bn(jy+1—1

Un(i
Qi = U (m) - 2n(m)(Abn(m))m (J)- H w,y,
j=1 Abn(J) v=by,j)+1

For any m > 0, let us denote by k,, the unique positive integer such that n(m) belongs to the
interval [2¥m—1 2F=) Then m < k,, because (n(m)) is a ¢-sequence.
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Observe first that the partial products

m—1

Un(j)
, m>1
Abyj)

§=0
remain bounded (in fact, they tend quickly to 0). Also, since the sequence w is bounded, there
exists a constant A > 1 such that

m—1 bnGy+1— ESEINC)) kmz—lA(i)

>
H H |wl,| < Ai=t < A i=o for every m > 1.
J=1 v=by;)+1

Since A®)/A*=1) tends to infinity as k tends to infinity, it follows that there exists a positive
constant B such that

m—1bniy+1—1

(km —1)
H H |w, | < BAT for every m > 1.
F=1 v=by,(j)+1

Moreover, there also exists a positive constant C' such that on(m) < g2t < CA(kmfl) for every
m > 1 (again because A®) JA*=1) tends to infinity). Lastly, we have

(Abn(m))m = (A(km))m < (A(k’"))km for every m > 1,

and since klog A®) = O(A*=D) the quantity (A(km))km is dominated by DA“" ™" for some
positive constant D. Putting things together, and remembering that v,(,) = 27 ™= for every
m > 1, we obtain that there exists a positive constant M such that

A < 9= AT gy every m > 1.
By (41), this concludes the proof of Corollary 7.24. O

REMARK 7.25. Condition (41) is compatible with those appearing for example in Theorems
7.2, 7.6 or 7.10.

REMARK 7.26. Assume that by = 1. If n = (n(m))m>0 is a p-sequence such that n(0) = 0,
the proof of Theorem 7.22 shows that if A € T and if we set
leil(l + AAbn(lfl)) bn(m)+1-1 Non(y+1—1=7

= €9 + Z
m—1 7pbn@y+1—1 bnry+1—1
(Hl 1Yn l)) ( CILE buy+1 W ) G=bnim) HV:j—H Wy

then x, ) is an eigenvector of T' = T}, 4, o, 5 associated to the eigenvalue A, provided that the series
defining x,, » is convergent. This has the following two interesting consequences.

6j,

(1) An operator of C-type T may quite well have a unimodular eigenvalue A such that the
associated eigenspace ker(T' — A) is not one-dimensional. This happens in particular if
AAbn — 1 for some integer n and if there exists m # n such that Ab,, = Ab,.

_ -1
(2) If we assume that v,y = (HV"(LW(IZ)T) +11 wy> , we obtain the following expression for
Tn,\:

b -1 .
(1+)\Abn(z 1)) n(m)+1 M\on(my+1—1=J

wnA—€O+ZHl !

b -1
v n(m)+1
m=1 n(1) J=bn(m) Hu:j+] Wy

This vector is well-defined for some unimodular numbers A which are not roots of unity,
provided that the sequence (Aby,_1));>1 is suitably chosen. Therefore, operators of
C-type can have unimodular eigenvalues which are not roots of unity.
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7. C, i-type with many eigenvalues

We have just seen that a large class of C-type operators have few eigenvalues. In this section,
we show that, on the other hand, C-type operators (in fact, C ;-type operators) can also have
lots of eigenvalues, to the point of being mixing in the Gaussian sense.

In what follows, we consider C-type operators T' = T, 4, o . As already observed, the map
© is then given by

— . _ ok—1 ; k—1 k
on)=n-—2 it 2 <n<2¢ k>1.
From this, it follows that a sequence n = (n(m)),>o with n(0) = 0 is a ¢-sequence if and only if
there exists an increasing sequence of positive integers (kp,)m>1 such that

n(m) =271 ... 4 2P for every m > 1.
More precisely, k,, is for each m > 1 the unique positive integer such that 2F=~1 < n(m) < 2k,
In this case, we say that n is the @-sequence associated to the sequence (kp,)m>1-
With these notations, the formula of Remark 7.26 defining x5 ) for a ¢-sequence n and an

element \ of T can be rewritten as follows:

b -1 .
'"11(1+>\A<kl—1)) n(m)+1 )\bn(m)+1—1—3

_ o 11
Tnx = €0+ Z m Z max(1, Q‘S(km*(j*b"“")))

m—1
— _ (k) sky) .
=1 T + =
m 2 lgl lgl 7=bn(m)

€j

b -1 .
N /\A(kl_l)) "R Abnmy+1—1=J
St (k)_ S (§k1—1) _p(kp) Z 1.90%m) —(G—bn(m)) €
m=1 74 +3 (s —rt0) 4 max (1, )

We now introduce the notion of a good p-sequence.

DEFINITION 7.27. We will say that a ¢-sequence n with n(0) = 0 is a good @-sequence if xy »
is well-defined for every A € T and if the map A — xy, ) is continuous from T into ¢3(N).

The study of these sequences will allow us to show that under some conditions, a C ;-type
operator on ¢3(N) can be mixing in the Gaussian sense.

LEMMA 7.28. Let (v,w, ,b) define a Cy 1-type operator. Assume that by = 1, and that
O e 32 (5D (R
(42) o4 = A < oo
m=1
Then, for any integer n > 1, there exists a good p-sequence n passing through n, i.e. such that
n(r) = n for some integer r > 1.

PROOF. Write n asn = 2M=1 ... 4 2P =1 with 1 < ky < -+ < k., and set Kk, := k. + 1
for every ¢ > 1. Then the p-sequence n associated to (kn,)m>1 passes through n. Moreover, since
kryi:= k. + i for every i > 1, it follows from (42) the series

>4

m>1

e S (§k1—1) _p(kp)
lgl( T )A(’fm)

is convergent. Since [[];%,(1+ )\A(kl))‘ < 2™ for every m > 1 and every A € T, this implies that n
is a good ¢-sequence. (Il

LEMMA 7.29. Let n be a good p-sequence. If y = 3 .~ qyje; is a vector of £2(N) which is
orthogonal to xn » for every A € T, then

yo=0 and y;=0 foreveryje U (b (m) > Or(m)+1)-
m>1
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PRrROOF. Let (K, )m>1 be the increasing sequence of integers associated to n, and set kg := 0.
By assumption and in view of the definition of zy x, we have

(43) Yo + Z H 14+ A8" 1> Z Co g AR+ =170y — )

bn(m)Sj<bn(m)+1
for every A € T, where the ¢, ; are non-zero scalars which do not depend on .
Equality (43) applied to A := —1 yields that yo = 0. Indeed, since Ao = p — by = 1, we
have (14 )\A(kO)) =0, and the factor (1 + )\A(kO)) appears in each of the terms [}, (1+ )\A(k“l)).

Now, take A such that A2 = —1. Then e+ )\A(kl_l)) = 0 for every m > 2. Moreover,
(1+ )\A(kO)) is non-zero because A1) is an even multiple of A0). So we get
(44) Z CLj)\b"(l)*lilijyj =0
b (1) <J<bn(1)+1
for every A such that DY Denoting by A; the set of all such elements A, and recalling
that n(1) = 2171 we can rewrite (44) as
AF1) _q
Z zsA° =0 for every A\ € Ay,
s=0

nys1—1—s for every 0 < s < A1) Since A; has cardinality A1) it
follows that z, = 0 for every 0 < s < A1) and hence that yj = 0 for every b,1) < J < bp(1)41-

where z5 = C1,b, 4y, ,—1-5Yb

Continuing in this way, we obtain that for every m > 1, y; = 0 for every j belonging to the
interval [by,(m), bp(m)+1), Which proves our claim. a

We can now state

THEOREM 7.30. Let T =T, w, o5 be a Cy 1-type operator on €2(N). Suppose that by =1 and
that
X e 3 (5D (R
S
m=1
Then T is mizing in the Gaussian sense.

A < .

PROOF. Let us denote by G the set of all good ¢-sequences, and set E,()) := 2 ) for every
n € G and every A € T. Then the maps F,, : T — ¢2(N), n € G, are continuous eigenvector fields
for T defined on T. Lemmas 7.28 and 7.29 then imply that span { En(\); n € G, A € T} = £2(N).
By [9], it follows that T is strongly mixing in the Gaussian sense. (I

EXAMPLE 7.31. If we consider the Cy ;-type operator T on ¢3(N) associated to the data
o) =2k, 7(F) = %5(’“) and A®) = 2841 L > 1 then T is mixing in the Gaussian sense.

REMARK 7.32. Condition (42) is incompatible with the “additional assumptions” of Theorem
7.2. Indeed, the latter imply that 7, tends to zero as k tends to infinity, and hence that 7*) —§(—1)
tends to infinity.

8. Infinite direct sums of frequently hypercyclic operators

A well-known open question, dating back to [6], asks whether the direct sum T @® T of a
frequently hypercyclic operator T with itself has to be frequently hypercyclic. (This is the analogue
of Herreros “T'®T problem” for frequent hypercyclicity.) By [33], T@®T is hypercyclic as soon as T is
U-frequently hypercyclic; that is, U-frequently hypercyclic operators are weakly mixing. Actually,
the direct sum of any two U-frequently hypercyclic operators is hypercyclic. Indeed, let 77 and
T5 be two bounded operators acting respectively on the Banach spaces X; and X5, and let Uy, V3
and Uz, V5 be non-empty open subsets of X; and X, respectively. By [33], the set N, (U, V1) has
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bounded gaps. Also, since Ty is weakly mixing, the set N, (Us, V>) is thick, i.e. it contains arbitrarily
long intervals (this is a classical result, see e.g. [24]). Hence N, (U1, V1) NN, (Ua, V2) # O for any
Ui, Vi,Us, Vo, i.e. Ty & Ty is hypercyclic.

Apart from this consequence of [33], nothing seems to be known concerning this question from
[6]. More generally, it seems to be unknown whether the direct sum 77 @ Ty of two frequently
hypercyclic operators is necessarily frequently hypercyclic, or even U-frequently hypercyclic. To the
best of our knowledge, this question is open even for infinite direct sums of frequently hypercyclic
operators (that is, we couldn’t locate any counterexample). Our aim in this section is to use
operators of Cyq-type on £,(N) to prove the following result.

THEOREM 7.33. Let p > 1. There exists a sequence (T,)n>1 of frequently hypercyclic operators
on £,(N) such that the €,-sum operator T = @, Tn acting on X = @, -, {p(N) is not U-
frequently hypercyclic. a a

The proof of Theorem 7.33 relies on Theorem 7.6, combined with an elementary lemma pro-
viding an upper bound for the parameter ¢(T) of a direct sum operator:

LEMMA 7.34. Let T1 and T5 be two bounded operators acting respectively on the Banach spaces
X1 and Xo. Firxp > 1, and let T = T @y, To be the lp-sum operator of T1 and Ts, acting on
X = X1 @y, Xo. Moreover, assume that T is hypercyclic. Then c(T') < min(c1(T),c2(T)).

PROOF. Let ¢ € [0,1] be such that dens Ny (z, Bx(0,1)) > ¢ for a comeager set of vectors
x of X. For any such vector x = 7 ® xo, with 7 € X; and z2 € Xo, there exists a subset
D, of N with dens D, > ¢ such that (||77'z|? + HTQ"J:QHT’)UP < 1 for every n € D,. Thus

dens N, (z1, Bx,(0,1)) > ¢ for a comeager subset of vectors z; € Xi, so that ¢(T1) > ¢; and
likewise, ¢(T2) > c¢. Hence min(cy(T), c2(T')) > c for any c as above, which proves the lemma. [J

As an easy consequence of Lemma 7.34, we obtain

LEMMA 7.35. For eachn > 1, let T}, be a bounded operator on a Banach space X,,. Fizp > 1,
and let T = @ep T, be the £,-sum of the operators T, n > 1, acting on the space X = @ep X
Moreover, assume that T s hypercyclic. Then

— i < i .
o) =nf el @ &Tp) < inf «(T)

PRrROOF. It follows directly from Lemma 7.34 that
e(T) < 1r;f1 (T ®---®T,) < inf ¢(T,),

n>1

so we only have to prove that
e(T) > 1I;f1 c(Ty @ Ty).

If the infimum inf,>1¢(Th & --- ® T),) is equal to 0, there is nothing to prove. Suppose that
inf,,>1¢(Th @ --- & T,) > 0 and consider a number ¢ such that 0 < ¢ < inf,>1¢(Th & --- & Tp,).
Let U be a non-empty open subset of X. There exist an integer n > 1 and, for every 1 < i < n,
a non-empty open subset U; of X, such that U contains the set Uy & --- U, 06 ---. Since
¢ < infp>1¢(Th @ --- ©T,,), there exist a vector ¢ = 21 ® --- B, € U1 B --- ® U, and a
subset D of N with dens D > ¢ such that (ZZL:I ||Tikxi||p) VP 1 for every k € D. Setting
r=1,0 - ®x,D0D- - -, we deduce that z is a vector of U which satisfies dens N7 (z, Bx (0,1)) > c.
The set of vectors z € X such that dens Np(x, Bx(0,1)) > c is thus dense in X, and the usual
argument shows that this set is in fact comeager in X. It follows that ¢(T) > ¢, from which we
deduce that ¢(T) > inf,>1 ¢(Th & - -- & T,,). This concludes the proof of Lemma 7.34. O

We are now ready for the proof of Theorem 7.33.
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PROOF OF THEOREM 7.33. Let (T},),>1 be a sequence of operators satisfying the assumptions

of Theorem 7.6. Denoting for each n > 1 by (ﬂsk))kzl, (57(1“);621, and (Aq(lk))kzl the sequences of
parameters associated to the operator T,,, we suppose that

(k)
<2™"

0 < limsup —— <
AP

k—o0

for every n > 1. By Theorem 7.6, all the operators T,, are frequently hypercyclic. On the other
hand, it follows from (35) that

5(k) 1 5(k)
c(Tn)Slimsup(Q o +2-2 )
pooo UAR g AP

Agzk) Aszk)

<2.277. +227"<6-27"  foreveryn > 1,

- 1—-2-n
so that ¢(7%) tends to 0 as n tends to infinity. By Lemma 7.35, the operator T'= €, T, (which

is hypercyclic) satisfies ¢(T") = 0. Hence T is not U-frequently hypercyclic. O



CHAPTER 8

A few questions

We conclude the monograph with a short list of questions. Most of them have already been
stated, at least implicitly. Some of them will perhaps be found interesting and not hopelessly
intractable.

QUESTION 8.1. For which Banach spaces X with separable dual do the “typicality” results
proved here for Hilbert spaces hold true?

QUESTION 8.2. Do there exist ergodic operators on H without eigenvalues?

QUESTION 8.3. Do there exist at least Hilbert space operators admitting non-trivial invariant
measures but no eigenvalues?

QUESTION 8.4. Let M > 1. What is the descriptive complexity of ERG s (H) and INV ;s (H),
with respect to SOT and/or SOT*? In particular, are these sets Borel in 9B, (H)?

QUESTION 8.5. Let M > 1. Is UFHC; (H) a true II9 set in (B (H),S0T*)? Is UFHC (H)N
CHjs(H) a true difference of X9 sets?

QUESTION 8.6. Let M > 1. Is FHCj;(H) Borel in B (H)?

QUESTION 8.7. Let T € B(H). Assume that T is hypercyclic, and that there exists a sequence
(u;)i>1 of unimodular eigenvectors with rationally independent eigenvalues spanning a dense linear
subspace of H . Is T ergodic, or at least frequently hypercyclic? U-frequently hypercyclic?

QUESTION 8.8. Let A be a sequence of distinct unimodular complex numbers tending to 1,
and let w be a bounded sequence of positive numbers. If the operator Ty, = Dy + B, acting
on ¢5(N) is hypercyclic, is it necessarily ergodic, or at least frequently hypercyclic? U-frequently
hypercyclic?

QUESTION 8.9. When exactly is an operator of the form T ., = Dy + B, hypercyclic?

QUESTION 8.10. Let M > 1. Is the class of chaotic operators belonging to ¥/(H) comeager
in Tpr(H)?

QUESTION 8.11. Let T be a Banach space operator. Assume that T has a dense set of uniformly
recurrent points. Does it follow that T has a non-zero periodic point?

QUESTION 8.12. Let T be a hypercyclic operator. Assume that ¢(7') > 0 and that T admits
an invariant measure with full support. Does it follow that 7" is U-frequently hypercyclic?

QUESTION 8.13. Let X be a Banach space, and let T € B(X) have the OSP. Are the ergodic
measures for T dense in the space of all T-invariant measures?

121
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QUESTION 8.14. Let T' € B(H). Assume that T is frequently hypercyclic and satisfies ¢(T) = 1.
Does it follow that T is ergodic?

QUESTION 8.15. On which Banach spaces is it possible to construct frequently hypercyclic
operators which are not ergodic and/or U-frequently hypercyclic operators which are not frequently
hypercyclic?



Short list of abbreviations

For the reader’s convenience, we provide here, in more or less alphabetical order, the list of
the abbreviations we use for the various classes of operators on H considered in the monograph.

c(H) operators T such that ¢(T) =1
CEV(H) operators with only countably many eigenvalues
CH(H) chaotic operators

DCH(H) distributionally chaotic operators

DDCH(#H)  densely distributionally chaotic operators

ERG(H) ergodic operators

FHC(H) frequently hypercyclic operators

G-ERG(#H) operators which are ergodic in the Gaussian sense
G-INV(H) operators admitting a nontrivial Gaussian invariant measure
G-MIX(H) operators which are mixing in the Gaussian sense

INV(H) operators admitting a nontrivial invariant measure

INV ;(H) operators admitting an invariant measure with full support
MIX(H) mixing operators

NEV(H) operators without eigenvalues

PSPAN(H) operators with perfectly spanning unimodular eigenvectors

SPAN(H) operators with spanning unimodular eigenvectors

To(H) upper triangular operators whose diagonal coefficients have modulus 1
T(H) operators in To(H) with distinct diagonal coefficients

Tind(H) operators in To(H) with rationally independent diagonal coefficients

TMIX(H)  topologically mixing operators
UFHC(H)  upper frequently hypercyclic operators
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