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Abstract 

For several decades, hit identification for drug discovery has been facilitated by developments 

in both fragment-based and high-throughput screening technologies. However, a major 

bottleneck in drug discovery projects continues to be the optimization of primary hits from 

screening campaigns to derive lead compounds. Computational chemistry or molecular 

modeling can play an important role during this hit-to-lead (H2L) stage by both suggesting 

putative optimizations and decreasing the number of compounds to be synthesized and 

evaluated. However, it is also crucial to consider the feasibility of organically synthesizing 

these virtually designed compounds. Furthermore, the generated molecules should have 

reasonable physicochemical properties and be medicinally relevant. This review focuses on 

chemistry-driven and structure-based computational methods that can be used to tackle the 

difficult problem of H2L optimization, with emphasis being placed on the strategy developed in 

our laboratory. 

 

Keywords: hit-to-lead optimization; structure-based drug design; de novo design; library 

design; virtual screening 
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1. Introduction 

The first step in a drug discovery project involves the identification of hit compounds that 

typically exhibit weak to moderate affinity for the biological target.[1] These primary hits are 

usually discovered either via the high-throughput screening (HTS) of large collections of 

diverse molecules that are of medium complexity or the use of a fragment-based technology in 

which small chemical libraries of low-molecular-weight fragments are considered.[2] There is a 

current trend toward fragment-based drug discovery (FBDD), since the optimization phase of 

hit compounds from HTS can be fastidious while also maintaining a reasonable molecular 

weight.[3] Moreover, FBDD approaches can cover a larger chemical space in the optimization 

phase, which leads to structural novelty and a higher probability of success. An increasing 

number of success stories have been reported in the past decade, and more than 30 

compounds derived from fragments are currently in clinics or on the market.[4] Following 

orthogonal validation, the confirmed fragments/hits are improved in a subsequent stage called 

hit-to-lead (H2L). 

Typical H2L involves chemical modifications around the validated hit to optimize its affinity for 

the target to become a lead compound.[5] These optimization phases can be completed by 

exploiting a trial-and-error strategy, and several cycles are usually needed to reach a suitable 

affinity. Moreover, other features may be preferred, such as improving the physicochemical 

properties of the compounds and enabling or maintaining a degree of selectivity with respect to 

undesired related targets. In practice, successful H2L optimization can improve the binding 

constants by several orders of magnitude. However, because of the numerous parameters that 

must be considered, the H2L process can also be unsuccessful, time-consuming, and highly 

expensive.[6] 
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Various computer-based approaches have been developed to overcome bottlenecks during 

H2L.[7] For instance, ligand-based methods, such as the Quantitative Structure–Activity 

Relationship (QSAR), can be used to optimize a series of compounds by exploiting available 

experimental data and calculated descriptors.[8] However, this review will focus on 

computational structure-based approaches [9], such as molecular docking, de novo design 

(DnD) and pharmacophore screening. These methods rely on structural data to generate 

models, and success stories have recently been reported.[10] In practice, X-ray crystallography 

is the primary approach to determine the binding mode of a compound in its binding site at the 

atomic level.[11] Such structural data greatly facilitates the H2L optimization by clearly 

identifying nearby protein sub-pockets around the engaged fragment that could be used in the 

optimization phase. 

The most intuitive approach for optimizing a fragment using an in silico structure-based 

approach is the transposition of the growing paradigm from FBDD to the molecular modeling 

context: The affinity of a compound for its target is increased by adding chemical moieties that 

are able to create new favorable contacts while maintaining its original binding mode (Figure 

1A). Two additional H2L strategies used in FBDD, namely, linking and merging, can also be 

virtually mimicked (Figures 1B & 1C).[12] In contrast to the growing concept where a single 

fragment is required, merging and linking consist in the covalent assembly of two non-

overlapping fragments, either directly or via a spacer of variable length.[13] Merging and linking 

strategies are less frequently used than growing and are also more challenging because they 

require two hits and the conservation of their original orientation after their fusion into a single 

compound. However, when these strict criteria are validated, merging and linking can lead to 

outstanding improvements in affinity.[14] In practice, these two approaches are primarily 
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applicable to fragments because merging or linking two compounds with moderate to high 

molecular weight would result in molecules that are too large to be used as probes or drugs. 

Computational-based tools that are able to address growing, linking or merging strategies are 

of primary interest during the H2L stage.[12, 13, 15] For instance, a virtual-focused library that is 

around the validated fragment can be generated within the first step. Subsequently, this library 

can be virtually screened using a constrained docking strategy to mimic the growing paradigm 

and maintain the original interactions. The best putative optimizations are finally selected in the 

top hit list using a scoring function. Alternatively, classical “unconstrained docking” of the 

focused library can be performed. Pharmacophore filters[16] or interaction fingerprints[17] are 

subsequently used to extract putative optimizations that maintain the original binding mode. 

Finally, de novo design algorithms [18, 19], with the binding mode of the validated fragment 

serving as the starting seed, can also be used to sample the cavity and generate putative 

optimized compounds. 

A critical point is determining how to handle the creation of new covalent bonds made during 

the virtual H2L optimization step. A first attempt to generate reasonable structures has been 

made by the RECAP[20] or BRICS[21] methods. For instance, molecules in RECAP are 

fragmented around specific bond types, and new terminal atoms are flagged to capture their 

previous chemical environment. Virtual fragments with complementary flags can subsequently 

be merged to design new virtual compounds. However, there is no assessment regarding their 

synthesis, since neither organic chemistry rules nor the availability of building blocks (BBs) 

were used during the process. This approach leads to either time-consuming follow-up efforts 

to devise synthesis routes or even the inability to produce the virtually generated compounds. 

Consequently, it is of critical importance to address the synthesis tractability of virtually 
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generated compounds in the context of prospective drug discovery projects.[18, 22] In this effort, 

generic reaction schemes “reactants → products” can be encoded to mimic common organic 

synthesis routes.[23, 24] These chemistry rules can subsequently be retained during the design 

of new molecules to facilitate the synthesis stage. 

Several remarkable computational structure-based H2L methods were described in the past 

decade, but they lacked this fundamental requirement of ensuring the synthesizability of the 

generated compounds for use in drug discovery projects.[25, 26] De novo design or alternative 

structure-based H2L methods, which approached this critical issue, are presented in this 

review, with an emphasis on the in silico steps of the DOTS strategy developed in our 

laboratory.[27] 

2. Virtual H2L methods relying on the “de novo design” concept 

By definition, de novo design tools can automatically build compounds “from scratch” within a 

binding site of known 3D structure using predefined sets of substructures and rules governing 

their linkage.[18, 19] In theory, DnD methods enable the exploration of a considerably larger 

chemical space, which is in contrast to classic virtual screening (VS), where only commercially 

available compounds are tested. Although conceptually similar, DnD tools can be distinguished 

by their algorithms, ranking/scoring functions, convergence criteria, and branch-pruning 

strategies. This methodological approach, developed in the early 1990s, was initially appealing 

but is currently not widely practiced by chemoinformaticians.[28, 29] Indeed, DnD methods often 

exhibit several critical drawbacks that limit their application to prospective cases. The primary 

drawbacks include the following: 1) low reliability in predicting affinity, 2) potentially poor 

physicochemical properties of the designed compounds and, most importantly, 3) issues 

regarding the compounds’ synthetic tractability.[18] 
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As a response to the first criticism, in silico H2L methods that rely on DnD approaches, as 

introduced below, were upgraded to use a pre-positioned fragment in the binding site as the 

original seed. Starting from an experimentally validated fragment with a known binding mode is 

likely to increase the reliability of their predictions.  

The third criticism of DnD approaches - the major drawback - concerns the difficulty in 

synthesizing certain of the suggested compounds because the rules governing bond creation 

during the process did not take into account any organic chemistry knowledge. This primary 

issue was approached by incorporating virtual reaction schemes in the workflow to ensure the 

synthetic accessibility with more confidence. Both ligand-based and structure-based DnD tools 

were developed to address this problem. DOGS[24] and SYNOPSIS[30] are popular examples of 

such chemistry-driven ligand-based DnD methods. However, other structure-based DnD 

approaches that rely on both substructure seed prepositioned in the binding site and encoded 

chemistry knowledge exist and are discussed below. 

The SPROUT program was one of the first published DnD software in the 1990s, but several 

major upgrades have been recently added.[29] This program is now able to take a validated hit 

or fragment as seed and to incorporate chemistry-based rules during the virtual design 

process. SPROUT was successfully used to design inhibitors of dihydroorotate dehydrogenase 

enzyme[31], and more recently BACE-1 inhibitors, based on a synthetic Suzuki reaction 

scheme.[32] 

LigBuilder[33] is another validated tool that was recently updated to tackle the usual drawbacks 

from DnD software. The current version (2.0), is able to perform both ab initio design and lead 

optimization of a compound of interest while considering both synthesis accessibility and filter-
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based drug-likeness of the designed compounds.[34] LigBuilder was successfully applied to 

generate nanomolar inhibitors of Cyclophilin A.[35] 

Similarly, the AutoGrow tool[36] was also updated to include organic chemistry rules within the 

operators of its evolutionary-based algorithm.[37] In this instance, the popular Autodock Vina 

docking engine is used for both conformational sampling and scoring stages.[38] 

Physicochemical filters were also added to reject non drug-like compounds. 

Beccari et al developed a suite of programs called LiGen for DnD that both handles the 

chemical rules for designing accessible compounds and efficient docking with pharmacophore 

constraints.[39] Each module can be used either separately or combined in a complex workflow 

procedure. This toolbox is reported to tackle most issues in the DnD field while being efficient 

from a computational point of view. However, there is no case study to highlight its ability in 

either retrospective or prospective cases. 

Cheron et al reported the development of OpenGrowth for the computer-based H2L 

optimization of compounds under binding site constraints.[40] In this study, the probability that a 

given fragment is connected to another one in a reference drug dataset is used to guide the 

design process. At the end of the process, designed molecules exhibit both reasonable 

synthetic accessibility and good physicochemical properties, although organic synthesis routes 

are not explicitly taken into account. A new version, including the implementation of an explicit 

synthetic accessibility score during the design process, is planned. 

It should be noted that many DnD tools were only validated in retrospective case studies. 

However, all these programs exhibit promise and should be useful for prospective projects 

aiming to design active and accessible compounds. 
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3. Alternative approaches for in silico H2L optimization 

Chevillard et al optimized several fragment-like compounds into low micromolar ligands for the 

β2-adrenergic receptor target.[41] The PINGUI method relies on both structural data and a 

series of 58 encoded organic chemistry rules published by Hartenfeller et al for designing 

putative accessible ligands by merging an original fragment with compatible BBs.[23] In 

practice, the SEED program is used to dock pre-processed BBs (called surrogates) where the 

reactive center is modified according to the considered synthesis reaction.[42] For instance, a 

methylamine group will replace the aldehyde function from the BB if the reductive amination 

synthesis scheme is selected. In a second step, putatively interesting surrogates, where the 

reactive center is sufficiently close to the one from the original hit without any overlap with 

other atoms, are identified. Next, final products corresponding to the coupling of the hit and 

selected surrogates are generated and docked using the DOCK software.[43] A last modeling 

step involving the refinement and rescoring of selected poses using the SZYBKI method is 

performed.[44] 

The LeadOp+R method was developed to perform structure-based H2L optimization with 

synthetic accessibility.[45] This method relies on approximately 200 encoded chemical reactions 

while allowing multi-steps design. The pipeline starts with a query structure pre-positioned in 

the binding site and user-defined preferred ligand-receptor interactions. New 1D/2D 

compounds are created by combining the current structure with BBs by using encoded 

chemistry rules without knowledge of the binding site at this stage. 3D conformers are 

subsequently generated for each compound, superimposed to the shared reference 

substructure in the binding site, and evaluated for their ability to make additional favorable 

contacts without any clashes. The cycle stops when required interactions between both entities 
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are fulfilled. Several physicochemical filters are used to discard compounds with undesirable 

properties. They successfully applied their approach on two retrospective projects: several 

known potent inhibitors were designed for each target, while suggested synthetic routes 

shared steps with published ones. 

An original strategy, relying on both pharmacophore and docking concepts, allowed Schulz et 

al to discover several covalent inhibitors of the enteroviral 3C protease target.[46] First, a new 

pharmacophore feature type in the LigandScout software was developed to look for 

predefined reactive functions in the vicinity of a cysteine residue.[47] Next, a 3D-pharmacophore 

was designed to catch fundamental interactions with the enteroviral 3C protease while looking 

for covalent binders using this new feature. Then, a library of fragment-like compounds was 

screened against the 3D-pharmacophore. Several fragment hits were identified and 

experimentally validated using mass spectrometry. The best one was further investigated but 

exhibited some instability. To bypass this issue, a scaffold hopping strategy, using simple 

SMARTS-based substructure search, was successfully employed to find alternative binding 

cores that still contain the required features. A protocol was later developed for the rational 

design of optimized analogs of the best new hit, while maintaining the fundamental interactions 

with the protein. Thus, a virtual library was generated by coupling the hit and commercially 

available BBs using encoded chemistry reaction rules. LigandScout and GOLD programs were 

used to identify putative optimizations that would occupy adjacent sub-pockets. Finally, the 

authors reported both reversible and irreversible inhibitors of the enteroviral 3C protease 

target. 

Evers et al from the Sanofi-Aventis company reported the CROSS method for either 

rescaffolding or the optimization of compounds using explicit handling of organic reactions.[48] 
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The CROSS approach relies on the BROOD software to quickly identify pre-processed 

fragments that could replace an undesirable core by using “exit vectors” and 3D-shape 

analysis.[49] The main advantage is that these pre-processed fragments are directly connected 

to available BBs and specific chemical reactions for easier continued investigation. In addition, 

the use of chemical protection groups is also allowed to facilitate the results in the synthesis 

steps. Finally, generated compounds are post-processed using molecular docking and ADME-

Tox predictions. While the main usage is rescaffolding, the CROSS method can also be 

employed in virtual H2L optimization using either a growing or linking strategy. Indeed, linking 

and rescaffolding are similar concepts, where a linker is selected to connect two moieties while 

maintaining their original orientation. 

AutoCouple was recently reported as a useful tool to expand the chemical space in hit 

optimization.[50] In the first step, a diversity-oriented library is designed by virtually coupling one 

hit that includes a reactive function, with a list of commercially available BBs using encoded 

chemistry rules. In a second step, the rDock program is used to screen the library while adding 

constraints on the original moiety to maintain the reference binding mode during the 

conformational sampling stage.[51] The authors applied this strategy to the design of potent 

CBP bromodomain inhibitors. An acetyl benzene moiety served as the reference substructure 

able to mimic the acetylated lysine from histone tails, which are recognized by this epigenetic 

reader. Different organic reactions were considered to build the virtual library that was docked 

by rDock in the CBP binding site with constraints on the reference moiety. The best poses 

were minimized using the CHARMM molecular mechanic program[52] during a post-processing 

stage, before the final selection of target compounds to be synthesized was made. This study 

led to the discovery of several nanomolar inhibitors for the CBP target. The predicted binding 



Structure-based guided hit-to-lead optimisation 

 

12 

mode of several compounds was successfully confirmed by solving the structure of the 

complex using X-ray crystallography. 

Finally, the Diversity-Oriented Target-focused Synthesis (DOTS) is an integrated strategy 

developed in our laboratory for generic H2L optimization relying on the growing paradigm.[27] 

This strategy involves molecular modeling (chemical library design and structure-based VS) 

and robotic-based experimental stages (diversity-oriented de novo synthesis and in vitro 

evaluation and validation). The virtual steps are an upgrade from a former computational 

optimization method[26] relying on the RECAP algorithm[20], which did not consider the synthetic 

accessibility of the designed compounds. The general DOTS workflow can be summarized as 

follows (Figure 2): 1) hit identification and characterization of its binding mode using structural 

biophysics method, such as X-ray crystallography; 2) design of a virtual focused library around 

the hit using a database of commercially available BBs, encoded organic chemical rules, and 

post-processing of the library to extract a diverse subset of representative compounds that also 

possess reasonable physicochemical properties without any undesirable functions to medicinal 

chemists; 3) constrained VS of the library with the S4MPLE tool[26, 53] to identify the best 

putative optimizations that create additional favorable contacts while maintaining the original 

binding mode; 4) parallel synthesis of the compounds using a chemistry robot; and 5) in vitro 

evaluation with a robotic screening workstation. The in silico part of DOTS relies on real 

chemical knowledge and allows for the production of theoretically accessible and diverse 

compounds, while exploring the chemical space around the hit, and matching regular 

physicochemical and medicinal chemistry-like features. The DOTS strategy was successfully 

applied to the optimization of a previously reported xanthine core that binds the first 

bromodomain (BD1) of the BRD4 protein.[54] Several sub-micromolar inhibitors were developed 

and validated in one cycle of optimization, with the best one displaying a Kd value of 190 nM. 
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X-ray crystallography was used to solve the structure of the best inhibitor in complex with the 

BRD4(BD1) protein, and confirmed the predicted binding mode. Several features, including 

linking optimization and design of covalent inhibitors, are currently under development in order 

to address all available H2L strategies. 

4. Summary and Outlook section 

This review contributes to an overview of structure-based computational H2L methods that 

tackle the synthetic accessibility of virtually generated compounds. The different programs 

discussed in this review, and their main characteristics, are summarized in Table 1. Most of 

them currently encode real chemistry knowledge to design molecules that can be synthesized 

with high probability in one or two steps. Such approaches help scientists design accessible 

and optimized compounds that perfectly fit the binding site of the target. 

Despite the shared ability to handle virtual chemistry, these in silico structure-based H2L 

methods rely on various strategies. De novo design algorithms start from a given compound as 

the original seed to perform the optimization process, while alternative approaches use 

docking or pharmacophore concepts to identify promising compounds from a virtual focused 

library that was designed around the hit to optimize. 

In certain cases, a single reaction scheme is considered, but it is still possible to explore a 

large chemical space around the starting hit due to the high number of commercially available 

BBs. Moreover, target compounds selected using these approaches can also be produced in 

parallel using robotic platforms when a single reaction is considered, as exemplified in the 

DOTS approach. 
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Computational H2L can be useful to optimize hits in a time-efficient and cost-effective manner, 

as highlighted by successful cases described in this review. These in silico methods clearly 

should play a larger role in drug discovery in both academic and pharmaceutical environments. 
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Figure legends 
 

Figure 1. Selected examples of fragment growing, linking and merging strategies. 2D 

structure, 3D ligand-protein complex (with PDB code) and binding constants (IC50 or AC50) are 

provided for each fragment and optimized compound. Small organic compounds are displayed 

in ball-and-stick representation. Fragments are displayed in pink and optimized compounds are 

shown in cyan. Direct hydrogen bonds between optimized ligands and protein are represented 

by green dashed lines. A. Growing example for the development of Phosphodiesterase (PDE) 

inhibitors.[55] B. Linking example leading to the discovery of a Pyruvate kinase (PKM2) 

activator.[56] C. Merging example towards the development of small molecule inhibitors of 

Mycobacterium tuberculosis transcriptional repressor protein (EthR).[57] 

 

Figure 2. Schematic workflow of the DOTS strategy. 1) Following hit identification, the 

binding mode is characterized using structural biophysics methods such as X-ray 

crystallography. 2) A virtual focused library is conceived by combining a database of 

functionalized BBs with an activated form of the original hit using SMARTS-encoded medicinal 

chemistry-relevant organic synthesis rules. The raw library is then filtered to extract a diverse 

set of compounds with reasonable physicochemical properties. 3) The focused library is 

virtually screened under constraints with S4MPLE to identify compounds that create additional 

favorable contacts while maintaining the original binding mode. 4) The selected compounds 

are synthesized using an automated parallel chemistry robot. 5) Compounds are finally 

evaluated in vitro with a robotic screening workstation and the best molecules are further 

validated using orthogonal methods.  
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Table	  1.	  Hit	  to	  lead	  algorithm

s	  discussed	  in	  this	  review
.	  The	  different	  approaches	  can	  be	  divided	  into	  tw

o	  m
ajor	  categories	  according	  to	  the	  

m
ethod	  used	  to	  optim

ize	  the	  original	  hit,	  de	  novo	  design	  (chapter	  2)	  and	  virtual	  screening	  (chapter	  3).	  All	  these	  m
ethods	  rely	  on	  explicit	  

synthesis	  rules	  to	  design	  new
	  com

pounds	  except	  for	  O
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th	  and	  they	  all	  use	  m

edicinal	  chem
istry-‐like	  filters	  to	  discard	  m

olecules	  w
ith	  

undesirable	  properties.	  
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