E. Delaherche, M. Chetouani, A. Mahdhaoui, C. Saint-georges, S. Viaux et al., Interpersonal synchrony: A survey of evaluation methods across disciplines, IEEE Transactions on Affective Computing, vol.3, issue.3, pp.349-365, 2012.

A. Z. Zivotofsky and J. M. Hausdorff, The sensory feedback mechanisms enabling couples to walk synchronously: An initial investigation, Journal of neuroengineering and rehabilitation, vol.4, issue.1, p.28, 2007.

A. P. Demos, R. Chaffin, K. T. Begosh, J. R. Daniels, and K. L. Marsh, Rocking to the beat: Effects of music and partner's movements on spontaneous interpersonal coordination, Journal of Experimental Psychology: General, vol.141, issue.1, p.49, 2012.

G. Tagne, P. Hénaff, and N. Gregori, Measurement and analysis of physical parameters of the handshake between two persons according to simple social contexts, Intelligent Robots and Systems (IROS), pp.674-679, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01843162

K. Yonekura, C. H. Kim, K. Nakadai, H. Tsujino, and S. Sugano, A role of multi-modal rhythms in physical interaction and cooperation, EURASIP Journal on Audio, Speech, and Music Processing, vol.2012, issue.1, p.12, 2012.

N. F. Troje, J. Sadr, H. Geyer, and K. Nakayama, Adaptation aftereffects in the perception of gender from biological motion, Journal of vision, vol.6, issue.8, pp.7-7, 2006.

C. N. Macrae, O. K. Duffy, L. K. Miles, and J. Lawrence, A case of hand waving: Action synchrony and person perception, Cognition, vol.109, issue.1, pp.152-156, 2008.

D. Pongas, A. Billard, and S. Schaal, Rapid synchronization and accurate phase-locking of rhythmic motor primitives, IEEE/RSJ International Conference on, pp.2911-2916, 2005.

A. J. Ijspeert, J. Nakanishi, and S. Schaal, Learning rhythmic movements by demonstration using nonlinear oscillators, Proceedings of the ieee/rsj int. conference on intelligent robots and systems (iros2002), pp.958-963, 2002.

E. Ansermin, G. Mostafaoui, N. Beaussé, and P. Gaussier, Learning to synchronously imitate gestures using entrainment effect, International conference on simulation of adaptive behavior, pp.219-231, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01377250

S. , Dynamic movement primitives-a framework for motor control in humans and humanoid robotics, Adaptive motion of animals and machines, pp.261-280, 2006.

E. P. Zehr, T. J. Carroll, R. Chua, D. F. Collins, A. Frigon et al., Possible contributions of cpg activity to the control of rhythmic human arm movement, Canadian journal of physiology and pharmacology, vol.82, issue.8-9, pp.556-568, 2004.

S. Grillner and P. Wallen, Central pattern generators for locomotion, with special reference to vertebrates, Annual review of neuroscience, vol.8, issue.1, pp.233-261, 1985.

K. Matsuoka, Mechanisms of frequency and pattern control in the neural rhythm generators, Biological cybernetics, vol.56, issue.5-6, pp.345-353, 1987.

E. Hopf, Abzweigung einer periodischen lösung von einer stationären lösung eines differentialsystems, Ber. Math.-Phys. Kl Sächs. Akad. Wiss. Leipzig, vol.94, pp.1-22, 1942.

P. F. Rowat and A. I. Selverston, Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network, Journal of neurophysiology, vol.70, issue.3, pp.1030-1053, 1993.

J. Nassour, T. D. Hoa, P. Atoofi, and F. Hamker, Concrete action representation model: from neuroscience to robotics, IEEE Transactions on Cognitive and Developmental Systems, 2019.

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Current biology, vol.11, issue.23, pp.986-996, 2001.

I. A. Rybak, K. J. Dougherty, and N. A. Shevtsova, Organization of the mammalian locomotor cpg: Review of computational model and circuit architectures based on genetically identified spinal interneurons, eNeuro, vol.2, issue.1, 2015.

J. Nassour, P. Hénaff, F. Benouezdou, and G. Cheng, Multi-layered multi-pattern cpg for adaptive locomotion of humanoid robots, biological cybernetics, Biological cybernetics, vol.108, issue.3, pp.291-303, 2014.

S. Debnath, J. Nassour, and G. Cheng, Learning diverse motor patterns with a single multi-layered multi-pattern cpg for a humanoid robot, 14th IEEE-RAS International Conference on, pp.1016-1021, 2014.

S. M. Danner, S. D. Wilshin, N. A. Shevtsova, and I. A. Rybak, Central control of interlimb coordination and speed-dependent gait expression in quadrupeds, The Journal of physiology, vol.594, issue.23, pp.6947-6967, 2016.

W. W. Teka, K. C. Hamade, W. H. Barnett, T. Kim, S. N. Markin et al., From the motor cortex to the movement and back again, PloS one, vol.12, issue.6, p.179288, 2017.

M. Jouaiti, L. Caron, and P. Hénaff, Hebbian plasticity in cpg controllers facilitates self-synchronization for human-robot handshaking, Frontiers in Neurorobotics, vol.12, p.29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01811316

L. Righetti, J. Buchli, and A. J. Ijspeert, Dynamic hebbian learning in adaptive frequency oscillators, Physica D: Nonlinear Phenomena, vol.216, issue.2, pp.269-281, 2006.

S. I. Fried and R. H. Masland, Image processing: how the retina detects the direction of image motion, Current Biology, vol.17, issue.2, pp.63-66, 2007.

J. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, Measuring phase synchrony in brain signals, Human brain mapping, vol.8, issue.4, pp.194-208, 1999.