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1Université Côte d’Azur, I3S, CNRS, UMR 7271, 06900, Sophia Antipolis, France.
24G-TECHNOLOGY, 460 avenue de la Quiera 06370, Mouans Sartoux, France.

ABSTRACT

This paper presents a novel neuro-inspired quantization

model which is the extension of the recently released perfect-

Leaky Integrate and Fire (LIF) model. We propose that the

LIF, which is a very efficient neuromathematical model that

describes the spike generation neural mechanism, can lead to

a groundbreaking and above all dynamic compression algo-

rithm which is called LIF encoder/decoder. We also prove

that under some assumptions, there is a link between the novel

LIF encoder/decoder and the conventional Uniform Deadzone

Quantizer (UDQ).

Index Terms— Visual system, Neuron, Leaky Inte-

grate and Fire (LIF) model, Uniform Deadzone Quantization

(UDQ)

1. INTRODUCTION

During the last decades, there have been a great progress on

the decryption of the visual system. In the literature, a vari-

ety of models approximate the connectivity between neurons

in order to communicate with each other. This communica-

tion happens with a very efficient and compact code which

is generated in time through the visual pathway. There have

been proposed several neuromathematical models which ap-

proximate the spike generation mechanism [1, 2, 3, 4, 5, 6].

Although each model is based on different assumptions, they

all remain faithful to the dynamic properties of the neural pro-

cessing.

In this paper, we proposed that mimicking the neural en-

coding process will be groundbreaking and useful in image

processing society for many reasons. First of all, a neuro-

inspired coder will enable to deal with a very high definition

input taking for granted that the retinal sensors of human eyes

can receive a very high definition signal ≈ 109 bits per second

[7] which is equivalent to the bitrate of a raw color video of

HD resolution at 20Hz. In addition, through the visual path-

way the transmission capacity is dramatically reduced leading

to a very tighly packed code. Last but not least, the spike gen-

eration mechanism is dynamic, meaning that the neurons are

able to process and encode a spatiotemporal input signal with

respect to time.
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There have been several attempts to build a bio-inspired

codec in the past like the Rank Order Coder [8, 5, 9] or

the Dithered Scalable Image Coder [10, 11]. However, both

of them had roughly approximate the neural spiking genera-

tion mechanism. We have recently introduced the perfect-LIF

method [12] which enables the sparse representation of an im-

age according to the performance of the Leaky Integrate and

Fire (LIF) model; a very well-known neural spiking mech-

anism which is based on the assumption that each neuron

spikes individually [6]. The perfect-LIF is a simple thresh-

olding function which is insufficient in terms of compression.

In this paper, we aim to extend the performance of the

perfect-LIF and use spikes to encode a still-image. We pro-

pose that counting and encoding the number of spikes N ,

which are released within an observation window T , leads

to an alternative and above all dynamic compression. In addi-

tion, we prove that under the assumption that the visual stimu-

lus remains constant in time, the LIF encoder/decoder, which

is also called neuro-inspired quantizer, can be approximated

by a uniform deadzone scalar quantizer. Sections 2 and 3 are a

recall of the LIF model and the Perfect-LIF function. Section

4 introduces the LIF encoder/decoder while the experimental

results are given in Section 5. Some concluding remarks are

given in section 6.

2. LIF MODEL

According to [6], the LIF approximates the neural encoding

process by an electrical circuit:

I(t) = IR(t) + IC(t) =
V (t)

R
+ C

dV

dt
, (1)

where I(t) is the input current which is divided into the cur-

rent IR(t) which runs the resistor and IC(t) which charges

the capacitor, C is the membrane capacitor of a neuron which

is in parallel with the resistor R and V (t) is the voltage across

the resistor. We assume that at time t = 0, when we in-

ject the current I(t), the membrane potential of the neuron

is V (t = 0) = 0 mV.

If we multiply eq. (1) by R, we introduce the time con-

stant τm = RC of the “leaky integrator”. This yields the

standard form:

τm
dV

dt
= −V (t) +RI(t). (2)



Whenever, the membrane potential of a neuron crosses the

threshold θ, where θ > 0, the neuron spikes. The moment the

neuron spikes is called firing time t = tf . For a given thresh-

old θ a neuron spikes according to the following threshold

criterion:

tf : V (tf ) = θ. (3)

Immediately after the emission of a spike the potential is

reset to V ′
r < θ which is the new initial condition. In addi-

tion, the neuron will remain silent for an absolute refractory

period ∆abs and the integration starts again at time tf +∆abs.

Since spikes are stereotyped events, i.e. with nearly identical

shapes, they are fully characterized by their firing time.

2.1. Constant input

Assumption 1. Let’s assume that a neuron is stimulated by a

constant current I which is switched on during some time T

as following:

I(t) = I1[0≤t≤T ](t), (4)

where I ∈ R the input intensity and 1 is the indicator function

which equals 1 if 0 ≤ t ≤ T , and 0 otherwise .

It has been shown in [6] that under the Assumption 1 the

exact delay each spike arrives is given by:

d =







+∞, if RI < θ,

h(RI; θ) = −τm ln

[

1−
θ

RI

]

, if RI > θ.

(5)

3. PERFECT-LIF

In [12], we introduced that if the delay d of the first spike is

a priori knowledge for the decoder, using the h−1(d; θ) func-

tion it is possible to perfectly reconstruct all the input intensity

Ĩ which are above the threshold:

Ĩ =

{

0, if d = +∞
I = h−1(d; θ), if d < +∞,

(6)

where

h−1(d; θ) =
θ

R

(

1− exp

(

−
d

τm

)) . (7)

In addition, we have proven in [12, 13] that based on the

Assumption 1 of the temporally constant input, we impose a

temporal constraint which neglects all the spikes which are

emitted with delay d > T . This constraint results in a new

threshold λ given by:

λ = h−1(T ; θ) =
θ

R

(

1− exp

(

−
T

τm

)) . (8)

Finally, the reconstruction of the time-constrained

perfect-LIF encoder/decoder is given by:

Ĩ =

{

0, if d > T

I = h−1(d; θ) if d ≤ T.
(9)

The basic drawback of the above perfect-LIF function is

that for all the intensities I > λ, it requires to code the fir-

ing times which is a finite set of real values. This will dra-

matically increase the memory cost of the algorithm and the

number of bits which are necessary to store the input signal.

However, due to the Assumption 1, we ensure that the inter-

spike interval for each input intensity I is constant. To this

extent, in section 4, we propose that it is more efficient to

count and encode the number of spikes N which have been

emitted within the observation window T .

4. LIF ENCODER/DECODER

In this paper, we are interested in building a neuro-based

quantizer which imitates better the neural encoding process

than the perfect-LIF [12]. As we show later on, the LIF en-

coder/decoder is able to dynamically compress a temporally

constant input signal into spikes which is novel and advanta-

geous with regards to the static state-of-the-art quantization

models.

4.1. LIF Encoder: Counting the Number of Spikes

Lets suppose that one “listens” to the response of a neuron

after a very large observation window T . Then, each intensity

will produce a spike train of a high density. The density is

described by the number of spikes N which is given by:

N =
⌊T

d

⌋

, (10)

The number of spikes depends on three parameters: the

intensity of the input signal I , the value of threshold λ and

the observation time T . For given λ and T the higher the

intensity I , the smaller the delay d. Moreover, the higher the

value of λ, the less the number of the neurons which spike.

Last but not least, the longer the observation time T , the more

the spikes each neuron emits.

In this section, we explain that counting and encoding the

number of spikes, N , which corresponds to each intensity, in-

stead of the delays d, results in the reduction of the memory

cost. This is obvious due to the fact that the number of spikes

belongs to a finite set of natural numbers whereas the delays

to a finite set of real numbers. Of course, we need to pay the

price of precision because by counting the number of spikes,

we will not be able to perfectly reconstruct the intensities any-

more.

Figure 1 illustrates how the LIF-based encoder/decoder

allows to do the mapping and assign a single output intensity

to a group of input intensities by using the number of spikes.



d

T

T

2 T

3
θ

h(RI;λ)

RI0
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Fig. 1: LIF Decoder counting the number of spikes. The

model provides different clusters which encode a group of

input coefficients.

For any input intensity which is below the threshold I < λ,

there will be emitted no spikes (N = 0), then d̃ is:

d̃ =

{

∞, if N = 0
T

N
if N > 0.

(11)

Consequently, all the input values which belong to group

c0 =
{

I | d̃ = +∞
}

will be recovered by a single output

intensity Ĩ0 = 0. Let us now suppose that only one spike

arrives for the input signal, N = 1. According to eq.(11),

when the first spike arrives the decoded delay equals d̃ = T .

All the input intensities which have caused the generation

of a single spike will be reconstructed by the the value Ĩ1
(see eq. (13)). These input intensities belong to the group

c1 =

{

I|
T

2
< d̃ ≤ T

}

because at time d̃ =
T

2
the second

spike arrives. Then, all the input values which belong to the

interval between
T

2
and

T

3
will be assigned to the group c2,

etc. Finally, one could define the groups/clusters as following:

c0 =
{

RI | d̃ > T
}

ck =

{

RI |
T

k + 1
< d̃ ≤

T

k

}

, ∀k ∈ N
+.

(12)

An interesting remark is that the quality of reconstruction

decreases while the number of spikes increases because the

higher the number of spikes is, the more the input values RI

which are going to be grouped together to the same cluster.

Concerning the sign of the input intensity, we have decided

in this paper to generate a function sgn(I) which equals 0 if

I ≥ 0, and 1 otherwise.

4.2. LIF Decoder

If the decoder knows the number of spikes N , it is possible

first to approximate the delay d̃ and then, using the inverse

function h−1(d̃; θ), to reconstruct an approximation of the in-

put intensity Ĩ. Based on eq. (11) the delay belongs to the set

d̃ ∈

{

∞,
T

1
, . . . ,

T

k
. . .

}

. Consequently, due to eq. (6) the

reconstructed value Ĩ in function of the delay is given by:

Ĩ0 = 0, if d̃ > T

Ĩk = h−1(
T

k
; θ), if d̃ ≤ T.

(13)

We are able now to define also the length, l, of each cluster

which is linked to the reconstructed values of eq. (13):

l0 = λ, for d̃ > T

lk = Ĩk+1 − Ĩk for, d̃ ≤ T.
(14)
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Fig. 2: A typical LIF encoder/decoder characteristic function

computed by counting the number of spikes (λ = 70, T =
150 ms, R=1 Ω, C=1 F).

The characteristic function of the proposed LIF en-

coder/decoder is presented in Fig. 2. As illustrated, the inten-

sities RI < λ will be discarded while the intensities RI > λ

are grouped into clusters of length lk depending on the num-

ber of spikes they have emitted. In addition, we have noted

that the size of the cluster which are closer to the threshold λ

is smaller than the ones which are far from it. As a result, the

reconstruction will be more accurate for the intensities around

the threshold value.

4.3. Asymptotic Analysis

In this section, we are interested in studying the limiting be-

havior of the LIF-based encoder/decoder and find the link be-

tween the parameters of our novel neuro-inspired quantizer

and the ones of conventional quantization methods which is

currently used in image and video compression algorithms.

As a result, we are going to analyze under which circum-

stances the LIF-based quantizer could be approximated by a

Uniform Deadzone Quantizer (UDQ) which is the state-of-

the-art in image compression algorithms [14, 15]:

Qq(I) = sgn(I)max(0,
⌊ |I| − λ

q
+ 1

⌋

)× q, (15)

where I is the input value, λ the deadzone, q the quantization

step and sgn(I) a function which describes the sign of the

input I .



Proposition 1. Assume C ≪ T ≪ R and
T

τm
≪ 1 then, the

LIF-based encoder/decoder turns into a UDQ with quantiza-

tion step q =
θC

T
.

Proof. The reconstructed value Ĩ of an input intensity which

has emitted N spikes is computed according to the following

function:

Ĩ = h−1(
T

N
; θ) =

θ

R

(

1− exp

(

−
T

τmN

)) . (16)

Under the assumption the
T

τm
≪ 1 we are able to use the

Taylor series to simplify the above function and compute the

asymptotic value of Ĩ. The general formula for the Taylor

series is given as following:

1

1− e−x
=

1

x
+

1

2
+ ε(x), (17)

with ε(x) → 0 when x → 0. Hence, the reconstructed value

can be computed by:

Ĩ =
θC

T
k +

θ

2R
with q ≈

θC

T
, (18)

the quantization step.

Based on Proposition 1, when C and θ remain constant, it

follows that:

λ ≈
θC

T
= q and l ≈

θC

T
= q. (19)

According to the definition above, when T → ∞, q = 0.

Following the general definition of the UDQ (see eq. (15))

and taking under consideration the initial assumption that
T

τm
≪ 1 and the fact that λ ≈ q, the LIF-based quantizer

can be described by the following relation:

Qq(I) = sgn(I)max

(

0,
⌊ |I|

q

⌋

)

× q. (20)

5. EXPERIMENTAL RESULTS

This is section is dedicated to the comparison of our novel

LIF encoder/decoder and the conventional mid-thread UDQ

which have been explicitly described in section 4.

We first applied the LIF encoder/decoder to an input im-

age of size n = 256 × 256 pixels. For each pixel intensity

Ii, i = 1 . . . , n we generate the spike trains. Then, we count

the number of spikes Ni which are emitted during the obser-

vation window T . We estimate the number of bits required

to store the number of spikes Ni with the Shannon entropy.

Using this number of spikes we decode the delays d̃i in order
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Fig. 3: Rate-Distortion comparison between LIF en-

coder/decoder and UDQ. The gray and black curves

correspond to UDQ with the quantization step q ∈
{1, 10, 20, . . . , 90, 100} with λ = q and λ = 2q, respec-

tively. The blue and red curves to the LIF encoder/decoder

with R = 10 Ω and R = 100 Ω respectively. The green

and pink curves illustrate that the LIF encoder/decoder can

be approximated by UDQ according to Proposition 1 (θ ∈
{1, . . . , 1000}, C = 1 F, T = 150 ms).

to reconstruct the input intensities Ĩ1, . . . , Ĩn. Concerning the

conventional UDQ quantization, we assign each input inten-

sity to the correspondent quantization levels L. Based on the

quantization levels we are able to compute the reconstructed

value of each input intensity. Finally, we apply the Shannon

entropy to estimate the number of bits required to encode the

quantization levels.

Figure 3 shows the rate-distortion behavior when we com-

press lena image of size n = 256 × 256 [16] using the LIF

encoder/decoder and the UDQ, respectively. By tuning θ and

R we are able to increase or decrease the number of spikes

and, by extension, the number of bits which are required to

store the input signal. The higher the rate is, the better the

quality of the reconstructed signal. One the other hand, for

the UDQ, the quantization step q links each input intensity to

the correspondent quantization level L. The more the levels

the higher the rate and vise versa. This figure also shows that

when C ≪ T ≪ R the LIF encoder/decoder can be approx-

imated by a UDQ with a quantization step given by eq. (18).

6. CONCLUSION

In this paper we presented the extension of the perfect-LIF

model which was recently released by our team. The novel

LIF encoder/decoder is a neuro-inspired quantizer which

mimics the dynamic spike generation neural mechanism. We

introduced the link between the LIF encoder/decoder and the

UDQ which results in the improvement of the performance of

the latest for a given set of parameters. Our future goal is to

be able to apply the LIF encoder/decoder to a time-varying

input.
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