
HAL Id: hal-02144279
https://hal.science/hal-02144279

Submitted on 5 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Machine Learning Algorithm for Solving Hidden
Object-Ranking Problems

G. Mondonneix, Sébastien Chabrier, Jean-Martial Mari, Alban Gabillon

To cite this version:
G. Mondonneix, Sébastien Chabrier, Jean-Martial Mari, Alban Gabillon. A Machine Learning Algo-
rithm for Solving Hidden Object-Ranking Problems. International Conference on Recent Trends in
Image Processing & Pattern Recognition, Dec 2018, Solapur, India. �hal-02144279�

https://hal.science/hal-02144279
https://hal.archives-ouvertes.fr

A Machine Learning Algorithm for Solving
Hidden Object-Ranking Problems

Gaël Mondonneix, Sébastien Chabrier, Jean Martial Mari, and Alban Gabillon

University of French Polynesia
Géopôle du Pacifique Sud EA4238, LABEX CORAIL

Abstract. Hidden object-ranking problems (HORPs) are object-ranking
problems stated in instance-ranking terms. To our knowledge, there is no
algorithm able to process these problems with the appropriate bias. This
lack is not significant as long as the size of the dataset makes it possible
to capture enough information by mining more data; however, when the
data are scarce, any information lying in the data is worth exploiting and
such an algorithm would become useful. We explicit the appropriate bias
for object-ranking problems and propose an algorithm able to apply this
bias to cases where these problems arise in an instance-ranking form. The
theoretical foundations of the algorithm are discussed and the algorithm
is tested on scarce real data, yielding better results (94.4% accuracy)
than traditional algorithms (92.6% accuracy for the best case).

Keywords: Object-Ranking, Instance-Ranking, Learning bias, Support
Vector Machine

1 Introduction

1.1 Context

Supervised learning is usually split into two different types of tasks: classifica-
tion tasks and regression tasks. However, a third type of supervised learning,
borrowing to both classification (the labels to predict take on discrete values)
and regression (the labels to predict convey order-related information), is get-
ting more attention as recommender systems play an increasing role on the Web:
ranking tasks.

Ranking Tasks. Fürnkranz and Hüllermeier [1] distinguish three subtypes
of ranking tasks depending on the problem to solve: object-ranking, instance-
ranking and label-ranking problems. In an object-ranking problem, we have to
infer a total order from a set of partially ordered items (see [2]). In an instance-
ranking problem, we are given a set of items belonging to ordered classes and
have to infer for any new item the class it belongs to (see [3]). In a label-ranking
problem, we are given a set of labels as well as a set of items, each one associated
with a partial order on the set of labels; the task consists of inferring a total
order on the set of labels for any new item (see [3], [4]).

Hidden Object-Ranking Problems (HORPs). We call hidden object-ranking
problem (HORP) an object-ranking problem expressed in a form of an instance-
ranking problem. A HORP has the appearance of an instance-ranking problem:
the training data consist of a set of items distributed in some ordered classes
and the task consists of distributing new items in these classes on a way that is
consistent with the training data. However a HORP is not an instance-ranking
problem in the sense that if two items are in a same class, it does not mean
that they are tied (i.e. ordinally equal); it does only mean that we have no ex-
plicit information about their ordinal relation. In a HORP, the classes have no
intrinsic meaning; they are external constraints meant to capture the trend of
a total order by expressing it in a compact way, but the number of classes, as
well as their boundaries, can change arbitrarily without having any impact on
the ordinal information: ordinal relations between objects stay the same.

HORPs often arise in machine learning but they seem to get no particular
attention and are solved as if they were simple instance-ranking problems. A
typical example of HORP is when someone is asked to rate something by giving
it from 1 to, say, 5 stars: if we ask this person to rate six items, then at least two
of them will be given the same number of stars; the reason yet has less to do
with preference than with external constraints we imposed on the way to express
preference; this problem is not a true instance-ranking problem but a HORP.

Learning Bias. The bias is crucial in a learning process for being able to gen-
eralize to unseen data ([5] p.42), and the less the data, the most the predictions
have to rely on the bias.

In a context of big data, losing some information on some data is not a prob-
lem because more information will be extracted from more data. The challenge
is not to exploit all the information contained in a given piece of data but to
process all the available data.

On the contrary, in a context of scarce data, if we do not exploit all the
information lying in the available data, notably the possible ordinal information,
there is no opportunity of recovering it through additional data. The choice of
the bias becomes then a critical point (see Fig. 2. for an illustration): it has to be
properly decided whether a problem stated in an instance-ranking form is a true
instance-ranking problem (that is, there exists no ordinal difference between two
items lying in a same class) or a HORP (ordinal differences exist between items
inside a same class, even though they are unknown).

1.2 Related Work

Instance-Ranking Approach. Traditional classification algorithms do not
take into account the possible ordinal information lying in the data. In multi-
class classification, the problem comes from an undifferentiated cost function:
if we have ordered classes Ci, Ci ≺p Ci+1 for a given preference p, then a mis-
classification between Ci and Ci+2 should be somehow more penalized than a
misclassification between Ci and Ci+1.

Several methods have been proposed to address instance-ranking problems
by extending or adapting traditional algorithms. For example, some authors pro-
pose a multiclass classification by SVM (support vector machine) with multiple
parallel hyperplanes [6]. The set of hyperplanes is chosen in such a way that
it maximizes the margin of the hyperplane with the thinnest margin. Since the
hyperplanes are parallel, they preserve the ordinal information conveyed by the
classes. Another method, called the data replication method [7], [8], is a set-
ting that allows using binary classifiers to solve instance-ranking problems. The
principle consists of learning a discrete cumulative distribution function: for all
classes Ck but the last one, a binary classifier is trained to decide whether an
item belongs to

⋃k
i=1 Ci. At the prediction stage, an item is considered to belong

to a class Ck if the classifiers put it in
⋃k
i=1 Ci but not in

⋃k−1
i=1 Ci.

These methods however solve the true instance-ranking problem: they do not
treat two items lying in a same class as two different objects but as two ordinally
equal instances of the class; therefore their inductive bias seems not to be the
most adapted for solving HORPs.

Object-Ranking Approach. Object-ranking consists of predicting a total or-
der given only a set of sorted pairs. Solving object-ranking problems is usually
done by learning a binary relation from the set of ordered pairs and choosing the
closest total order [2]. Because this choice implies to solve the slaters problem
[9], which is NP-equivalent [10], a way to approximate the right order is needed
[2], [11].

Even though this method is tailored for object-ranking, the fact that it goes
through a binary relation that is not necessarily a total order, as well as an
approximation process, makes it tricky to have a control on the learning bias.
Nonetheless, the pairwise approach is interesting in the perspective of solving
HORPs since the training set of ordered pairs of the object-ranking problem can
be derived from the interclass relations of the instance-ranking setting in which
the object-ranking problem is stated.

1.3 Guideline

The two following sections present a machine learning algorithm for solving
HORPs. The presentation follows the distinction between search space and
search strategy [5]: in section 2 we describe the search space and prove its ex-
pressive power; in section 3 we discuss candidate algorithms with respect to their
generalization power and their learning bias. The proper bias of object-ranking
learning is explicited in subsection 3.2 and a setting is proposed in subsection
3.3 for enabling SVM solvers to deal with HORPs. In section 4, an experiment
is reported, where the algorithm is tested on a real dataset.

2 Search Space

2.1 Definitions

Ordinal Equivalence. Let x and y be two sequences of n elements (x1, ..., xn)
and (y1, ..., yn), xi ∈ X, yi ∈ Y , with order relations ≺x and ≺y on X and Y
respectively. We define the ordinal equivalence between x and y, and we write
x⇔ord y, the property that ∀i ≤ n, ∀j ≤ n, xi ≺x xj ⇔ yi ≺y yj . By extension,
we say that two derivations are ordinally equivalent if their left-hand members
are ordinally equivalent and their right-hand members are ordinally equivalent.

For example,

0
1
3

 →
3

0
1

 ⇔ord

1
2
3

 →
3

1
2

 since

0
1
3

 ⇔ord

1
2
3

 and3
0
1

⇔ord

3
1
2

.

Ordinal equivalence is just a convenient way of ignoring scales: an ordinal
equivalence between two sequences is the same as a Kendall tau of 1 between
two statistical ordinal variables.

Dimensionality Extension. The rank of a matrix can be increased by adding
rows or columns that are linearly independent of the rows and columns of the
original matrix. Under the hypothesis that no row of X be null, we define the
basis function ϕr such that ϕr(X) extends X to rank r by adding columns that
are nonlinear combinations of its original columns.

As an illustration, if X =

x1,1 x1,2
x2,1 x2,2
x3,1 x3,2

 with rank(X) = 2, we can have for

example ϕ3(X) =

x1,1 x1,2 (x1,1 + x1,2)2

x2,1 x2,2 (x2,1 + x2,2)2

x3,1 x3,2 (x3,1 + x3,2)2

.

2.2 Formalization

Derscription of the Search Space. Let X be a set of n items represented
by vectors xi, 1 ≤ i ≤ n. Let y be a permutation of the first n positive integers
indicating an order between the items (yi = k means that the item represented
by the vector xi is in the kth position in the sequence of items).

Without loss of generality, we suppose that any two items are distinct and
that the mapping from the items to their representing vectors is injective (i 6=
j ⇒ xi 6= xj). We search a vector w such that ϕr(X)w ⇔ord y.

Expressivity of the Search Space. Let write ϕr(X)|y the matrix X extended
to rank r, itself augmented with the column vector y.

If rank(ϕr(X)|y) = rank(ϕr(X)), then there necessarily exists a vector w
such that ϕr(X)w = y; yet y ⇔ord y, so there necessarily exists a vector such
that ϕr(X)w ⇔ord y. In other terms, the search space is expressive enough to
contain any object-ranking target concept.

3 Search Strategy

3.1 Search by Extension

Derivation of a Greedy Algorithm. We can derive from the formalization of
the search space an algorithm consisting of greedily computing w by iteratively
increasing r until being able to solve ϕr(X)w = y.

Algorithm 1 Greedy Approach

r ← rank(X)
while r < rank(ϕr(X)|y) do
r ← r + 1

end while
return w s.t. ϕr(X)w = y

For n items, rank(ϕr(X)|y) ≤ n. Since n is finite, the algorithm is guaranteed
to terminate (there are at most n− 1 iterations).

Limitations of the Greedy Algorithm. We can learn an order on a dataset
as soon as we find a vector w such that ϕr(X)w ⇔ord y, and it is shown in the
previous section that such a w exists in the search space for any X provided that
r be high enough. Nonetheless, even though the greedy algorithm is guaranteed
to find a vector w such that ϕr(X)w ⇔ord y, it is not guaranteed to find the
one for which r is minimal.

We can illustrate this point with the following example: when we run the

algorithm, we notice that it needs to go up to r = 4 for learning

1
2
3
4

 →

1
2
4
3

but needs only to go up to r = 2 for learning

1
2
3
4

 →

27
44
51
48

; yet,

1
2
3
4

 ⇔ord

27
44
51
48

.

In order to generalize well to unseen examples, the algorithm has to find the
solution with the lowest r. The search for the lowest r seems justified from the

information theory point of view: the lowest the rank r, the highest the exploita-
tion of patterns lying in the training set; if the training set is representative of
the data on which predictions are made (which is a reasonable assumption),
then these data contain the same regularities as the test set and in the same
proportion; therefore, predictions based on this information will be correct with
a probability equal to this proportion.

Fig. 1. Resolution of ϕr

(0
1
2

)w ⇔ord

2
0
1

 with the extension/adaptation algorithm.

This algorithm ensures to find w with a minimal r (here r = 2) but does not ensure
to find the most relevant solution for this value of r. (a) A candidate solution. (b) A
relevant solution.

3.2 Search by Extension/Adaptation

Refinement of the Algorithm. The greedy algorithm takes a determined y
and iterates on the dimensionality until it can solve the equation: it is able to
extend the dimensionality of the search space but it does not adapt the target
y.

We then modify the algorithm by adding an adapting phase at each stage.
The extension/adaptation algorithm retains the properties of the greedy algo-
rithm but ensures a minimal r (see Fig. 1.). Everything now depends on how to
search argminγ{rank(ϕr(X)|γ)} such that γ ⇔ord y.

Algorithm 2 Extension/Adaptation Approach

r ← rank(X)
while r < rank(ϕr(X)|z), z = argminγ{rank(ϕr(X)|γ)}s.t.γ ⇔ord y do
r ← r + 1

end while
return w s.t. ϕr(X)w = z

Choice of the Appropriate Vector. The improved algorithm allows express-
ing all the possible orders with the lowest r. The problem remaining now is that
to each of these orders can correspond an infinity of sequences (due to the fact
that the sequences are real valued). The right bias has to be found in order to
select the most appropriate solution (see Fig. 1.).

In the case of SVM classification, it has been statistically proven that the
most appropriate solution is the one that corresponds to the hyperplane with
maximal margin [12]; In the case of instance-ranking, it has been proven that
the most appropriate solution is the one that corresponds to a set of parallel
hyperplanes among which the hyperplane lying between the closest classes has
maximal margin [6]. Building on the existence of the latter proof, we can state
that in the case of object-ranking, the most appropriate solution is the vector
on which the projection of all points results in a sequence in which the distance
between the two closest points is maximal (see Fig. 2. c.).

Indeed, we can consider object-ranking as a specific case of instance-ranking
where there is only one instance per class. Then the most appropriate solution
corresponds to the set of parallel hyperplanes among which the hyperplane lying
between the closest classes, hence the closest points, has maximal margin. Since
these hyperplanes are parallel, we can pass a vector through them at a normal
angle: the intersections between the vector and the hyperplanes correspond to
the projections of the points onto this vector, thus the distances between the
hyperplanes correspond to the distances between the points of the resulting
sequence.

3.3 Optimization Method

Herbrich and al. [6] extend the idea of large margin to ordinal learning and pro-
pose to solve instance-ranking problems by finding the hyperplane maximizing
the margin between the two closest consecutive classes.

At first glance, it could be applied to object-ranking problems by setting each
vector as a single instance of a class, as we did in the previous subsection for
deriving the bias from instance-ranking problems to object-ranking problems.
However, this method only allows finding hyperplanes with maximal margin
between points that are explicitly defined as ordered pairs in the training set,
whereas for solving our problem, we would need to find the hyperplane with
maximal margin between the two closest points of the dataset even if the infor-
mation about the order between them is not explicitly contained in the training

data. The solution we are looking for would then imply to consider every permu-
tation of the intra-class elements to discover the permutation allowing finding
a vector on which the distance between the two closest projected elements is
maximized.

On the one hand, extending the idea of large margin to hidden object-ranking
allows finding the appropriate solution but implies an exponential complexity
with respect to the size of the biggest class due to the need for considering
every permutation; on the other hand, considering only inter-class information
is tractable but puts emphasis on the differences between classes, solving then
the instance-ranking problem, not the object-ranking one. Instead, we look for
a way to put emphasis on the order between elements, that is, to find the vector
that lies at maximal distance from the closest vector yielding a wrong order.

Fig. 2. Illustration of the importance of identifying a HORP for solving it with the
right bias. (a) The training data. (b) The solution obeying the instance-ranking bias
(traditional way of solving HORPs); ’#’ is predicted as the first element of the sequence
and put in the class of ’+’. (c) The solution obeying the object-ranking bias; ’#’ is
predicted as the sixth element of the sequence and put in the class of ’ˆ’.

Resolution by Elimination. We derive a new training set from the original
one by taking as new training examples the ordered pairs made explicit by the
hinges between classes: let Ck and Cl be two different classes with Ck ≺p Cl for
a given preference p; then for any xi ∈ Ck and any xj ∈ Cl, our new training set
will contain the vector xij = ϕr(xj)− ϕr(xi).

In the case of a noise-free dataset, there exists a set of vectors whose dot
product with any vector xij is positive. This set of possible solutions can be

found by elimination: each vector xij determines the direction of a hyperplane
going through the origin and splitting the space into two half spaces; the possible
solutions lie necessarily in the half space where the vector lies. As long as we
suppose the dataset consistent, we can let each vector xij reduce the space of
possible solutions: this space will never be empty.

Most of the vectors xij wont have any impact on the final space. Only vectors
on the edges will. The goal is to find them so that the appropriate solution can
be computed: it is the vector maximizing the angle with the hyperplanes normal
to the edge vectors, or equivalently, minimizing the angle with these edge vectors
(see Fig. 3. b.).

Setting for an SVM solver The resolution by elimination could be carried
out analytically. However, it would be cumbersome as soon as the number of
dimension increases. Moreover, it would need to be adapted in order to deal
with noisy datasets.

Since solving a HORP boils down to finding the vector that minimizes the
maximal angle, or, equivalently, that maximizes the minimal cosine, we pro-
pose to use SVM solvers instead. Indeed, the optimization problems implied by
HORPs and SVMs are very close, and a HORP can be set in such way that
an SVM solver can process it. Equations 1 and 2 express the HORP and SVM
optimization problems respectively (’∗’ denotes the optimal arguments and yn
is the label associated to the training example xn; yn ∈ {−1, 1}).

w∗
HORP = argmaxw{mini,j

wt

||w||
xij
||xij ||

} (1)

(wSVM , w0)∗ = argmaxw,w0
{minn

yn(wtxn + w0)

||w||
} (2)

The setting is as follows: we normalize the size of any vector xij , label it as
positive and add its opposite vector, normalized and negatively labelled, in the
training set. Since the vectors have all the same magnitude and the positive and
negative examples are symmetrical, the support vectors will coincide with the
vectors lying on the edges, that is, the only vectors that have an impact on the
final space. It follows that the weight vector yielded by the SVM solver will be
w∗
HORP (Fig. 3. c.). Moreover, this setting allows taking advantage of the soft

margin of the SVM to deal with noisy datasets. As well, as for the SVM, the
basis functions can be replaced by properly designed kernel functions.

Time Complexity. The time complexity for solving an SVM optimization
problem is O(n3) [13] with respect to the size of the input. In our setting, the
size of the SVM input is O(n2) with respect to the size of the HORP input since
it consists of pairs of training examples. Our method needs then O(n6) time for
solving a HORP. This represents a serious drawback from a scalability point of
view and has to be addressed in a future work.

Fig. 3. (a) Six vectors vh representing interclass relations xij = ϕr(xj) − ϕr(xi) in a
two-dimensional space. (b) Resolution by elimination: v3 and v6 are the edge vectors;
the hyperplanes going through the origin and normal to them completely determine
the set of possible solutions (shown by the double arrow); the appropriate solution, w,
maximizes the angle to these hyperplanes, or equivalently, minimizes the angle with
the edge vectors v3 and v6. (c) Resolution with an SVM solver; once normalized and
symmetrized, the edge vectors correspond to support vectors.

4 Experiment

We conduct an experiment in order to test the extension/adaptation algorithm
with an SVM solver for the adaptation step.

4.1 Methods

Dataset. The dataset consists of 54 instances, each describing a Tahitian pearl
by 10 features corresponding to visual properties of their luster.

A description of these visual properties can be found in [14] and the way
corresponding features are extracted from photographs of pearls is detailed in
[15]. Briefly, three features quantify the appearance of specular reflectance and
five features account for appearance of contrast between specular and diffuse re-
flectance, distinctness of reflected image, appearance of haze around the specular
reflectance area, appearance of multiple reflectance on the successive layers of
nacre the pearl is made of, and iridescence on the surface of the pearl. Two ad-
ditional features, that do not a priori correspond to perceptual aspects of luster
but are meant to test the impact of diffuse reflectance on luster determination,
are mean saturation and chromaticity variance of the color on the surface of the
pearl.

The instances are labeled by a human expert in 3 levels of luster quality. The
classes are equally balanced.

Performance Evaluation. We use a 9-fold cross-validation method.

We run the experiment with 3 different settings. The first one is a tra-
ditional SVM multiclass classification; the second one implements the exten-
sion/adaptation algorithm with a genetic algorithm (population: 100; muta-
tion rate: 0.2) for the adaptation step; the third one implements the exten-
sion/adaptation algorithm with a resolution by elimination carried out by an
SVM solver for the adaptation step.

In all the settings, the experiment is run with and without feature selection.
Feature selection is operated by picking the best combinations of features over
the 210 − 1 possible non empty combinations for each setting. All the selected
combinations turn out to involve specular reflectance, haze, deep reflectance, and
chromaticity variance; none of them involves contrast or distinctness of reflected
image (see [15] for a specification of the selected combinations).

Since the dataset is small, we test the statistical significance of the result;
under the null hypothesis, the result would follow a binomial distribution of
parameters n = 54 and p = 1

3 .

4.2 Results

Results are given in Table 1. The traditional multiclass classification reaches an
accuracy of 77.7% with all features and 87% with selected features. The exten-
sion/adaptation algorithm with genetic algorithm reaches an accuracy of 90.7%
with all features and 92.6% with selected features. The extension/adaptation al-
gorithm with resolution by elimination reaches an accuracy of 94.4% with both
all and selected features.

Let Z ∼ B(54, 13) under the null hypothesis; the p-value corresponding to an
accuracy of 94.4%, which amounts to 51 correct predictions over 54, is equal to
Pr(Z ≥ 51) < 10−19.

Table 1. Accuracy and 95% confidence interval estimate of different learners solving
a HORP on a dataset of Tahitian pearls.

All features Selected features

SVM multiclass classification 77.7%± 11.1% 87%± 9%
Extension/adaptation with a genetic algorithm 90.7%± 7.7% 92.6%± 6.7%

Extension/adaptation with resolution by elimination 94.4%± 6.1% 94.4%± 6.1%

4.3 Discussion

The extension/adaptation algorithm with resolution by elimination reaches the
highest accuracy. It confirms the theoretical insights. Moreover, with a p-value
lower than 10−19, this result is statistically significant, notwithstanding the small
size of the dataset.

The extension/adaptation algorithm with genetic algorithm reaches a higher
accuracy than the traditional multiclass algorithm even though the genetic algo-
rithm returns the first solution it finds, which is not necessarily the best adapted;
that is not surprising since the extension/adaptation makes it still ensure a min-
imal r.

Both SVM traditional multiclass classification and extension/adaptation with
a genetic algorithm yield better results with selected features, while exten-
sion/adaptation with resolution by elimination makes no difference. Feature se-
lection can be thought of as a way of experimentally finding the appropriate bias
by letting the solution rely on the most relevant features, that is, on the features
whose information they convey is the most representative of the information to
capture for generalizing. From this point of view, we can interpret the results as
a sign that the bias contained in our algorithm is better adapted to HORPs and
makes therefore feature selection become less necessary.

5 Conclusion

Sum Up. In this paper, we propose an algorithm able to solve hidden object-
ranking problems. The learning bias of object-ranking is explicited and the the-
oretical aspects of the algorithm are discussed. The algorithm is tested on scarce
real data, yielding better results (94.4% of correct predictions) than traditional
algorithms (92.6% of correct predictions for the best case) and suggesting that
a feature selection step can be skipped without prejudicing accuracy.

Future Work. Even though the proposed algorithm is useful for scarce data
because it allows exploiting the most information contained in object-ranking
data, the optimization method we use makes it very sensitive to the size of
the dataset. It would be worth finding an optimization method allowing the
algorithm to scale.

References

1. Fürnkranz, J., Hüllermeier, E.: Preference learning: An introduction. [16] 1–17

2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of
Artificial Intelligence Research (1999)

3. Fürnkranz, J., Hüllermeier, E.: Preference learning and ranking by pairwise com-
parison. [16] 65–82

4. Fürnkranz, J., Hullermeier, E.: Pairwise Preference Learning and Ranking. Ma-
chine Learning: ECML 2003 (2003) 145–156

5. Mitchell, T.M.: Machine learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill (1997)

6. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal
regression. In: International Conference on Artificial Neural Networks. (1999) 97–
102

7. Frank, E., Hall, M.A.: A simple approach to ordinal classification. In Raedt, L.D.,
Flach, P.A., eds.: ECML. Volume 2167 of Lecture Notes in Computer Science.,
Springer (2001) 145–156

8. Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: the data repli-
cation method. Journal of Machine Learning Research 8 (2007) 1393–1429

9. Slater, P.: Inconsistencies in a Schedule of Paired Comparisons. Biometrika 48(3/4)
(1961) 303–312

10. Hudry, O.: On the complexity of Slater’s problems. European Journal of Opera-
tional Research 203(1) (2010) 216–221

11. Shmoys, D.B.: Approximation algorithms for np-hard problems. PWS Publishing
Co., Boston, MA, USA (1997) 192–235

12. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
13. Abdiansah, A., Wardoyo, R.: Article: Time complexity analysis of support vector

machines (svm) in libsvm. International Journal of Computer Applications 128(3)
(October 2015) 28–34 Published by Foundation of Computer Science (FCS), NY,
USA.

14. Mondonneix, G., Chabrier, S., Mari, J.m., Gabillon, A., Barriot, J.P.: Tahitian
Pearls’ Luster Assessment. In McDonald, J., Markham, C., Winstanley, A., eds.:
Proceedings of the 19th Irish Machine Vision and Image Processing conference,
Maynooth, Irish Pattern Recognition & Classification Society (2017) 186–193

15. Mondonneix, G., Chabrier, S., Mari, J.m., Gabillon, A.: Tahitian Pearls’ Luster
Assessment Automation. In: Proceedings of the IEEE Applied Imagery Pattern
Recognition Workshop : Big Data, Analytics, and Beyond. (2017)

16. Fürnkranz, J., Hüllermeier, E., eds.: Preference Learning. Springer-Verlag (2010)

