Accelerating Approximate Nonnegative Canonical Polyadic Decomposition using Extrapolation
Andersen Ang, Jeremy Cohen, Nicolas Gillis

To cite this version:

HAL Id: hal-02143969
https://hal.archives-ouvertes.fr/hal-02143969
Submitted on 29 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accelerating Approximate Nonnegative Canonical Polyadic Decomposition using Extrapolation

Andersen ANG1, Jeremy E. COHEN2, Nicolas GILLIS1*

1Université de Mons, Rue de Houdain 9, 7000, Mons, Belgium
2Université de Rennes, INRIA, CNRS, IRISA, France
mansion.ang@umons.ac.be jeremy.cohen@irisa.fr nicolas.gillis@umons.ac.be

Abstract – In this work, we consider the problem of approximate Nonnegative Canonical Polyadic Decomposition (aNCPD) of third-order nonnegative tensors, which boils down to minimizing $\|T - (U \otimes V \otimes W)\|_F^2$ over element-wise nonnegative matrices U, V and W. We present an accelerated block coordinate descent algorithm that uses Nesterov-like extrapolation in the form $U^{k+1} = U^k + \beta_k(U^k - U^{k-1})$. Experimental results showcase the effectiveness of the proposed algorithm with respect to other block-coordinate descent algorithms on ill-conditioned synthetic data.

1 Introduction

Given a nonnegative three dimensional tensor $T \in \mathbb{R}_{+}^{I \times J \times K}$, assume one wants to compute the approximation of T by a nonnegative tensor $\mathcal{G} = (U \otimes V \otimes W)\mathcal{I}_r$ of given small nonnegative rank r, where $G_{ijk} = \sum_{q=1}^{r} U_{iq} V_{jq} W_{kq}$. Using the Frobenius norm as an error metric, the problem becomes:

$$\min_{U \geq 0, V \geq 0, W \geq 0} f(U, V, W) = \frac{1}{2} \|T - (U \otimes V \otimes W)\mathcal{I}_r\|_F^2, \quad (1)$$

where the inequalities are meant element-wise.

Problem (1) is often referred to as the approximate Nonnegative Canonical Polyadic Decomposition (aNCPD) of T, as long as r is smaller than the rank of T. This problem is the extension of the low-rank nonnegative approximation problem for matrices, namely nonnegative matrix factorization (NMF). Solving aNCPD is an important issue for mining information out of tensors collected in a wide variety of applications; see [7] and references therein. Note that (1) is well-posed. In fact, a best low-rank approximation for tensors may not exist, but because the nonnegativity constraints are lower bounds for the parameters, this prevents degeneracy and the best nonnegative low-rank approximation always exists [9, 13].

*NG acknowledges of the Fonds de la Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under EOS Project no 0005318F-RG47, and of the European Research Council (ERC starting grant no 679515).

Contribution In this paper, we are interested in algorithms featuring both low-cost iterations and fast convergence speed. Such fast and cheap algorithms are the backbone of modern machine learning, where both the data and the number of parameters to estimate can be very large. To this end, we first study some existing Block-Coordinate Descent (BCD) algorithms, and present an extrapolated BCD algorithm based on Hierarchical Alternating Least Squares (HALS). To be specific, we adopt the numerical scheme of [1], which has found to be able to significantly improve the convergence speed on the problem of NMF. Experimental results showcase that our approach is faster at producing accurate results than state-of-the-art BCD algorithms in all tested scenarios.

2 Existing block-coordinate descent algorithms for aNCPD

Let us first mention some existing algorithms to compute aNCPD. Problem (1) is non-convex and admits no closed-form solution. A baseline method called ANLS solves aNCPD by alternating minimization on blocks $\{U, V, W\}$ as detailed below. However since computing the gradient of f is simple, and projecting on the nonnegative orthant only requires clipping, some algorithms have been proposed based on projected first-order methods [6, 15]. Compression using Tucker models has also been explored [3].

As mentioned in the introduction, in what follows, we study
2.1 Two types of blocks for BCD

To compute approximate unconstrained tensor decomposition models such as the Canonical Polyadic Decomposition or the Tucker decomposition [7], the Alternating Least Squares (ALS) algorithm is considered a baseline algorithm. In what follows, we first describe the well-known Alternating Non-negative Least Squares algorithm (ANLS), which is an adaptation of ALS for aNCPD.

2.1.1 A block-coordinate framework : ANLS

In ANLS, the cost function f is minimized over each factor matrix U, V, and W alternatively until convergence. For factor matrix U, we solve

$$
\min_{U \geq 0} \| T[1] - U (V \odot W)^T \|_F^2 \tag{2}
$$

where matrix $T[1]$ is the first mode unfolding of tensor T as defined in [4] and \odot is the Khatri-Rao product. Note that (2) is simply an equivalent rewriting of (1), with fixed V and W.

It appears now clearly that f is quadratic with respect to each column of U, V, and W in other words, problem (2) is a nonnegative least squares problem in a matrix format. Clearly, ANLS is a BCD algorithm where blocks are $\{U,V,W\}$, in this order.

2.1.2 Solving ANLS with BCD : HALS

There are two categories of algorithms to compute NLS. A first category of algorithms produces the exact solution of the NLS in a finite number of steps, such as the historical active set solution by Lawson and Hanson [8]. The number of step is however not known and can be quite large. Also, each iteration in the active set algorithm requires solving a least squares problem, which can be costly. A second category asymptotically converges towards the optimal solution. These algorithms are only interesting if they converge in a shorter time than the exact ones. Among those, Hierarchical Alternating Least Squares is state of the art [5] when dealing with several, alternated NLS problems.

In this paper, we call HALS-NLS the BCD algorithm solving the NLS problem that alternates on the columns of U in (2) while fixing the others. The solution for the ith column u_i of U requires to solve

$$
\min_{u_i \geq 0} \| T[1] - U \odot (V_i \odot W_i)^T - u_i (v_i \odot w_i)^T \|_F^2 \tag{3}
$$

and has the following closed-form solution

$$
u_i = \left[\frac{(T[1] - U \odot (V_i \odot W_i)^T)}{\|v_i\|_2 \|w_i\|_2^2} \right]^+ \tag{4}
$$

since (3) boils down to the coordinate-wise minimization of second order polynomial functions over a half space. In (3), matrix M_i stands for a matrix M with the ith column removed, while \otimes stands for the Kronecker product. Operator $[x]^+$ clips negative values in x to zero. The NLS problem is solved by alternatively update rule (4) on the columns of the matrix being updated in the outer ANLS algorithm until convergence. In what follows, we refer to the whole procedure “ANLS with NLS solved by HALS-NLS” as HALS.

Several important remarks can be done at this stage:

- HALS can be seen itself as a BCD algorithm to solve (1), where blocks are $\{u_1, u_2, \ldots, u_r, u_1, \ldots, u_r, v_1, v_2, \ldots, w_1, w_2, \ldots\}$.

- Because updating the columns of U requires the computation of $T[1] (V \odot W)$ which is costly, it is computationally interesting to update the columns of U several times before switching to the columns of V.

- The product $(V \odot W)^T (v_i \otimes w_i)$ can be computed efficiently as $(V^T v_i \ast W^T w_i)$ where \ast is the element-wise product.

3 Extrapolation for ANLS

Let us now discuss the proposed extrapolation scheme for ANLS, which is an extension of the one proposed in [1].

In each step of the regular ANLS, we update a block of parameters using a NLS solver. For instance, when updating U, we compute $U^{k+1} = \text{NLS}(V^k, W^k; U^k)$ where U^k is the initialization for U in an NLS solver such as HALS-NLS.

Extrapolated ANLS (E-ANLS) involves pairing variables \hat{U}, \hat{V}, and \hat{W} initialized equal to U, V and W. At each iteration, e.g., for U, we compute

$$
\text{Update } U^{k+1} = \text{NLS}(\hat{V}^k, \hat{W}^k; \hat{U}^k) \tag{5}
$$

$$
\text{Extrapolate } \hat{U}^{k+1} = U^{k+1} + \beta_k (U^{k+1} - U^k), \tag{6}
$$

where k is the current iteration index and β_k is the extrapolation parameter. Similar updates are carried out for V and W.

Intuitively, extrapolation makes use of the geometry of the cost function to predict estimates for a future iteration using previous estimates. In a convex optimization setting, Nesterov provided an optimal way to compute β_k for steps (6) in terms of convergence speed. He showed that for this choice of β_k, the error of the iterates of accelerated projected gradient methods converge in $O(\frac{1}{k^2})$ instead of $O(\frac{1}{k})$ [11].

However, as aNCPD (1) is non-convex, and because we are using extrapolation with the same β_k for different blocks, there is a priori no closed-form solution to update β_k. Thus, the critical part of the update is the parameter β_k, which we now discuss.
3.1 Update of β

The extrapolation scheme [1] has 5 variables, two of them indexed by the iteration index \(k = \beta_k, \bar{\beta}_k \), \(\gamma, \bar{\gamma} \) and \(\eta \), where \(\beta_k \in [0, 1] \) is the extrapolation variable, \(\bar{\beta}_k \in [0, 1] \) is the ceiling parameter of \(\beta_k \). Parameters \(\gamma (\eta) \) control the way \(\beta \) grows (decays). Lastly \(\bar{\gamma} \) is the growth parameter for \(\bar{\beta}_k \). We grow or decay \(\beta_k \) after each iteration as follows: let \(e^k \) denote the error at iteration \(k \) after the extrapolation, then

\[
\beta_{k+1} = \begin{cases}
\min\{\gamma \beta_k, 1\} & \text{if } e^{k+1} \leq e^k, \\
\beta_k/\eta & \text{else.}
\end{cases} \tag{7}
\]

It is important to note that extrapolation may increase the objective function value \((e^k) \) due to a bad parameter \(\beta_k \). If this occurs, we abandon the extrapolation at that iteration and simply set the paring variable \(U^{k+1} = U^{k+1} \). In other words, when the error increases, we perform restart [12]. In addition, an increase of \(e^k \) means the current \(\beta_k \) is too large, we then decrease \(\beta_k \) as (7). To avoid \(\beta_{k+1} \) to grow back to the large value which caused the increase of the error, we update \(\bar{\beta}_k \) by \(\bar{\gamma} \)

\[
\bar{\beta}_{k+1} = \begin{cases}
\min\{\gamma \bar{\beta}_k, 1\} & \text{if } e^{k+1} \leq e^k \text{ and } \bar{\beta}_k < 1, \\
\bar{\beta}_k & \text{else.}
\end{cases} \tag{8}
\]

The relations between the parameters are

\(\forall k \geq 0, 0 \leq \beta_k \leq \bar{\beta}_k \leq 1 < \bar{\gamma} \leq \gamma \leq \eta \).

3.2 An existing line-search approach for ANLS

It is often reported in the literature on computing approximate CPD that ALS is a viable algorithm only when using “line search” [2]. Although it is not stated explicitly in that reference, what is actually done is extrapolation \(^1\). It is also reported that “line search” speeds up NLS for ANCPD considerably. The scheme is the following heuristic:

Update \(U^{k+\frac{1}{2}} = NLS(V^k, W^k; U^k) \) \tag{9}

Extrapolate \(U^{k+1} = U^{k+\frac{1}{2}} + (k+1-\bar{\gamma})(U^{k+\frac{1}{2}} - U^k) \) \tag{10}

where \(k(k+1) \) is a recursive function so that \(k(k+1) = h(k) \) if the error has not increased for more than four iterations, \(k(k+1) = 1 + h(k) \) otherwise, and \(h(1) = 3 \). Also, it is reported that for constrained optimization, “line-search” should be discarded in the first few iterations \(4 \) in tests below) because of instability issues. The main difference between this approach, which we refer to as “Bro” after the name of its author, and the extrapolation scheme we propose is that on top of being based on the Nesterov acceleration, the variables after our scheme are always nonnegative (only the pairing variables may have negative entries).

4 Experiments

Let us now compare various accelerated BCD techniques for ANCPD, namely Projected gradient (PG), HALS (baseline),

\(^1\) Line-search as usually understood in smooth optimization has been studied for approximate CPD in [14]

HALS with extrapolation using Bro’s \(\beta \) tuning procedure, E-HALS (proposed), Accelerated Projected Gradient [15] (APG). Notice that the HALS-based algorithms have inner loops within the HALS and the PG-based algorithms have no inner loop. For fair comparisons we also consider PG and APG with inner loops, namely PG-r and APG-r. We compare these methods in three scenarios described below. In all tests, the rank \(r \) is small enough for uniqueness of factor matrices to hold up to trivial permutations and scaling.

Set up We form the ground truth tensor \(T^{true} \) by sampling elements of matrices \(U^{true}, V^{true} \) and \(W^{true} \) from the uniform distribution \(U[0, 1] \). To make the problem more difficult, we increase the condition number of the model-1 matrix \(U \) by replacing \(U^{true}(\cdot, 1) \) with \(0.01U^{true}(\cdot, 1) + 0.99U^{true}(\cdot, 2) \) (using Matlab array notations) and we add i.i.d. Gaussian noise to the tensor with variance \(\sigma^2 = 10^{-4} \). Note that some values in the noisy tensor may be negative due to the noise. We run all the algorithms under the same number of iteration \(500 \) with maximum run time of 10 seconds, same number of inner loops \(50 \) and random initialization \(U^{0}, V^{0}, W^{0} \) sampled from \(U[0, 1] \). For E-HALS, we set \(\beta_0 = 1, \beta_\gamma = 0.4, \gamma = 1.1, \bar{\gamma} = 1.001 \) and \(\eta = 2 \) after calibration. We repeat the whole process 20 times. We perform the following three tests:

1. Low rank, balanced sizes We set \(I = J = K = 50, R = 10 \). Fig. 1 shows the cost function values for each algorithm against iteration and computational time. Table 1 provides the median reconstruction error of each mode compared to ground truth: we define \(RE_{final} \) as the relative error between \(U^K \) and \(U^{true} \) in percent after column normalization and matching. The unpredictable behavior of Bro (error may increase significantly) shows that it is not a priori well-designed for ANCPD, even though its final error is sometimes on par with other algorithms. APG-r performs better than HALS, while E-HALS is faster than the other methods.

2. Low rank, balanced sizes, ill-conditioned We use the same setting as in the previous test. However here the condition number of factor matrix \(U \) is severely increased using \(U = U(I_r + 1_r) \), where \(I_r \) is identity matrix of size \(r \) and \(1_r \) is \(r \)-by-\(r \) all-1 matrix. Due to \(U \) being very ill-conditioned, method Bro di-
Figure 2 – Median value of $e^k - c_{\text{min}}$ of HALS, E-HALS and APG-r for test 2.

Figure 3 – Median value of $e^k - c_{\text{min}}$ of HALS, E-HALS and APG-r for test 3.

verges (it therefore does not show on Fig. 2). On the other hand, E-HALS is not only the fastest method, see Fig. 2, but also provides much more accurate factor estimates, see Table 1. Unexpectedly, E-HALS seems to perform even better in this second test than in the previous one.

3. Medium rank, unbalanced sizes Here $I = 150$, $J = 10^3$, $K = 35$ and $R = 20$. Fig. 3 shows similar results to the previous tests: E-HALS outperforms all other BCD approaches.

Table 1 – Median RE$_{\text{final}}$ in % of U, V, W, (* means ≥ 40)

<table>
<thead>
<tr>
<th>Algo</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGD</td>
<td>15, 1, 1.8</td>
<td>4.3, *, *</td>
<td>*, *, *</td>
</tr>
<tr>
<td>PGD-r</td>
<td>0.2, 1, 1.6</td>
<td>4.1, *, *</td>
<td>*, *, *</td>
</tr>
<tr>
<td>HALS</td>
<td>0.2, 1.6, 1.6</td>
<td>2.2, 2.2, 2.2</td>
<td>4.7, 5.2, 5.2</td>
</tr>
<tr>
<td>E-HALS</td>
<td>0.2, 1, 1.8</td>
<td>0.040.3, 0.3</td>
<td>0.040.8, 0.8</td>
</tr>
<tr>
<td>Bro</td>
<td>0.2, 1, 1.5</td>
<td>2.2, 2.4, 2.4</td>
<td>*, *, *</td>
</tr>
<tr>
<td>APG</td>
<td>0.5, 3, 2.9</td>
<td>4.3, *, *</td>
<td>*, *, *</td>
</tr>
<tr>
<td>APG-r</td>
<td>0.2, 1.3, 1.2</td>
<td>2.7, *, 28</td>
<td>10, 11, 11</td>
</tr>
</tbody>
</table>

5 Conclusion

In this paper, we presented an algorithm to compute approximate Nonnegative Canonical Polyyadic Decomposition that employs extrapolation to accelerate the convergence of a block-coordinate scheme. The extrapolation is in the form of $U^k + \beta_k(U^k - U^{k-1})$ where k is the iteration number and $\beta_k \geq 0$ is the extrapolation parameter. Experiment results show that the proposed scheme can significantly speed up the algorithm and is much faster than benchmark algorithms in several ill-conditioned settings. Future works will further improve on speed and adapt the proposed method to other decompositions such as approximate nonnegative Tucker. Also, we will adapt other acceleration methods designed in the unconstrained case (here we only compare with Bro [2]), such as the one in [10].

Références

