Investigation of the role of alkali cation in early stage of oligomerization in silicate fluids: a molecular dynamics study

Amaury Coste, Olivier Diat, Arnaud Poulesquen, Jean-François Dufrêche, Magali Duvail

To cite this version:

Amaury Coste, Olivier Diat, Arnaud Poulesquen, Jean-François Dufrêche, Magali Duvail. Investigation of the role of alkali cation in early stage of oligomerization in silicate fluids: a molecular dynamics study. 7th EuCheMS Chemistry Congress, Aug 2018, Liverpool, United Kingdom. hal-02142629

HAL Id: hal-02142629
https://hal.archives-ouvertes.fr/hal-02142629

Submitted on 28 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Investigation of the role of alkali cation in early stage of oligomerization in silicate fluids: a molecular dynamics study

Amaury Coste, Olivier Diat, Arnaud Poulesquen, Jean-François Dufrêche and Magali Duvail

Context
- Solutions of activation (= alkali media) of aluminosilicate are environmentally friendly and considered as green chemistry (used for ground stabilization, painting,...)
- The formulation is complex since the parameters are various and numerous
- Understanding the ion-ion interactions for the oligomerization process where the nature and concentration of alkali drives the final properties of the gel [1]
- Molecular dynamics is a useful tool to fill the gap between theoretical and experimental studies
- Molecular dynamics allows the calculation of the structural and dynamical properties of the solutes in solution
- Effect of water, alkali and hydroxide are explicitly taking into account

Method
- Classical Molecular Dynamics (MD)
 - Molecular dynamics simulations using explicit polarization with AMBER14 [3]
 - Development of a polarizable silicate force field for describing all the silicate oligomers by assembling neutral and anionic fragment (10 types of atom)
 - MD simulations focused on 3 species:
 - SiO(OH)$_2^-$
 - Si$_2$O$_2$(OH)$_4^-$
 - Si$_4$O$_6$(OH)$_8^-$
- X-ray scattering intensity from MD simulation
 - Calculation of I(q) from radial distribution functions
 \[
 I(q) = \sum_{\alpha \beta} f_\alpha f_\beta q^2 \sqrt{N_\alpha N_\beta S_{\alpha\beta}(q)}
 \]
 - Theoretical I(q) directly comparable to experimental one
 - Efficient method for describing alkali media [4] study of silicate oligomers in such media

Silicate in NaOH concentrated media
- Pure oligomer solutions
 - [Si]/[Na]$^+$ = 1
 - 300 Na$^+$
 - 300 SiO(OH)$_2^-$
 - 150 Si$_2$O$_2$(OH)$_4^-$
 - 150 OH$^-$
 - [Si]/[Na]$^+$ constant
 - Provide a “buffer media”
- Mixtures of oligomers
 - [Na]$^+$ free, constant
 - Si$_4$O$_6$(OH)$_8^-$ rich mixture
 - 300 Na$^+$
 - 37 Si$_2$O$_2$(OH)$_4^-$
 - 37 Si$_2$O$_2$(OH)$_4^-$
 - 152 Si$_2$O$_2$(OH)$_4^-$
- Scattering intensities from MD
 - Same structure for Q > 1 Å$^{-1}$
 - Rise for Q < 0.4 Å$^{-1}$ (aggregation)
 - Presence of monomers decreases the I(Q) at small angles

Conclusions and Outlines
- Structure of the solution depends on the oligomer composition and nature:
 - Spontaneous aggregation of dimers in solution: aggregates composed of silicates and Na$^+$
 - Dimers Si$_2$O$_2$(OH)$_4^-$ interact strongly with Na$^+$
 - Monomers SiO(OH)$_2^-$: small aggregates, and destabilize the aggregation (entropic effect)
- Similar behaviors of Na$: “buffer media” with the hydroxide anions
- MD simulations of “real” solutions:
 - Different [Si]/[Na]$^+$ ratios with respect to NMR experiments
 - Influence of the alkali nature on the aggregation

Acknowledgements
This work was made possible thanks to the financial support of the ANR DYNAMISTE (ANR-15-CE07-0013-01) and high performance computing facilities of TGCC/CERT and the computing center of CEA Marcoule.

References

Ground stabilization on building site (Institut National de la Recherche Agronomique, Domaine de Bagnols-sur-Cèze)

Stability diagram for soluble silicates at 298 K [3]

Concentrated aqueous solutions of NaOH

Experiments

Dynamiste (CNRS, Université Montpellier - UMR 5257 CEA - Université Montpellier - CNRS - ENSCM, BP 17111, F-30207 Bagnols-sur-Cèze)

CEA, Nuclear Energy Division, Research DE2D (SEAD, LCBC) BP 17111, F-30207 Bagnols-sur-Cèze