A. A. Ali, M. A. Hasan, and M. I. Zaki, Dawsonite-Type Precursors for Catalytic Al, Cr, and Fe Oxides: Synthesis and Characterization, Chem. Mater, vol.17, pp.6797-6804, 2005.
DOI : 10.1002/chin.200611018

R. G. Bates and G. D. Pinching, Acidic dissociation constant of ammonium ion at 0 to 50 C, and the base strength of ammonia, J. Res. Natl. Bur. Stand, vol.42, p.419, 1949.

P. Bénézeth, D. A. Palmer, and D. J. Wesolowski, The aqueous chemistry of aluminum. A new approach to high-temperature solubility measurements, Geothermics, vol.26, pp.465-481, 1997.

P. Bénézeth, D. A. Palmer, L. M. Anovitz, and J. Horita, Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2, Geochim. Cosmochim. Acta, vol.71, pp.4438-4455, 2007.

W. L. Bourcier, K. G. Knauss, and K. J. Jackson, Aluminum hydrolysis constants to 250°C from boehmite solubility measurements, Geochim. Cosmochim. Acta, vol.57, pp.747-762, 1993.
DOI : 10.1016/0016-7037(93)90166-t

D. S. Brown and J. D. Allison, MINTEQA1, an equilibrium metal speciation model: users manual, Enviromental Prot. Agency, vol.92, 1987.

Q. Chen, Y. Xu, and L. G. Hepler, Calorimetric study of the digestion of gibbsite, Al(OH) 3 (cr), and thermodynamics of aqueous aluminate ion, Al(OH) 4 ? (aq), Can. J. Chem, vol.69, pp.1685-1690, 1991.

X. Duan, T. Kim, D. Li, J. Ma, J. et al., Understanding the Effect Models of Ionic Liquids in the Synthesis of NH4 -Dw and ?-AlOOH Nanostructures and Their Conversion into Porous ?-Al 2 O 3, Chem. -A Eur, J, vol.19, pp.5924-5937, 2013.

D. C. Dubert, J. Pérez-ramírez, and R. Garcia-valls, Continuous Synthesis of Porous Ammonium Dawsonite Within a New Microstructrured System, vol.25, pp.231-236, 2011.

M. J. Ferrante, J. M. Stuve, and D. W. Richardson, Thermodynamic data for synthetic dawsonite, Bureau of Mines Report Investigation, p.8129, 1976.

M. J. Hernandez, M. A. Ulibarri, J. Cornejo, M. J. Peña, and C. J. Serna, Thermal stability of aluminium hydroxycarbonates with monovalent cations, Thermochim. Acta, vol.94, pp.257-266, 1985.
DOI : 10.1016/0040-6031(85)85269-2

X. Hu, Y. Liu, Z. Tang, G. Li, R. Zhao et al., Fabrication of high-surface-area ?-alumina by thermal decomposition of AACH precursor using low-temperature solid-state reaction, Mater. Res. Bull, vol.47, pp.4271-4277, 2012.

P. H. Karpinski and J. S. Wey, Handbook of Industrial Crystallization, pp.141-160, 2002.

R. Lafficher, M. Digne, F. Salvatori, M. Boualleg, D. Colson et al., Ammonium aluminium carbonate hydroxide NH4Al(OH)2CO3 as an alternative route for alumina preparation: Comparison with the classical boehmite precursor, Powder Technol, vol.320, pp.565-573, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01654472

G. C. Li, Y. Q. Liu, L. L. Guan, X. F. Hu, and C. G. Liu, , 2012.

, Meso/macroporous ?-Al2O3 fabricated by thermal decomposition of nanorods ammonium aluminium carbonate hydroxide, Mater. Res. Bull, vol.47, pp.1073-1079

D. R. Lide, CRC Handbook of Chemistry and Physics, 84th Edition. Handbook of Chemistry and Physics, 2003.

H. Liu, H. Sun, J. Li, X. He, and Z. Zhu, pH-dependent formation of AACH fibers with tunable diameters and their in situ transformation to alumina nanocrystals with mesoporous structure, Adv. Powder Technol, vol.23, pp.164-169, 2012.

C. Liu, J. Li, K. Liew, J. Zhu, M. R. Nordin et al., An environmentally friendly method for the synthesis of nano-alumina with controllable morphologies, 2012.

Z. ?odziana, G. Stoica, and J. Pérez-ramírez, Reevaluation of the Structure and Fundamental Physical Properties of Dawsonites by DFT Studies, Inorg. Chem, vol.50, pp.2590-2598, 2011.

C. Ma, X. X. Zhou, X. Xu, and T. Zhu, Synthesis and thermal decomposition of ammonium aluminum carbonate hydroxide (AACH), Mater. Chem. Phys, vol.72, pp.374-379, 2001.

A. Mersmann, Crystallization and precipitation, Chem. Eng. Process. Process Intensif, vol.38, pp.345-353, 1999.

D. K. Nordstrom and H. M. , The Environmental Chemistry of Aluminum, pp.39-80, 1996.

D. Panias and A. Krestou, Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions, Powder Technol, vol.175, pp.163-173, 2007.

I. Pitsch, W. Gessner, A. Bruckner, H. Mehner, S. Mohmel et al., Synthesis and characterization of Fe2O3 containing aluminas by thermal decomposition of modified ammonium dawsonite, J. Mater. Chem, vol.11, pp.2498-2503, 2001.

R. A. Robie, B. S. Hemingway, and J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 198.15 K and 1 bar and at high temperatures, 1979.

M. Santiago, M. S. Yalfani, and J. Pérez-ramírez, In-line dispersion-precipitation method for the synthesis of metal-substituted dawsonites. Genesis of oxide materials with superior properties, J. Mater. Chem, vol.16, pp.2886-2889, 2006.

A. M. Schwartz and A. S. Myerson, Handbook of Industrial Crystallization, vol.7, pp.1-31, 2002.

D. Shin, S. S. Park, J. H. Kim, S. S. Hong, J. M. Park et al., Study on ?-alumina precursors prepared using different ammonium salt precipitants, J. Ind. Eng. Chem, vol.20, pp.1269-1275, 2014.

G. Stoica and J. Pérez-ramírez, Stability and inter-conversion of synthetic dawsonites in aqueous media, Geochim. Cosmochim. Acta, vol.74, pp.7048-7058, 2010.

R. F. Vogel, G. Marcelin, and W. L. Kehl, The preparation of controlled pore alumina, Appl. Catal, vol.12, pp.237-248, 1984.

D. Wagman,

W. H. Evans, V. B. Parker, R. H. Schumm, and I. Halow, The NBS tables of chemical thermodynamic properties. Selected values for inorganic C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, vol.11, pp.1-392, 1982.

M. S. Yalfani, M. Santiago, and J. Pérez-ramírez, In situ studies during thermal activation of dawsonite-type compounds to oxide catalysts, J. Mater. Chem, vol.17, pp.1222-1229, 2007.