L. Lu, H. Yazdi, S. Jin, Y. Zuo, P. H. Fallgren et al., Enhanced bioremediation 607 of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems, J, 2014.

. Hazard and . Mater, , vol.274, pp.8-15

D. Mao, R. Lookman, H. V. Weghe, R. Weltens, G. Vanermen et al., Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on 611 HPLC-GCXGC analysis, Chemosphere, vol.77, pp.1508-1513, 2009.

,

T. Masy, S. Demanèche, O. Tromme, P. Thonart, P. Jacques et al., Hydrocarbon biostimulation and bioaugmentation in organic carbon and clay-rich 615 soils, Soil Biol. Biochem, vol.614, pp.66-74, 2016.

M. Megharaj, B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, and R. Naidu, , 2011.

, Bioremediation approaches for organic pollutants: A critical perspective, Environ. Int, vol.618, pp.1362-1375

, Int. Biodeterior. Biodegrad, vol.65, pp.85-91

D. Pezzolla, G. Marconi, B. Turchetti, C. Zadra, A. Agnelli et al., , p.631

G. M. Benucci, P. Buzzini, E. Albertini, and G. Gigliotti, Influence of exogenous 632 organic matter on prokaryotic and eukaryotic microbiota in an agricultural soil. A 633 multidisciplinary approach, Soil Biol. Biochem, vol.82, pp.9-20, 2015.

,

S. M. Powell, S. H. Ferguson, J. P. Bowman, and I. Snape, Using Real-Time PCR to 636, 2006.

, Assess Changes in the Hydrocarbon-Degrading Microbial Community in Antarctic Soil 637

, During Bioremediation. Microb. Ecol, vol.52, pp.523-532

M. B. Reyes-sosa, J. E. Apodaca-hernández, and M. L. Arena-ortiz, Bioprospecting for 640 microbes with potential hydrocarbon remediation activity on the northwest, p.641, 2018.

, Yucatan Peninsula, Mexico, using DNA sequencing, Sci. Total Environ, vol.642, pp.1060-642

T. Sayara, M. Sarrà, and A. Sánchez, Optimization and enhancement of soil 653 bioremediation by composting using the experimental design technique, Biodegradation, vol.654, issue.21, pp.345-356, 2010.

T. Sayara, M. Sarrà, and A. Sánchez, Effects of compost stability and contaminant 656 concentration on the bioremediation of PAHs-contaminated soil through composting, 2010.

. Hazard and . Mater, , vol.179, pp.999-1006

E. Smit, P. Leeflang, B. Glandorf, J. D. Van-elsas, and K. Wernars, Analysis of fungal 659 diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes 660 encoding 18S rRNA and temperature gradient gel electrophoresis, 1999.

. Microbiol, , vol.65, pp.2614-2621

J. Sun, L. Pan, D. C. Tsang, Y. Zhan, L. Zhu et al., Organic contamination and 663 remediation in the agricultural soils of China: A critical review, Sci. Total Environ, vol.615, pp.724-740, 2018.

N. B. Sutton, P. Van-gaans, A. A. Langenhoff, F. Maphosa, H. Smidt et al., , p.666

H. H. Rijnaarts, Biodegradation of aged diesel in diverse soil matrixes: Impact 667 of environmental conditions and bioavailability on microbial remediation capacity, 2013.

, Biodegradation, vol.24, pp.487-498

F. Tambone, B. Scaglia, G. D-'imporzano, A. Schievano, V. Orzi et al., Assessing amendment and fertilizing properties of digestates from anaerobic 671 digestion through a comparative study with digested sludge and compost, Chemosphere, vol.672, issue.81, pp.577-583, 2010.

E. Tampio, T. Salo, and J. Rintala, Agronomic characteristics of five different urban waste 674 digestates, J. Environ. Manage, vol.169, pp.293-302, 2016.

,

, Method 3550C: Ultrasonic Extraction, Test Methods for Evaluating Solid, vol.677, 2007.

. Waste, Physical/Chemical Methods. U.S. Environ. Prot. Agency

, SW-846: Nonhalongenated Organics Using GC/FID, Test Methods for, p.679, 1996.

, Evaluating Solid Waste, Physical/Chemical Methods. U.S. Environ. Prot. Agency, vol.680

E. J. Vainio and J. Hantula, Direct analysis of wood-inhabiting fungi using denaturing 682 gradient gel electrophoresis of amplified ribosomal DNA, Mycol. Res, vol.104, pp.927-936, 2000.

,

J. J. Walsh, D. L. Jones, G. Edwards-jones, and A. P. Williams, Replacing inorganic 685 fertilizer with anaerobic digestate may maintain agricultural productivity at less 686 environmental cost, J. Plant Nutr. Soil Sci, vol.175, pp.840-845, 2012.

,

H. Wang, B. Wang, W. Dong, and X. Hu, Co-acclimation of bacterial communities under 689 stresses of hydrocarbons with different structures, Sci. Rep, pp.1-12, 2016.

,

P. Wang, H. Wang, Y. Qiu, L. Ren, and B. Jiang, Microbial characteristics in anaerobic 692 digestion process of food waste for methane production-A review, Bioresour. Technol, vol.693, issue.248, pp.29-36, 2018.

X. B. Wang, C. Q. Chi, Y. Nie, Y. Q. Tang, Y. Tan et al., Degradation of 695 petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain, 2011.

B. Wolters, S. Jacquiod, S. J. Sørensen, A. Widyasari-mehta, T. B. Bech et al., , p.698

K. Smalla, Bulk soil and maize rhizosphere resistance genes, mobile genetic 699 elements and microbial communities are differently impacted by organic and inorganic 700 fertilization, FEMS Microbiol. Ecol, vol.94, pp.1-13, 2018.

S. Wongrod, S. Simon, G. Guibaud, P. N. Lens, Y. Pechaud et al., Lead sorption by biochar produced from digestates: 703 Consequences of chemical modification and washing, J. Environ. Manage, vol.219, pp.277-704, 2018.

Y. Xu and M. Lu, Bioremediation of crude oil-contaminated soil: Comparison of different 706 biostimulation and bioaugmentation treatments, J. Hazard. Mater, vol.183, pp.395-401, 2010.

,

C. K. Yeh and C. C. Young, Effects of soil fines and surfactant sorption on contaminant 709 reduction of coarse fractions during soil washing, J. Environ. Sci. Heal. -Part A, vol.710, 2003.

, Toxic/Hazardous Subst. Environ. Eng, vol.38, pp.2697-2709

H. Zhang, J. Tang, L. Wang, J. Liu, R. G. Gurav et al., A novel bioremediation 713 strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium 714 variabile HRJ4 and biochar, J. Environ. Sci. (China), vol.47, pp.7-13, 2016.

,