
JSON-LD 1.1

This version:
https://www.w3.org/TR/2019/CR-json-ld11-20191212/

Latest published version:
https://www.w3.org/TR/json-ld11/

Latest editor's draft:
https://w3c.github.io/json-ld-syntax/

Test suite:
https://w3c.github.io/json-ld-api/tests/

Implementation report:
https://w3c.github.io/json-ld-api/reports/

Previous version:
https://www.w3.org/TR/2019/WD-json-ld11-20191112/

Latest Recommendation:
https://www.w3.org/TR/2014/REC-json-ld-20140116/

Editors:
Gregg Kellogg (v1.0 and v1.1)

Pierre-Antoine Champin (LIRIS - Université de Lyon) (v1.1)

Dave Longley (Digital Bazaar) (v1.1)

Former editors:
Manu Sporny (Digital Bazaar) (v1.0)

Markus Lanthaler (Graz University of Technology) (v1.0)

Authors:
Manu Sporny (Digital Bazaar) (v1.0)

Dave Longley (Digital Bazaar) (v1.0 and v1.1)

Gregg Kellogg (v1.0 and v1.1)

Markus Lanthaler (Graz University of Technology) (v1.0)

Pierre-Antoine Champin (LIRIS - Université de Lyon) (v1.1)

Niklas Lindström (v1.0)

Participate:
GitHub w3c/json-ld-syntax

File a bug

Commit history

A JSON-based Serialization for Linked Data

W3C Candidate Recommendation 12 December 2019

https://www.w3.org/TR/json-ld11/

1 of 215

Pull requests

Copyright © 2010-2019 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and

permissive document license rules apply.

JSON is a useful data serialization and messaging format. This specification

defines JSON-LD 1.1, a JSON-based format to serialize Linked Data. The

syntax is designed to easily integrate into deployed systems that already use

JSON, and provides a smooth upgrade path from JSON to JSON-LD. It is

primarily intended to be a way to use Linked Data in Web-based

programming environments, to build interoperable Web services, and to store

Linked Data in JSON-based storage engines.

This specification describes a superset of the features defined in JSON-LD 1.0

[JSON-LD10] and, except where noted, documents created using the 1.0

version of this specification remain compatible with JSON-LD 1.1.

This section describes the status of this document at the time of its

publication. Other documents may supersede this document. A list of current

W3C publications and the latest revision of this technical report can be found

in the W3C technical reports index at https://www.w3.org/TR/.

This document has been developed by the JSON-LD Working Group and was

derived from the JSON-LD Community Group's Final Report.

There is a live JSON-LD playground that is capable of demonstrating the

features described in this document.

This document was published by the JSON-LD Working Group as a Candidate

Recommendation. This document is intended to become a W3C

Recommendation.

GitHub Issues are preferred for discussion of this specification. Alternatively,

you can send comments to our mailing list. Please send them to public-json-

ld-wg@w3.org (archives).

W3C publishes a Candidate Recommendation to indicate that the document is

believed to be stable and to encourage implementation by the developer

Abstract

Status of This Document

https://www.w3.org/TR/json-ld11/

2 of 215

1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.

community. This Candidate Recommendation is expected to advance to

Proposed Recommendation no earlier than 17 February 2020.

Please see the Working Group's implementation report.

Publication as a Candidate Recommendation does not imply endorsement by

the W3C Membership. This is a draft document and may be updated,

replaced or obsoleted by other documents at any time. It is inappropriate to

cite this document as other than work in progress.

This document was produced by a group operating under the W3C Patent

Policy. W3C maintains a public list of any patent disclosures made in

connection with the deliverables of the group; that page also includes

instructions for disclosing a patent. An individual who has actual knowledge

of a patent which the individual believes contains Essential Claim(s) must

disclose the information in accordance with section 6 of the W3C Patent

Policy.

This document is governed by the 1 March 2019 W3C Process Document.

This document is one of three JSON-LD 1.1 Recommendations produced by

the JSON-LD Working Group:

JSON-LD 1.1

JSON-LD 1.1 Processing Algorithms and API

JSON-LD 1.1 Framing

Introduction

How to Read this Document

Contributing

Typographical conventions

Terminology

Design Goals and Rationale

Data Model Overview

Syntax Tokens and Keywords

Conformance

Set of Documents§

Table of Contents

https://www.w3.org/TR/json-ld11/

3 of 215

3.

3.1

3.2

3.3

3.4

3.5

4.

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.10

4.1.11

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.4.1

4.3

4.3.1

4.3.2

4.3.3

4.4

4.5

4.5.1

4.6

4.6.1

4.6.1.1

4.6.2

4.6.3

4.6.4

4.7

Basic Concepts

The Context

IRIs

Node Identifiers

Uses of JSON Objects

Specifying the Type

Advanced Concepts

Advanced Context Usage

JSON-LD 1.1 Processing Mode

Default Vocabulary

Base IRI

Using the Document Base for the Default Vocabulary

Compact IRIs

Aliasing Keywords

IRI Expansion within a Context

Scoped Contexts

Context Propagation

Imported Contexts

Protected Term Definitions

Describing Values

Typed Values

JSON Literals

Type Coercion

String Internationalization

Base Direction

Value Ordering

Lists

Sets

Using @set with @type

Nested Properties

Embedding

Identifying Blank Nodes

Indexed Values

Data Indexing

Property-based data indexing

Language Indexing

Node Identifier Indexing

Node Type Indexing

Included Nodes

https://www.w3.org/TR/json-ld11/

4 of 215

4.8

4.9

4.9.1

4.9.2

4.9.3

4.10

5.

5.1

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

5.3

5.4

6.

6.1

6.2

7.

7.1

7.2

7.3

8.

9.

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Reverse Properties

Named Graphs

Graph Containers

Named Graph Data Indexing

Named Graph Indexing

Loading Documents

Forms of JSON-LD

Expanded Document Form

Compacted Document Form

Shortening IRIs

Representing Values as Strings

Representing Lists as Arrays

Reversing Node Relationships

Indexing Values

Normalizing Values as Objects

Representing Singular Values as Arrays

Term Selection

Flattened Document Form

Framed Document Form

Modifying Behavior with Link Relationships

Interpreting JSON as JSON-LD

Alternate Document Location

Embedding JSON-LD in HTML Documents

Inheriting base IRI from HTML's base element

Restrictions for contents of JSON-LD script elements

Locating a Specific JSON-LD Script Element

Data Model

JSON-LD Grammar

Terms

Node Objects

Frame Objects

Graph Objects

Value Objects

Value Patterns

Lists and Sets

Language Maps

https://www.w3.org/TR/json-ld11/

5 of 215

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.15.1

9.16

10.

10.1

10.2

10.3

10.4

11.

12.

13.

A.

A.1

B.

B.1

B.1.1

B.1.2

B.1.3

B.1.4

B.2

B.3

C.

C.1

D.

E.

Index Maps

Property-based Index Maps

Id Maps

Type Maps

Included Blocks

Property Nesting

Context Definitions

Expanded term definition

Keywords

Relationship to RDF

Serializing/Deserializing RDF

The rdf:JSON Datatype

The i18n Namespace

The rdf:CompoundLiteral class and the rdf:language and
rdf:direction properties

Security Considerations

Privacy Considerations

Internationalization Considerations

Image Descriptions

Linked Data Dataset

Relationship to Other Linked Data Formats

Turtle

Prefix definitions

Embedding

Conversion of native data types

Lists

RDFa

Microdata

IANA Considerations

Examples

Open Issues

Changes since 1.0 Recommendation of 16 January 2014

https://www.w3.org/TR/json-ld11/

6 of 215

F.

G.

H.

H.1

H.2

Changes since JSON-LD Community Group Final Report

Acknowledgements

References

Normative references

Informative references

This section is non-normative.

Linked Data [LINKED-DATA] is a way to create a network of standards-based

machine interpretable data across different documents and Web sites. It

allows an application to start at one piece of Linked Data, and follow

embedded links to other pieces of Linked Data that are hosted on different

sites across the Web.

JSON-LD is a lightweight syntax to serialize Linked Data in JSON [RFC8259].

Its design allows existing JSON to be interpreted as Linked Data with minimal

changes. JSON-LD is primarily intended to be a way to use Linked Data in

Web-based programming environments, to build interoperable Web services,

and to store Linked Data in JSON-based storage engines. Since JSON-LD is

100% compatible with JSON, the large number of JSON parsers and libraries

available today can be reused. In addition to all the features JSON provides,

JSON-LD introduces:

a universal identifier mechanism for JSON objects via the use of IRIs,

a way to disambiguate keys shared among different JSON documents by

mapping them to IRIs via a context,

a mechanism in which a value in a JSON object may refer to a resource

on a different site on the Web,

the ability to annotate strings with their language,

a way to associate datatypes with values such as dates and times,

and a facility to express one or more directed graphs, such as a social

network, in a single document.

JSON-LD is designed to be usable directly as JSON, with no knowledge of

RDF [RDF11-CONCEPTS]. It is also designed to be usable as RDF in

conjunction with other Linked Data technologies like SPARQL [SPARQL11-

OVERVIEW]. Developers who require any of the facilities listed above or need

1. Introduction§

https://www.w3.org/TR/json-ld11/

7 of 215

to serialize an RDF graph or Dataset in a JSON-based syntax will find JSON-

LD of interest. People intending to use JSON-LD with RDF tools will find it

can be used as another RDF syntax, as with [Turtle] and [TriG]. Complete

details of how JSON-LD relates to RDF are in section § 10. Relationship to

RDF.

The syntax is designed to not disturb already deployed systems running on

JSON, but provide a smooth upgrade path from JSON to JSON-LD. Since the

shape of such data varies wildly, JSON-LD features mechanisms to reshape

documents into a deterministic structure which simplifies their processing.

This section is non-normative.

This document is a detailed specification for a serialization of Linked Data in

JSON. The document is primarily intended for the following audiences:

Software developers who want to encode Linked Data in a variety of

programming languages that can use JSON

Software developers who want to convert existing JSON to JSON-LD

Software developers who want to understand the design decisions and

language syntax for JSON-LD

Software developers who want to implement processors and APIs for

JSON-LD

Software developers who want to generate or consume Linked Data, an

RDF graph, or an RDF Dataset in a JSON syntax

A companion document, the JSON-LD 1.1 Processing Algorithms and API

specification [JSON-LD11-API], specifies how to work with JSON-LD at a

higher level by providing a standard library interface for common JSON-LD

operations.

To understand the basics in this specification you must first be familiar with

JSON, which is detailed in [RFC8259].

This document almost exclusively uses the term IRI (Internationalized

Resource Indicator) when discussing hyperlinks. Many Web developers are

more familiar with the URL (Uniform Resource Locator) terminology. The

document also uses, albeit rarely, the URI (Uniform Resource Indicator)

terminology. While these terms are often used interchangeably among

1.1 How to Read this Document§

https://www.w3.org/TR/json-ld11/

8 of 215

technical communities, they do have important distinctions from one another

and the specification goes to great lengths to try and use the proper

terminology at all times.

This document can highlight changes since the JSON-LD 1.0 version. Select

to highlight changes.

This section is non-normative.

There are a number of ways that one may participate in the development of

this specification:

Technical discussion typically occurs on the working group mailing list:

public-json-ld-wg@w3.org

The working group uses #json-ld IRC channel is available for real-time

discussion on irc.w3.org.

The #json-ld IRC channel is also available for real-time discussion on

irc.freenode.net.

This section is non-normative.

The following typographic conventions are used in this specification:

markup

Markup (elements, attributes, properties), machine processable values

(string, characters, media types), property name, or a file name is in red-

orange monospace font.

A variable in pseudo-code or in an algorithm description is in italics.

definition
A definition of a term, to be used elsewhere in this or other specifications,

is in bold and italics.

definition reference
A reference to a definition in this document is underlined and is also an

active link to the definition itself.

markup definition reference

A references to a definition in this document, when the reference itself is

1.2 Contributing§

1.3 Typographical conventions§

variable

https://www.w3.org/TR/json-ld11/

9 of 215

also a markup, is underlined, red-orange monospace font, and is also an

active link to the definition itself.

external definition reference
A reference to a definition in another document is underlined, in italics,

and is also an active link to the definition itself.

markup external definition reference

A reference to a definition in another document, when the reference itself

is also a markup, is underlined, in italics red-orange monospace font, and

is also an active link to the definition itself.

hyperlink
A hyperlink is underlined and in blue.

[reference]
A document reference (normative or informative) is enclosed in square

brackets and links to the references section.

Changes from Recommendation
Sections or phrases changed from the previous Recommendation may be

highlighted using a control in § 1.1 How to Read this Document.

NOTE

Notes are in light green boxes with a green left border and with a "Note"

header in green. Notes are always informative.

This section is non-normative.

This document uses the following terms as defined in external specifications

and defines terms specific to JSON-LD.

EXAMPLE 1

 Examples are in light khaki boxes, with khaki left border,

 and with a numbered "Example" header in khaki.

 Examples are always informative. The content of the example is in monospace font and m

 Examples may have tabbed navigation buttons

 to show the results of transforming an example into other representations.

1.4 Terminology§

https://www.w3.org/TR/json-ld11/

10 of 215

Terms imported from ECMAScript Language Specification [ECMASCRIPT],

The JavaScript Object Notation (JSON) Data Interchange Format [RFC8259],

Infra Standard [INFRA], and Web IDL [WEBIDL]

array
In the JSON serialization, an array structure is represented as square

brackets surrounding zero or more values. Values are separated by

commas. In the internal representation, a list (also called an array) is an

ordered collection of zero or more values. While JSON-LD uses the same

array representation as JSON, the collection is unordered by default.

While order is preserved in regular JSON arrays, it is not in regular

JSON-LD arrays unless specifically defined (see the Sets and Lists section

of JSON-LD 1.1.

boolean
The values true and false that are used to express one of two possible

states.

JSON object
In the JSON serialization, an object structure is represented as a pair of

curly brackets surrounding zero or more name/value pairs (or members).

A name is a string. A single colon comes after each name, separating the

name from the value. A single comma separates a value from a following

name. In JSON-LD the names in an object must be unique.

In the internal representation a JSON object is described as a map (see

[INFRA]), composed of entries with key/value pairs.

In the Application Programming Interface, a map is described using a

[WEBIDL] dictionary.

null
The use of the null value within JSON-LD is used to ignore or reset

values. A map entry in the @context where the value, or the @id of the

value, is null, explicitly decouples a term's association with an IRI. A map

entry in the body of a JSON-LD document whose value is null has the

same meaning as if the map entry was not defined. If @value, @list, or

@set is set to null in expanded form, then the entire JSON object is

ignored.

number
In the JSON serialization, a number is similar to that used in most

programming languages, except that the octal and hexadecimal formats

are not used and that leading zeros are not allowed. In the internal

Terms imported from Other Specifications§

https://www.w3.org/TR/json-ld11/

11 of 215

representation, a number is equivalent to either a long or double,

depending on if the number has a non-zero fractional part (see

[WEBIDL]).

scalar
A scalar is either a string, number, true, or false.

string
A string is a sequence of zero or more Unicode (UTF-8) characters,

wrapped in double quotes, using backslash escapes (if necessary). A

character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [RFC3987]

IRI
The absolute form of an IRI containing a scheme along with a path and

optional query and fragment segments.

IRI reference
Denotes the common usage of an Internationalized Resource Identifier.

An IRI reference may be absolute or relative. However, the "IRI" that

results from such a reference only includes absolute IRIs; any relative IRI

references are resolved to their absolute form.

relative IRI reference
A relative IRI reference is an IRI reference that is relative to some other

IRI, typically the base IRI of the document. Note that properties, values of

@type, and values of terms defined to be vocabulary relative are resolved

relative to the vocabulary mapping, not the base IRI.

Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-

CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design

Issues [LINKED-DATA]

base IRI
The base IRI is an IRI established in the context, or is based on the JSON-

LD document location. The base IRI is used to turn relative IRI references

into IRIs.

blank node
A node in a graph that is neither an IRI, nor a literal. A blank node does

not contain a de-referenceable identifier because it is either ephemeral in

nature or does not contain information that needs to be linked to from

outside of the linked data graph. In JSON-LD, a blank node is assigned an

identifier starting with the prefix _:.

blank node identifier
A blank node identifier is a string that can be used as an identifier for a

https://www.w3.org/TR/json-ld11/

12 of 215

blank node within the scope of a JSON-LD document. Blank node

identifiers begin with _:.

dataset
A dataset representing a collection of RDF graphs including exactly one

default graph and zero or more named graphs.

datatype IRI
A datatype IRI is an IRI identifying a datatype that determines how the

lexical form maps to a literal value.

default graph
The default graph of a dataset is an RDF graph having no name, which

may be empty.

graph name
The IRI or blank node identifying a named graph.

language-tagged string
A language-tagged string consists of a string and a non-empty language

tag as defined by [BCP47]. The language tag must be well-formed

according to section 2.2.9 Classes of Conformance of [BCP47].

Processors may normalize language tags to lowercase.

Linked Data
A set of documents, each containing a representation of a linked data

graph or dataset.

list
A list is an ordered sequence of IRIs, blank nodes, and literals.

literal
An object expressed as a value such as a string or number. Implicitly or

explicitly includes a datatype IRI and, if the datatype is rdf:langString,

an optional language tag.

named graph
A named graph is a linked data graph that is identified by an IRI or blank

node.

node
A node in an RDF graph, either the subject and object of at least one

triple. Note that a node can play both roles (subject and object) in a

graph, even in the same triple.

object
An object is a node in a linked data graph with at least one incoming

edge.

property
The name of a directed-arc in a linked data graph. Every property is

directional and is labeled with an IRI or a blank node identifier.

https://www.w3.org/TR/json-ld11/

13 of 215

Whenever possible, a property should be labeled with an IRI.

NOTE

The use of blank node identifiers to label properties is obsolete, and

may be removed in a future version of JSON-LD.

Also, see predicate in [RDF11-CONCEPTS].

RDF graph
A labeled directed graph, i.e., a set of nodes connected by directed-arcs.

Also called linked data graph.

resource
A resource denoted by an IRI, a blank node or literal representing

something in the world (the "universe of discourse").

subject
A subject is a node in a linked data graph with at least one outgoing edge,

related to an object node through a property.

triple
A component of an RDF graph including a subject, predicate, and object,

which represents a node-arc-node segment of an RDF graph.

active context
A context that is used to resolve terms while the processing algorithm is

running.

base direction
The base direction is the direction used when a string does not have a

direction associated with it directly. It can be set in the context using the

@direction key whose value must be one of the strings "ltr", "rtl", or

null. See the Context Definitions section of JSON-LD 1.1 for a normative

description.

compact IRI
A compact IRI has the form of prefix:suffix and is used as a way of

expressing an IRI without needing to define separate term definitions for

each IRI contained within a common vocabulary identified by prefix.

context
A set of rules for interpreting a JSON-LD document as described in the

The Context section of JSON-LD 1.1, and normatively specified in the

Context Definitions section of JSON-LD 1.1.

default language

JSON-LD Specific Term Definitions§

https://www.w3.org/TR/json-ld11/

14 of 215

The default language is the language used when a string does not have a

language associated with it directly. It can be set in the context using the

@language key whose value must be a string representing a [BCP47]

language code or null. See the Context Definitions section of JSON-LD

1.1 for a normative description.

default object
A default object is a map that has a @default key.

embedded context
An embedded context is a context which appears as the @context entry of

one of the following: a node object, a value object, a graph object, a list

object, a set object, the value of a nested properties, or the value of an

expanded term definition. Its value may be a map for a context definition,

as an IRI, or as an array combining either of the above.

expanded term definition
An expanded term definition is a term definition where the value is a map

containing one or more keyword keys to define the associated IRI, if this

is a reverse property, the type associated with string values, and a

container mapping. See the Expanded Term Definition section of JSON-

LD 1.1 for a normative description.

frame
A JSON-LD document, which describes the form for transforming another

JSON-LD document using matching and embedding rules. A frame

document allows additional keywords and certain map entries to describe

the matching and transforming process.

frame object
A frame object is a map element within a frame which represents a

specific portion of the frame matching either a node object or a value

object in the input. See the Frame Objects section of JSON-LD 1.1 for a

normative description.

graph object
A graph object represents a named graph as the value of a map entry

within a node object. When expanded, a graph object must have an @graph

entry, and may also have @id, and @index entries. A simple graph object
is a graph object which does not have an @id entry. Note that node

objects may have a @graph entry, but are not considered graph objects if

they include any other entries. A top-level object consisting of @graph is

also not a graph object. Note that a node object may also represent a

named graph it it includes other properties. See the Graph Objects

section of JSON-LD 1.1 for a normative description.

id map
An id map is a map value of a term defined with @container set to @id. The

https://www.w3.org/TR/json-ld11/

15 of 215

values of the id map must be node objects, and its keys are interpreted as

IRIs representing the @id of the associated node object. If a value in the

id map contains a key expanding to @id, its value must be equivalent to

the referencing key in the id map. See the Id Maps section of JSON-LD

1.1 for a normative description.

implicitly named graph
A named graph created from the value of a map entry having an

expanded term definition where @container is set to @graph.

included block
An included block is an entry in a node object where the key is either

@included or an alias of @included and the value is one or more node

objects. See the Included Blocks section of JSON-LD 1.1 for a normative

description.

index map
An index map is a map value of a term defined with @container set to

@index, whose values must be any of the following types: string, number,

true, false, null, node object, value object, list object, set object, or an

array of zero or more of the above possibilities. See the Index Maps

section in JSON-LD 1.1 for a formal description.

JSON literal
A JSON literal is a literal where the associated datatype IRI is rdf:JSON. In

the value object representation, the value of @type is @json. JSON literals

represent values which are valid JSON [RFC8259]. See the The rdf:JSON

Datatype section in JSON-LD 1.1 for a normative description.

JSON-LD document
A JSON-LD document is a serialization of an RDF dataset. See the JSON-

LD Grammar section in JSON-LD 1.1 for a formal description.

JSON-LD internal representation
The JSON-LD internal representation is the result of transforming a JSON

syntactic structure into the core data structures suitable for direct

processing: arrays, maps, strings, numbers, booleans, and null.

JSON-LD Processor
A JSON-LD Processor is a system which can perform the algorithms

defined in JSON-LD 1.1 Processing Algorithms and API. See the

Conformance section in JSON-LD 1.1 API for a formal description.

JSON-LD value
A JSON-LD value is a string, a number, true or false, a typed value, or a

language-tagged string. It represents an RDF literal.

keyword
A string that is specific to JSON-LD, described in the Syntax Tokens and

https://www.w3.org/TR/json-ld11/

16 of 215

Keywords section of JSON-LD 1.1, and normatively specified in the

Keywords section of JSON-LD 1.1,

language map
An language map is a map value of a term defined with @container set to

@language, whose keys must be strings representing [BCP47] language

codes and the values must be any of the following types: null, string, or

an array of zero or more of the above possibilities. See the Language

Maps section of JSON-LD 1.1 for a normative description.

list object
A list object is a map that has a @list key. It may also have an @index key,

but no other entries. See the Lists and Sets section of JSON-LD 1.1 for a

normative description.

local context
A context that is specified with a map, specified via the @context keyword.

nested property
A nested property is a key in a node object whose value is a map

containing entries which are treated as if they were values of the node

object. The nested property itself is semantically meaningless and used

only to create a sub-structure within a node object. See the Property

Nesting section of JSON-LD 1.1 for a normative description.

node object
A node object represents zero or more properties of a node in the graph

serialized by the JSON-LD document. A map is a node object if it exists

outside of the JSON-LD context and:

it does not contain the @value, @list, or @set keywords, or

it is not the top-most map in the JSON-LD document consisting of no

other entries than @graph and @context.

The entries of a node object whose keys are not keywords are also called

properties of the node object. See the Node Objects section of JSON-LD

1.1 for a normative description.

node reference
A node object used to reference a node having only the @id key.

prefix
A prefix is the first component of a compact IRI which comes from a term

that maps to a string that, when prepended to the suffix of the compact

IRI, results in an IRI.

processing mode
The processing mode defines how a JSON-LD document is processed. By

default, all documents are assumed to be conformant with this

specification. By defining a different version using the @version entry in a

https://www.w3.org/TR/json-ld11/

17 of 215

context, publishers can ensure that processors conformant with JSON-LD

1.0 [JSON-LD10] will not accidentally process JSON-LD 1.1 documents,

possibly creating a different output. The API provides an option for

setting the processing mode to json-ld-1.0, which will prevent JSON-LD

1.1 features from being activated, or error if @version entry in a context is

explicitly set to 1.1. This specification extends JSON-LD 1.0 via the json-

ld-1.1 processing mode.

scoped context
A scoped context is part of an expanded term definition using the

@context entry. It has the same form as an embedded context. When the

term is used as a type, it defines a type-scoped context, when used as a

property it defines a property-scoped context.

set object
A set object is a map that has an @set entry. It may also have an @index

key, but no other entries. See the Lists and Sets section of JSON-LD 1.1

for a normative description.

term
A term is a short word defined in a context that may be expanded to an

IRI. See the Terms section of JSON-LD 1.1 for a normative description.

term definition
A term definition is an entry in a context, where the key defines a term

which may be used within a map as a key, type, or elsewhere that a string

is interpreted as a vocabulary item. Its value is either a string (simple
term definition), expanding to an IRI, or a map (expanded term

definition).

type map
A type map is a map value of a term defined with @container set to @type,

whose keys are interpreted as IRIs representing the @type of the

associated node object; the value must be a node object, or array of node

objects. If the value contains a term expanding to @type, its values are

merged with the map value when expanding. See the Type Maps section

of JSON-LD 1.1 for a normative description.

typed value
A typed value consists of a value, which is a string, and a type, which is

an IRI.

value object
A value object is a map that has an @value entry.

vocabulary mapping
The vocabulary mapping is set in the context using the @vocab key whose

value must be an IRI, a compact IRI, a term, or null. See the Value

https://www.w3.org/TR/json-ld11/

18 of 215

Objects section of JSON-LD 1.1 for a normative description.

This section is non-normative.

JSON-LD satisfies the following design goals:

Simplicity
No extra processors or software libraries are necessary to use JSON-LD

in its most basic form. The language provides developers with a very easy

learning curve. Developers not concerned with Linked Data only need to

understand JSON, and know to include but ignore the @context property,

to use the basic functionality in JSON-LD.

Compatibility
A JSON-LD document is always a valid JSON document. This ensures that

all of the standard JSON libraries work seamlessly with JSON-LD

documents.

Expressiveness
The syntax serializes labeled directed graphs. This ensures that almost

every real world data model can be expressed.

Terseness
The JSON-LD syntax is very terse and human readable, requiring as little

effort as possible from the developer.

Zero Edits, most of the time
JSON-LD ensures a smooth and simple transition from existing JSON-

based systems. In many cases, zero edits to the JSON document and the

addition of one line to the HTTP response should suffice (see § 6.1

Interpreting JSON as JSON-LD). This allows organizations that have

already deployed large JSON-based infrastructure to use JSON-LD's

features in a way that is not disruptive to their day-to-day operations and

is transparent to their current customers. However, there are times

where mapping JSON to a graph representation is a complex

undertaking. In these instances, rather than extending JSON-LD to

support esoteric use cases, we chose not to support the use case. While

Zero Edits is a design goal, it is not always possible without adding great

complexity to the language. JSON-LD focuses on simplicity when possible.

Usable as RDF
JSON-LD is usable by developers as idiomatic JSON, with no need to

understand RDF [RDF11-CONCEPTS]. JSON-LD is also usable as RDF, so

people intending to use JSON-LD with RDF tools will find it can be used

1.5 Design Goals and Rationale§

https://www.w3.org/TR/json-ld11/

19 of 215

like any other RDF syntax. Complete details of how JSON-LD relates to

RDF are in section § 10. Relationship to RDF.

This section is non-normative.

Generally speaking, the data model described by a JSON-LD document is a

labeled, directed graph. The graph contains nodes, which are connected by

directed-arcs. A node is either a resource with properties, or the data values

of those properties including strings, numbers, typed values (like dates and

times) and IRIs.

Within a directed graph, nodes are resources, and may be unnamed, i.e., not

identified by an IRI; which are called blank nodes, and may be identified

using a blank node identifier. These identifiers may be required to represent

a fully connected graph using a tree structure, such as JSON, but otherwise

have no intrinsic meaning. Literal values, such as strings and numbers, are

also considered resources, and JSON-LD distinguishes between node objects

and value objects to distinguish between the different kinds of resource.

This simple data model is incredibly flexible and powerful, capable of

modeling almost any kind of data. For a deeper explanation of the data

model, see section § 8. Data Model.

Developers who are familiar with Linked Data technologies will recognize the

data model as the RDF Data Model. To dive deeper into how JSON-LD and

RDF are related, see section § 10. Relationship to RDF.

At the surface level, a JSON-LD document is simply JSON, detailed in

[RFC8259]. For the purpose of describing the core data structures, this is

limited to arrays, maps (the parsed version of a JSON Object), strings,

numbers, booleans, and null, called the JSON-LD internal representation.

This allows surface syntaxes other than JSON to be manipulated using the

same algorithms, when the syntax maps to equivalent core data structures.

1.6 Data Model Overview§

https://www.w3.org/TR/json-ld11/

20 of 215

NOTE

Although not discussed in this specification, parallel work using YAML

Ain’t Markup Language (YAML™) Version 1.2 [YAML] and binary

representations such as Concise Binary Object Representation (CBOR)

[RFC7049] could be used to map into the internal representation, allowing

the JSON-LD 1.1 API [JSON-LD11-API] to operate as if the source was a

JSON document.

This section is non-normative.

JSON-LD specifies a number of syntax tokens and keywords that are a core

part of the language. A normative description of the keywords is given in

§ 9.16 Keywords.

:

The separator for JSON keys and values that use compact IRIs.

@base

Used to set the base IRI against which to resolve those relative IRI

references which are otherwise interpreted relative to the document. This

keyword is described in § 4.1.3 Base IRI.

@container

Used to set the default container type for a term. This keyword is

described in the following sections:

§ 4.3 Value Ordering,

§ 4.6.1 Data Indexing,

§ 4.6.2 Language Indexing,

§ 4.6.3 Node Identifier Indexing,

§ 4.6.4 Node Type Indexing

§ 4.9 Named Graphs,

§ 4.9.3 Named Graph Indexing, and

§ 4.9.2 Named Graph Data Indexing

@context

Used to define the short-hand names that are used throughout a JSON-LD

document. These short-hand names are called terms and help developers

to express specific identifiers in a compact manner. The @context keyword

1.7 Syntax Tokens and Keywords§

https://www.w3.org/TR/json-ld11/

21 of 215

is described in detail in § 3.1 The Context.

@direction

Used to set the base direction of a JSON-LD value, which are not typed

values (e.g. strings, or language-tagged strings). This keyword is

described in § 4.2.4 String Internationalization.

@graph

Used to express a graph. This keyword is described in § 4.9 Named

Graphs.

@id

Used to uniquely identify node objects that are being described in the

document with IRIs or blank node identifiers. This keyword is described

in § 3.3 Node Identifiers. A node reference is a node object containing

only the @id property, which may represent a reference to a node object

found elsewhere in the document.

@import

Used in a context definition to load an external context within which the

containing context definition is merged. This can be useful to add JSON-

LD 1.1 features to JSON-LD 1.0 contexts.

@included

Used in a top-level node object to define an included block, for including

secondary node objects within another node object.

@index

Used to specify that a container is used to index information and that

processing should continue deeper into a JSON data structure. This

keyword is described in § 4.6.1 Data Indexing.

@json

Used as the @type value of a JSON literal. This keyword is described in

§ 4.2.2 JSON Literals.

@language

Used to specify the language for a particular string value or the default

language of a JSON-LD document. This keyword is described in § 4.2.4

String Internationalization.

@list

Used to express an ordered set of data. This keyword is described in

§ 4.3.1 Lists.

@nest

Used to define a property of a node object that groups together

properties of that node, but is not an edge in the graph.

@none

Used as an index value in an index map, id map, language map, type map,

https://www.w3.org/TR/json-ld11/

22 of 215

or elsewhere where a map is used to index into other values, when the

indexed node does not have the feature being indexed.

@prefix

With the value true, allows this term to be used to construct a compact

IRI when compacting.

@propagate

Used in a context definition to change the scope of that context. By

default, it is true, meaning that contexts propagate across node objects

(other than for type-scoped contexts, which default to false). Setting this

to false causes term definitions created within that context to be

removed when entering a new node object.

@protected

Used to prevent term definitions of a context to be overridden by other

contexts. This keyword is described in § 4.1.11 Protected Term

Definitions.

@reverse

Used to express reverse properties. This keyword is described in § 4.8

Reverse Properties.

@set

Used to express an unordered set of data and to ensure that values are

always represented as arrays. This keyword is described in § 4.3.2 Sets.

@type

Used to set the type of a node or the datatype of a typed value. This

keyword is described further in § 3.5 Specifying the Type and § 4.2.1

Typed Values.

NOTE

The use of @type to define a type for both node objects and value

objects addresses the basic need to type data, be it a literal value or a

more complicated resource. Experts may find the overloaded use of

the @type keyword for both purposes concerning, but should note that

Web developer usage of this feature over multiple years has not

resulted in its misuse due to the far less frequent use of @type to

express typed literal values.

@value

Used to specify the data that is associated with a particular property in

the graph. This keyword is described in § 4.2.4 String Internationalization

and § 4.2.1 Typed Values.

@version

Used in a context definition to set the processing mode. New features

https://www.w3.org/TR/json-ld11/

23 of 215

since JSON-LD 1.0 [JSON-LD10] described in this specification are not

available when processing mode has been explicitly set to json-ld-1.0.

NOTE

Within a context definition @version takes the specific value 1.1, not

"json-ld-1.1", as a JSON-LD 1.0 processor may accept a string value

for @version, but will reject a numeric value.

NOTE

The use of 1.1 for the value of @version is intended to cause a JSON-LD

1.0 processor to stop processing. Although it is clearly meant to be

related to JSON-LD 1.1, it does not otherwise adhere to the

requirements for Semantic Versioning.

@vocab

Used to expand properties and values in @type with a common prefix IRI.

This keyword is described in § 4.1.2 Default Vocabulary.

All keys, keywords, and values in JSON-LD are case-sensitive.

As well as sections marked as non-normative, all authoring guidelines,

diagrams, examples, and notes in this specification are non-normative.

Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, RECOMMENDED, SHOULD, and

SHOULD NOT in this document are to be interpreted as described in BCP 14

[RFC2119] [RFC8174] when, and only when, they appear in all capitals, as

shown here.

A JSON-LD document complies with this specification if it follows the

normative statements in appendix § 9. JSON-LD Grammar. JSON documents

can be interpreted as JSON-LD by following the normative statements in § 6.1

Interpreting JSON as JSON-LD. For convenience, normative statements for

documents are often phrased as statements on the properties of the

document.

This specification makes use of the following namespace prefixes:

Prefix IRI

2. Conformance§

https://www.w3.org/TR/json-ld11/

24 of 215

Prefix IRI

dc11 http://purl.org/dc/elements/1.1/

dcterms http://purl.org/dc/terms/

cred https://w3id.org/credentials#

foaf http://xmlns.com/foaf/0.1/

geojson https://purl.org/geojson/vocab#

prov http://www.w3.org/ns/prov#

i18n https://www.w3.org/ns/i18n#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

schema http://schema.org/

skos http://www.w3.org/2004/02/skos/core#

xsd http://www.w3.org/2001/XMLSchema#

These are used within this document as part of a compact IRI as a shorthand

for the resulting IRI, such as dcterms:title used to represent http://purl.org

/dc/terms/title.

This section is non-normative.

JSON [RFC8259] is a lightweight, language-independent data interchange

format. It is easy to parse and easy to generate. However, it is difficult to

integrate JSON from different sources as the data may contain keys that

conflict with other data sources. Furthermore, JSON has no built-in support

for hyperlinks, which are a fundamental building block on the Web. Let's start

by looking at an example that we will be using for the rest of this section:

It's obvious to humans that the data is about a person whose name is "Manu

3. Basic Concepts§

EXAMPLE 2: Sample JSON document

{

"name": "Manu Sporny",

"homepage": "http://manu.sporny.org/",

"image": "http://manu.sporny.org/images/manu.png"

}

https://www.w3.org/TR/json-ld11/

25 of 215

Sporny" and that the homepage property contains the URL of that person's

homepage. A machine doesn't have such an intuitive understanding and

sometimes, even for humans, it is difficult to resolve ambiguities in such

representations. This problem can be solved by using unambiguous

identifiers to denote the different concepts instead of tokens such as "name",

"homepage", etc.

Linked Data, and the Web in general, uses IRIs (Internationalized Resource

Identifiers as described in [RFC3987]) for unambiguous identification. The

idea is to use IRIs to assign unambiguous identifiers to data that may be of

use to other developers. It is useful for terms, like name and homepage, to

expand to IRIs so that developers don't accidentally step on each other's

terms. Furthermore, developers and machines are able to use this IRI (by

using a web browser, for instance) to go to the term and get a definition of

what the term means. This process is known as IRI dereferencing.

Leveraging the popular schema.org vocabulary, the example above could be

unambiguously expressed as follows:

In the example above, every property is unambiguously identified by an IRI

and all values representing IRIs are explicitly marked as such by the @id

keyword. While this is a valid JSON-LD document that is very specific about

its data, the document is also overly verbose and difficult to work with for

human developers. To address this issue, JSON-LD introduces the notion of a

context as described in the next section.

This section only covers the most basic features of JSON-LD. More advanced

features, including typed values, indexed values, and named graphs, can be

found in § 4. Advanced Concepts.

Input

EXAMPLE 3: Sample JSON-LD document using full IRIs instead of terms

Expanded (Input) Statements Turtle (Result) Open in playground

{

 "http://schema.org/name": "Manu Sporny",

 "http://schema.org/url": {

 "@id": "http://manu.sporny.org/"

↑ The '@id' keyword means 'This value is an identifier that is an IRI'

},

 "http://schema.org/image": {

 "@id": "http://manu.sporny.org/images/manu.png"

}

}

https://www.w3.org/TR/json-ld11/

26 of 215

This section is non-normative.

When two people communicate with one another, the conversation takes

place in a shared environment, typically called "the context of the

conversation". This shared context allows the individuals to use shortcut

terms, like the first name of a mutual friend, to communicate more quickly

but without losing accuracy. A context in JSON-LD works in the same way. It

allows two applications to use shortcut terms to communicate with one

another more efficiently, but without losing accuracy.

Simply speaking, a context is used to map terms to IRIs. Terms are case

sensitive and most valid strings that are not reserved JSON-LD keywords can

be used as a term. Exceptions are the empty string "" and strings that have

the form of a keyword (i.e., starting with "@" followed exclusively by one or

more ALPHA characters (see [RFC5234])), which must not be used as terms.

Strings that have the form of an IRI (e.g., containing a ":") should not be

used as terms.

For the sample document in the previous section, a context would look

something like this:

3.1 The Context§

https://www.w3.org/TR/json-ld11/

27 of 215

As the context above shows, the value of a term definition can either be a

simple string, mapping the term to an IRI, or a map.

A context is introduced using an entry with the key @context and may appear

within a node object or a value object.

When an entry with a term key has a map value, the map is called an

expanded term definition. The example above specifies that the values of

image and homepage, if they are strings, are to be interpreted as IRIs.

Expanded term definitions also allow terms to be used for index maps and to

specify whether array values are to be interpreted as sets or lists. Expanded

term definitions may be defined using IRIs or compact IRIs as keys, which is

mainly used to associate type or language information with an IRIs or

compact IRI.

Contexts can either be directly embedded into the document (an embedded

context) or be referenced using a URL. Assuming the context document in the

previous example can be retrieved at https://json-ld.org/contexts

/person.jsonld, it can be referenced by adding a single line and allows a

JSON-LD document to be expressed much more concisely as shown in the

example below:

Context

EXAMPLE 4: Context for the sample document in the previous section

{

"@context": {

 "name": "http://schema.org/name",

↑ This means that 'name' is shorthand for 'http://schema.org/name'

"image": {

 "@id": "http://schema.org/image",

↑ This means that 'image' is shorthand for 'http://schema.org/image'

"@type": "@id"

↑ This means that a string value associated with 'image'

 should be interpreted as an identifier that is an IRI

},

 "homepage": {

 "@id": "http://schema.org/url",

↑ This means that 'homepage' is shorthand for 'http://schema.org/url'

"@type": "@id"

↑ This means that a string value associated with 'homepage'

 should be interpreted as an identifier that is an IRI

 }

 }

}

https://www.w3.org/TR/json-ld11/

28 of 215

The referenced context not only specifies how the terms map to IRIs in the

Schema.org vocabulary but also specifies that string values associated with

the homepage and image property can be interpreted as an IRI ("@type": "@id",

see § 3.2 IRIs for more details). This information allows developers to re-use

each other's data without having to agree to how their data will interoperate

on a site-by-site basis. External JSON-LD context documents may contain

extra information located outside of the @context key, such as documentation

about the terms declared in the document. Information contained outside of

the @context value is ignored when the document is used as an external

JSON-LD context document.

A remote context may also be referenced using a relative URL, which is

resolved relative to the location of the document containing the reference.

For example, if a document were located at http://example.org

/document.jsonld and contained a relative reference to context.jsonld, the

referenced context document would be found relative at http://example.org

/context.jsonld.

Input

EXAMPLE 5: Referencing a JSON-LD context

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": "https://json-ld.org/contexts/person.jsonld",

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "image": "http://manu.sporny.org/images/manu.png"

}

EXAMPLE 6: Loading a relative context

{

"@context": "context.jsonld",

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "image": "http://manu.sporny.org/images/manu.png"

}

https://www.w3.org/TR/json-ld11/

29 of 215

NOTE

Resolution of relative references to context URLs also applies to remote

context documents, as they may themselves contain references to other

contexts.

JSON documents can be interpreted as JSON-LD without having to be

modified by referencing a context via an HTTP Link Header as described in

§ 6.1 Interpreting JSON as JSON-LD. It is also possible to apply a custom

context using the JSON-LD 1.1 API [JSON-LD11-API].

In JSON-LD documents, contexts may also be specified inline. This has the

advantage that documents can be processed even in the absence of a

connection to the Web. Ultimately, this is a modeling decision and different

use cases may require different handling. See Security Considerations in § C.

IANA Considerations for a discussion on using remote contexts.

This section only covers the most basic features of the JSON-LD Context. The

Context can also be used to help interpret other more complex JSON data

structures, such as indexed values, ordered values, and nested properties.

More advanced features related to the JSON-LD Context are covered in § 4.

Advanced Concepts.

Input

EXAMPLE 7: In-line context definition

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": {

 "name": "http://schema.org/name",

 "image": {

 "@id": "http://schema.org/image",

 "@type": "@id"

 },

 "homepage": {

 "@id": "http://schema.org/url",

 "@type": "@id"

 }

 },

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "image": "http://manu.sporny.org/images/manu.png"

}

https://www.w3.org/TR/json-ld11/

30 of 215

This section is non-normative.

IRIs (Internationalized Resource Identifiers [RFC3987]) are fundamental to

Linked Data as that is how most nodes and properties are identified. In JSON-

LD, IRIs may be represented as an IRI reference. An IRI is defined in

[RFC3987] as containing a scheme along with path and optional query and

fragment segments. A relative IRI reference is an IRI that is relative to some

other IRI. In JSON-LD, with exceptions that are as described below, all

relative IRI references are resolved relative to the base IRI.

NOTE

As noted in § 1.1 How to Read this Document, IRIs can often be confused

with URLs (Uniform Resource Locators), the primary distinction is that a

URL locates a resource on the web, an IRI identifies a resource. While it is

a good practice for resource identifiers to be dereferenceable, sometimes

this is not practical. In particular, note the [URN] scheme for Uniform

Resource Names, such as UUID. An example UUID is urn:uuid:f81d4fae-

7dec-11d0-a765-00a0c91e6bf6.

NOTE

Properties, values of @type, and values of properties with a term definition

that defines them as being relative to the vocabulary mapping, may have

the form of a relative IRI reference, but are resolved using the vocabulary

mapping, and not the base IRI.

A string is interpreted as an IRI when it is the value of a map entry with the

key @id:

Values that are interpreted as IRIs, can also be expressed as relative IRI

3.2 IRIs§

EXAMPLE 8: Values of @id are interpreted as IRI

{

...

 "homepage": { "@id": "http://example.com/" }

...

}

https://www.w3.org/TR/json-ld11/

31 of 215

references. For example, assuming that the following document is located at

http://example.com/about/, the relative IRI reference ../ would expand to

http://example.com/ (for more information on where relative IRI references

can be used, please refer to section § 9. JSON-LD Grammar).

IRIs can be expressed directly in the key position like so:

In the example above, the key http://schema.org/name is interpreted as an

IRI.

Term-to-IRI expansion occurs if the key matches a term defined within the

active context:

JSON keys that do not expand to an IRI, such as status in the example above,

are not Linked Data and thus ignored when processed.

EXAMPLE 9: IRIs can be relative

{

...

 "homepage": { "@id": "../" }

...

}

EXAMPLE 10: IRI as a key

{

...

 "http://schema.org/name": "Manu Sporny",

 ...

}

Input

EXAMPLE 11: Term expansion from context definition

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "name": "http://schema.org/name"

 },

 "name": "Manu Sporny",

 "status": "trollin'"

}

https://www.w3.org/TR/json-ld11/

32 of 215

If type coercion rules are specified in the @context for a particular term or

property IRI, an IRI is generated:

In the example above, since the value http://manu.sporny.org/ is expressed

as a JSON string, the type coercion rules will transform the value into an IRI

when processing the data. See § 4.2.3 Type Coercion for more details about

this feature.

In summary, IRIs can be expressed in a variety of different ways in JSON-LD:

1. Map entries that have a key mapping to a term in the active context

expand to an IRI (only applies outside of the context definition).

2. An IRI is generated for the string value specified using @id or @type.

3. An IRI is generated for the string value of any key for which there are

coercion rules that contain an @type key that is set to a value of @id or

@vocab.

This section only covers the most basic features associated with IRIs in JSON-

LD. More advanced features related to IRIs are covered in section § 4.

Advanced Concepts.

This section is non-normative.

Input

EXAMPLE 12: Type coercion

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

...

 "homepage": {

 "@id": "http://schema.org/url",

 "@type": "@id"

 }

...

 },

...

 "homepage": "http://manu.sporny.org/"

...

}

3.3 Node Identifiers§

https://www.w3.org/TR/json-ld11/

33 of 215

To be able to externally reference nodes in an RDF graph, it is important that

nodes have an identifier. IRIs are a fundamental concept of Linked Data, for

nodes to be truly linked, dereferencing the identifier should result in a

representation of that node. This may allow an application to retrieve further

information about a node.

In JSON-LD, a node is identified using the @id keyword:

The example above contains a node object identified by the IRI

http://me.markus-lanthaler.com/.

This section only covers the most basic features associated with node

identifiers in JSON-LD. More advanced features related to node identifiers

are covered in section § 4. Advanced Concepts.

This section is non-normative.

As a syntax, JSON has only a limited number of syntactic elements:

Numbers, which describe literal numeric values,

Strings, which may describe literal string values, or be used as the keys

in a JSON object.

Boolean true and false, which describe literal boolean values,

null, which describes the absence of a value,

Arrays, which describe an ordered set of values of any type, and

JSON objects, which provide a set of map entries, relating keys with

Input

EXAMPLE 13: Identifying a node

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

...

 "name": "http://schema.org/name"

 },

"@id": "http://me.markus-lanthaler.com/",

 "name": "Markus Lanthaler",

 ...

}

3.4 Uses of JSON Objects§

https://www.w3.org/TR/json-ld11/

34 of 215

values.

The JSON-LD data model allows for a richer set of resources, based on the

RDF data model. The data model is described more fully in § 8. Data Model.

JSON-LD uses JSON objects to describe various resources, along with the

relationships between these resources:

Node objects
Node objects are used to define nodes in the linked data graph which may

have both incoming and outgoing edges. Node objects are principle

structure for defining resources having properties. See § 9.2 Node

Objects for the normative definition.

Value objects
Value objects are used for describing literal nodes in a linked data graph

which may have only incoming edges. In JSON, some literal nodes may be

described without the use of a JSON object (e.g., numbers, strings, and

boolean values), but in the expanded form, all literal nodes are described

using value objects. See § 4.2 Describing Values for more information,

and § 9.5 Value Objects for the normative definition.

List Objects and Set objects
List Objects are a special kind of JSON-LD maps, distinct from node

objects and value objects, used to express ordered values by wrapping an

array in a map under the key @list. Set Objects exist for uniformity, and

are equivalent to the array value of the @set key. See § 4.3.1 Lists and

§ 4.3.2 Sets for more detail.

Map Objects
JSON-LD uses various forms of maps as ways to more easily access values

of a property.
Language Maps

Allows multiple values differing in their associated language to be

indexed by language tag. See § 4.6.2 Language Indexing for more

information, and § 9.8 Language Maps for the normative definition.

Index Maps
Allows multiple values (node objects or value objects) to be indexed

by an associated @index. See § 4.6.1 Data Indexing for more

information, and § 9.9 Index Maps for the normative definition.

Id Maps
Allows multiple node objects to be indexed by an associated @id. See

§ 4.6.3 Node Identifier Indexing for more information, and § 9.11 Id

Maps for the normative definition.

Type Maps
Allows multiple node objects to be indexed by an associated @type.

https://www.w3.org/TR/json-ld11/

35 of 215

See § 4.6.4 Node Type Indexing for more information, and § 9.12

Type Maps for the normative definition.

Named Graph Indexing
Allows multiple named graphs to be indexed by an associated graph

name. See § 4.9.3 Named Graph Indexing for more information.

Graph objects
A graph object is much like a node object, except that it defines a named

graph. See § 4.9 Named Graphs for more information, and § 9.4 Graph

Objects for the normative definition. A node object may also describe a

named graph, in addition to other properties defined on the node. The

notable difference is that a graph object only describes a named graph.

Context Definitions
A Context Definition uses the JSON object form, but is not itself data in a

linked data graph. A Context Definition also may contain expanded term

definitions, which are also represented using JSON objects. See § 3.1 The

Context, § 4.1 Advanced Context Usage for more information, and § 9.15

Context Definitions for the normative definition.

This section is non-normative.

In Linked Data, it is common to specify the type of a graph node; in many

cases, this can be inferred based on the properties used within a given node

object, or the property for which a node is a value. For example, in the

schema.org vocabulary, the givenName property is associated with a Person.

Therefore, one may reason that if a node object contains the property

givenName, that the type is a Person; making this explicit with @type helps to

clarify the association.

The type of a particular node can be specified using the @type keyword. In

Linked Data, types are uniquely identified with an IRI.

3.5 Specifying the Type§

https://www.w3.org/TR/json-ld11/

36 of 215

A node can be assigned more than one type by using an array:

The value of a @type key may also be a term defined in the active context:

Input

EXAMPLE 14: Specifying the type for a node

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

...

 "givenName": "http://schema.org/givenName",

 "familyName": "http://schema.org/familyName"

 },

 "@id": "http://me.markus-lanthaler.com/",

"@type": "http://schema.org/Person",

 "givenName": "Markus",

 "familyName": "Lanthaler",

 ...

}

Input

EXAMPLE 15: Specifying multiple types for a node

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

...

 "@id": "http://me.markus-lanthaler.com/",

 "@type": [

 "http://schema.org/Person",

"http://xmlns.com/foaf/0.1/Person"

],

 ...

}

https://www.w3.org/TR/json-ld11/

37 of 215

In addition to setting the type of nodes, @type can also be used to set the type

of a value to create a typed value. This use of @type is similar to that used to

define the type of a node object, but value objects are restricted to having

just a single type. The use of @type to create typed values is discussed more

fully in § 4.2.1 Typed Values.

Typed values can also be defined implicitly, by specifying @type in an

expanded term definition. This is covered more fully in § 4.2.3 Type Coercion.

This section is non-normative.

JSON-LD has a number of features that provide functionality above and

beyond the core functionality described above. JSON can be used to express

data using such structures, and the features described in this section can be

used to interpret a variety of different JSON structures as Linked Data. A

JSON-LD processor will make use of provided and embedded contexts to

interpret property values in a number of different idiomatic ways.

Describing values
One pattern in JSON is for the value of a property to be a string. Often

times, this string actually represents some other typed value, for example

an IRI, a date, or a string in some specific language. See § 4.2 Describing

Values for details on how to describe such value typing.

Value ordering
In JSON, a property with an array value implies an implicit order; arrays

in JSON-LD do not convey any ordering of the contained elements by

Input

EXAMPLE 16: Using a term to specify the type

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

...

"Person": "http://schema.org/Person"

 },

 "@id": "http://example.org/places#BrewEats",

"@type": "Person",

 ...

}

4. Advanced Concepts§

https://www.w3.org/TR/json-ld11/

38 of 215

default, unless defined using embedded structures or through a context

definition. See § 4.3 Value Ordering for a further discussion.

Property nesting
Another JSON idiom often found in APIs is to use an intermediate object

to group together related properties of an object; in JSON-LD these are

referred to as nested properties and are described in § 4.4 Nested

Properties.

Referencing objects
Linked Data is all about describing the relationships between different

resources. Sometimes these relationships are between resources defined

in different documents described on the web, sometimes the resources

are described within the same document.

In this case, a document residing at http://manu.sporny.org/about may

contain the example above, and reference another document at

https://greggkellogg.net/foaf which could include a similar

representation.

A common idiom found in JSON usage is objects being specified as the

value of other objects, called object embedding in JSON-LD; for example,

a friend specified as an object value of a Person:

Input

EXAMPLE 17: Referencing Objects on the Web

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

"knows": {"@type": "@id"}

 },

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

"knows": "https://greggkellogg.net/foaf#me"

}

https://www.w3.org/TR/json-ld11/

39 of 215

See § 4.5 Embedding details these relationships.

Indexed values
Another common idiom in JSON is to use an intermediate object to

represent property values via indexing. JSON-LD allows data to be

indexed in a number of different ways, as detailed in § 4.6 Indexed

Values.

Reverse Properties
JSON-LD serializes directed graphs. That means that every property

points from a node to another node or value. However, in some cases, it is

desirable to serialize in the reverse direction, as detailed in § 4.8 Reverse

Properties.

The following sections describe such advanced functionality in more detail.

This section is non-normative.

Section § 3.1 The Context introduced the basics of what makes JSON-LD

work. This section expands on the basic principles of the context and

demonstrates how more advanced use cases can be achieved using JSON-LD.

In general, contexts may be used any time a map is defined. The only time

that one cannot express a context is as a direct child of another context

Input

EXAMPLE 18: Embedding Objects

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

"knows": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

}

4.1 Advanced Context Usage§

https://www.w3.org/TR/json-ld11/

40 of 215

definition (other than as part of an expanded term definition). For example, a

JSON-LD document may have the form of an array composed of one or more

node objects, which use a context definition in each top-level node object:

The outer array is standard for a document in expanded document form and

flattened document form, and may be necessary when describing a

disconnected graph, where nodes may not reference each other. In such

cases, using a top-level map with a @graph property can be useful for saving

the repetition of @context. See § 4.5 Embedding for more.

Input

EXAMPLE 19: Using multiple contexts

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

[

 {

"@context": "https://json-ld.org/contexts/person.jsonld",

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "depiction": "http://twitter.com/account/profile_image/manusporny"

 }, {

"@context": "https://json-ld.org/contexts/place.jsonld",

 "name": "The Empire State Building",

 "description": "The Empire State Building is a 102-story landmark in New York City."

 "geo": {

 "latitude": "40.75",

 "longitude": "73.98"

 }

 }

]

https://www.w3.org/TR/json-ld11/

41 of 215

Duplicate context terms are overridden using a most-recently-defined-wins

mechanism.

Input

EXAMPLE 20: Describing disconnected nodes with @graph

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": [

 "https://json-ld.org/contexts/person.jsonld",

 "https://json-ld.org/contexts/place.jsonld",

 {"title": "http://purl.org/dc/terms/title"}

],

"@graph": [{

 "http://xmlns.com/foaf/0.1/name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "depiction": "http://twitter.com/account/profile_image/manusporny"

 }, {

 "title": "The Empire State Building",

 "description": "The Empire State Building is a 102-story landmark in New York City."

 "geo": {

 "latitude": "40.75",

 "longitude": "73.98"

 }

 }]

}

Input

EXAMPLE 21: Embedded contexts within node objects

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": {

 "name": "http://example.com/person#name",

 "details": "http://example.com/person#details"

 },

 "name": "Markus Lanthaler",

...

 "details": {

"@context": {

 "name": "http://example.com/organization#name"

 },

 "name": "Graz University of Technology"

 }

}

https://www.w3.org/TR/json-ld11/

42 of 215

In the example above, the name term is overridden in the more deeply nested

details structure, which uses its own embedded context. Note that this is

rarely a good authoring practice and is typically used when working with

legacy applications that depend on a specific structure of the map. If a term

is redefined within a context, all previous rules associated with the previous

definition are removed. If a term is redefined to null, the term is effectively

removed from the list of terms defined in the active context.

Multiple contexts may be combined using an array, which is processed in

order. The set of contexts defined within a specific map are referred to as

local contexts. The active context refers to the accumulation of local contexts

that are in scope at a specific point within the document. Setting a local

context to null effectively resets the active context to an empty context,

without term definitions, default language, or other things defined within

previous contexts. The following example specifies an external context and

then layers an embedded context on top of the external context:

In JSON-LD 1.1, there are other mechanisms for introducing contexts,

including scoped contexts and imported contexts, and there are new ways of

protecting term definitions, so there are cases where the last defined inline

context is not necessarily one which defines the scope of terms. See § 4.1.8

Scoped Contexts, § 4.1.9 Context Propagation, § 4.1.10 Imported Contexts,

and § 4.1.11 Protected Term Definitions for further information.

Input

EXAMPLE 22: Combining external and local contexts

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": [

 "https://json-ld.org/contexts/person.jsonld",

 {

 "pic": {

 "@id": "http://xmlns.com/foaf/0.1/depiction",

 "@type": "@id"

 }

 }

],

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

"pic": "http://twitter.com/account/profile_image/manusporny"

}

https://www.w3.org/TR/json-ld11/

43 of 215

NOTE

When possible, the context definition should be put at the top of a JSON-

LD document. This makes the document easier to read and might make

streaming parsers more efficient. Documents that do not have the context

at the top are still conformant JSON-LD.

NOTE

To avoid forward-compatibility issues, terms starting with an @ character

followed exclusively by one or more ALPHA characters (see [RFC5234])

are to be avoided as they might be used as keyword in future versions of

JSON-LD. Terms starting with an @ character that are not JSON-LD 1.1

keywords are treated as any other term, i.e., they are ignored unless

mapped to an IRI. Furthermore, the use of empty terms ("") is not allowed

as not all programming languages are able to handle empty JSON keys.

This section is non-normative.

New features defined in JSON-LD 1.1 are available unless the processing

mode is set to json-ld-1.0. This may be set through an API option. The

processing mode may be explicitly set to json-ld-1.1 using the @version entry

in a context set to the value 1.1 as a number, or through an API option.

Explicitly setting the processing mode to json-ld-1.1 will prohibit JSON-LD

1.0 processors from incorrectly processing a JSON-LD 1.1 document.

The first context encountered when processing a document which contains

@version determines the processing mode, unless it is defined explicitly

4.1.1 JSON-LD 1.1 Processing Mode§

EXAMPLE 23: Setting @version in context

{

 "@context": {

"@version": 1.1,

 ...

 },

 ...

}

https://www.w3.org/TR/json-ld11/

44 of 215

through an API option. This means that if "@version": 1.1 is encountered

after processing a context without @version, the former will be interpreted as

having had "@version": 1.1 defined within it.

NOTE

Setting the processing mode explicitly to json-ld-1.1 is RECOMMENDED

to prevent a JSON-LD 1.0 processor from incorrectly processing a JSON-

LD 1.1 document and producing different results.

This section is non-normative.

At times, all properties and types may come from the same vocabulary. JSON-

LD's @vocab keyword allows an author to set a common prefix which is used

as the vocabulary mapping and is used for all properties and types that do

not match a term and are neither an IRI nor a compact IRI (i.e., they do not

contain a colon).

If @vocab is used but certain keys in an map should not be expanded using the

vocabulary IRI, a term can be explicitly set to null in the context. For

instance, in the example below the databaseId entry would not expand to an

IRI causing the property to be dropped when expanding.

4.1.2 Default Vocabulary§

Input

EXAMPLE 24: Using a default vocabulary

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@vocab": "http://example.com/vocab/"

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

"name": "Brew Eats"

...

}

https://www.w3.org/TR/json-ld11/

45 of 215

Since JSON-LD 1.1, the vocabulary mapping in a local context can be set to

the a relative IRI reference, which is concatenated to any vocabulary

mapping in the active context (see § 4.1.4 Using the Document Base for the

Default Vocabulary for how this applies if there is no vocabulary mapping in

the active context).

The following example illustrates the affect of expanding a property using a

relative IRI reference, which is shown in the Expanded (Result) tab below.

Input

EXAMPLE 25: Using the null keyword to ignore data

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://example.com/vocab/",

"databaseId": null

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

 "name": "Brew Eats",

"databaseId": "23987520"

}

Input

EXAMPLE 26: Using a default vocabulary relative to a previous default

vocabulary

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": [{

 "@vocab": "http://example.com/"

 }, {

 "@version": 1.1,

 "@vocab": "vocab/"

 }],

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

 "name": "Brew Eats"

...

}

https://www.w3.org/TR/json-ld11/

46 of 215

NOTE

The grammar for @vocab, as defined in § 9.15 Context Definitions allows

the value to be a term or compact IRI. Note that terms used in the value of

@vocab must be in scope at the time the context is introduced, otherwise

there would be a circular dependency between @vocab and other terms

defined in the same context.

This section is non-normative.

JSON-LD allows IRIs to be specified in a relative form which is resolved

against the document base according section 5.1 Establishing a Base URI of

[RFC3986]. The base IRI may be explicitly set with a context using the @base

keyword.

For example, if a JSON-LD document was retrieved from http://example.com

/document.jsonld, relative IRI references would resolve against that IRI:

This document uses an empty @id, which resolves to the document base.

However, if the document is moved to a different location, the IRI would

change. To prevent this without having to use an IRI, a context may define an

@base mapping, to overwrite the base IRI for the document.

4.1.3 Base IRI§

EXAMPLE 27: Use a relative IRI reference as node identifier

{

 "@context": {

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 },

"@id": "",

 "label": "Just a simple document"

}

https://www.w3.org/TR/json-ld11/

47 of 215

Setting @base to null will prevent relative IRI references from being expanded

to IRIs.

Please note that the @base will be ignored if used in external contexts.

This section is non-normative.

In some cases, vocabulary terms are defined directly within the document

itself, rather than in an external vocabulary. Since JSON-LD 1.1, the

vocabulary mapping in a local context can be set to a relative IRI reference,

which is, if there is no vocabulary mapping in scope, resolved against the

base IRI. This causes terms which are expanded relative to the vocabulary,

such as the keys of node objects, to be based on the base IRI to create IRIs.

Input

EXAMPLE 28: Setting the document base in a document

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@base": "http://example.com/document.jsonld",

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 },

 "@id": "",

 "label": "Just a simple document"

}

4.1.4 Using the Document Base for the Default Vocabulary§

Input

EXAMPLE 29: Using "#" as the vocabulary mapping

{

 "@context": {

"@version": 1.1,

"@base": "http://example/document",

 "@vocab": "#"

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

"name": "Brew Eats"

...

}

https://www.w3.org/TR/json-ld11/

48 of 215

If this document were located at http://example/document, it would expand as

follows:

This section is non-normative.

A compact IRI is a way of expressing an IRI using a prefix and suffix

separated by a colon (:). The prefix is a term taken from the active context

and is a short string identifying a particular IRI in a JSON-LD document. For

example, the prefix foaf may be used as a shorthand for the Friend-of-

a-Friend vocabulary, which is identified using the IRI http://xmlns.com

/foaf/0.1/. A developer may append any of the FOAF vocabulary terms to the

end of the prefix to specify a short-hand version of the IRI for the vocabulary

term. For example, foaf:name would be expanded to the IRI http://xmlns.com

/foaf/0.1/name.

In the example above, foaf:name expands to the IRI http://xmlns.com

/foaf/0.1/name and foaf:Person expands to http://xmlns.com/foaf/0.1

Result

EXAMPLE 30: Using "#" as the vocabulary mapping (expanded)

Expanded (Result) Statements Turtle Open in playground

[{

 "@id": "http://example.org/places#BrewEats",

 "@type": ["http://example/document#Restaurant"],

 "http://example/document#name": [{"@value": "Brew Eats"}]

}]

4.1.5 Compact IRIs§

Input

EXAMPLE 31: Prefix expansion

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "foaf": "http://xmlns.com/foaf/0.1/"

...

 },

 "@type": "foaf:Person",

 "foaf:name": "Dave Longley",

 ...

}

https://www.w3.org/TR/json-ld11/

49 of 215

/Person.

Prefixes are expanded when the form of the value is a compact IRI

represented as a prefix:suffix combination, the prefix matches a term

defined within the active context, and the suffix does not begin with two

slashes (//). The compact IRI is expanded by concatenating the IRI mapped

to the prefix to the (possibly empty) suffix. If the prefix is not defined in the

active context, or the suffix begins with two slashes (such as in

http://example.com), the value is interpreted as IRI instead. If the prefix is an

underscore (_), the value is interpreted as blank node identifier instead.

It's also possible to use compact IRIs within the context as shown in the

following example:

When operating explicitly with the processing mode for JSON-LD 1.0

compatibility, terms may be chosen as compact IRI prefixes when compacting

only if a simple term definition is used where the value ends with a URI gen-

delim character (e.g, /, # and others, see [RFC3986]).

In JSON-LD 1.1, terms may be chosen as compact IRI prefixes when

compacting only if a simple term definition is used where the value ends with

a URI gen-delim character, or if their expanded term definition contains a

@prefix entry with the value true.

Input

EXAMPLE 32: Using vocabularies

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "xsd": "http://www.w3.org/2001/XMLSchema#",

"foaf": "http://xmlns.com/foaf/0.1/",

"foaf:homepage": { "@type": "@id" },

 "picture": { "@id": "foaf:depiction", "@type": "@id" }

 },

 "@id": "http://me.markus-lanthaler.com/",

 "@type": "foaf:Person",

 "foaf:name": "Markus Lanthaler",

 "foaf:homepage": "http://www.markus-lanthaler.com/",

 "picture": "http://twitter.com/account/profile_image/markuslanthaler"

}

https://www.w3.org/TR/json-ld11/

50 of 215

NOTE

The term selection behavior for 1.0 processors was changed as a result of

an errata against JSON-LD 1.0 reported here. This does not affect the

behavior of processing existing JSON-LD documents, but creates a slight

change when compacting documents using Compact IRIs.

The behavior when compacting can be illustrated by considering the

following input document in expanded form:

Using the following context in the 1.0 processing mode will now select the

term vocab rather than property, even though the IRI associated with

property captures more of the original IRI.

Compacting using the previous context with the above expanded input

document results in the following compacted result:

Input

EXAMPLE 33: Expanded document used to illustrate compact IRI creation

[{

 "http://example.com/vocab/property": [{"@value": "property"}],

 "http://example.com/vocab/propertyOne": [{"@value": "propertyOne"}]

}]

Context

EXAMPLE 34: Compact IRI generation context (1.0)

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "property": "http://example.com/vocab/property"

 }

}

https://www.w3.org/TR/json-ld11/

51 of 215

In the original [JSON-LD10], the term selection algorithm would have

selected property, creating the Compact IRI property:One. The original

behavior can be made explicit using @prefix:

Result

EXAMPLE 35: Compact IRI generation term selection (1.0)

Compacted (Result) Statements Turtle Open in playground

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "property": "http://example.com/vocab/property"

 },

 "property": "property",

"vocab:propertyOne": "propertyOne"

}

Context

EXAMPLE 36: Compact IRI generation context (1.1)

{

 "@context": {

"@version": 1.1,

 "vocab": "http://example.com/vocab/",

 "property": {

 "@id": "http://example.com/vocab/property",

"@prefix": true

 }

 }

}

https://www.w3.org/TR/json-ld11/

52 of 215

In this case, the property term would not normally be usable as a prefix, both

because it is defined with an expanded term definition, and because its @id

does not end in a gen-delim character. Adding "@prefix": true allows it to be

used as the prefix portion of the compact IRI property:One.

This section is non-normative.

Each of the JSON-LD keywords, except for @context, may be aliased to

application-specific keywords. This feature allows legacy JSON content to be

utilized by JSON-LD by re-using JSON keys that already exist in legacy

documents. This feature also allows developers to design domain-specific

implementations using only the JSON-LD context.

Input

EXAMPLE 37: Compact IRI generation term selection (1.1)

Compacted (Input) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "vocab": "http://example.com/vocab/",

 "property": {

 "@id": "http://example.com/vocab/property",

"@prefix": true

 }

 },

 "property": "property",

"property:One": "propertyOne"

}

4.1.6 Aliasing Keywords§

https://www.w3.org/TR/json-ld11/

53 of 215

In the example above, the @id and @type keywords have been given the

aliases url and a, respectively.

Other than for @type, properties of expanded term definitions where the term

is a keyword result in an error. Unless the processing mode is set to json-

ld-1.0, there is also an exception for @type; see § 4.3.3 Using @set with @type

for further details and usage examples.

Unless the processing mode is set to json-ld-1.0, aliases of keywords are

either simple term definitions, where the value is a keyword, or a expanded

term definitions with an @id entry and optionally an @protected entry; no

other entries are allowed. There is also an exception for aliases of @type, as

indicated above. See § 4.1.11 Protected Term Definitions for further details of

using @protected.

Since keywords cannot be redefined, they can also not be aliased to other

keywords.

NOTE

Aliased keywords may not be used within a context, itself.

See § 9.16 Keywords for a normative definition of all keywords.

This section is non-normative.

Input

EXAMPLE 38: Aliasing keywords

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"url": "@id",

"a": "@type",

 "name": "http://xmlns.com/foaf/0.1/name"

 },

 "url": "http://example.com/about#gregg",

 "a": "http://xmlns.com/foaf/0.1/Person",

 "name": "Gregg Kellogg"

}

4.1.7 IRI Expansion within a Context§

https://www.w3.org/TR/json-ld11/

54 of 215

In general, normal IRI expansion rules apply anywhere an IRI is expected

(see § 3.2 IRIs). Within a context definition, this can mean that terms defined

within the context may also be used within that context as long as there are

no circular dependencies. For example, it is common to use the xsd

namespace when defining typed values:

In this example, the xsd term is defined and used as a prefix for the @type

coercion of the age property.

Terms may also be used when defining the IRI of another term:

EXAMPLE 39: IRI expansion within a context

{

 "@context": {

"xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "http://xmlns.com/foaf/0.1/name",

 "age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

55 of 215

Compact IRIs and IRIs may be used on the left-hand side of a term definition.

In this example, the compact IRI form is used in two different ways. In the

first approach, foaf:age declares both the IRI for the term (using short-form)

as well as the @type associated with the term. In the second approach, only

the @type associated with the term is specified. The full IRI for foaf:homepage

EXAMPLE 40: Using a term to define the IRI of another term within a

context

{

 "@context": {

"foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "age": {

 "@id": "foaf:age",

 "@type": "xsd:integer"

 },

 "homepage": {

 "@id": "foaf:homepage",

 "@type": "@id"

 }

 },

 ...

}

EXAMPLE 41: Using a compact IRI as a term

{

 "@context": {

"foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "foaf:age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "foaf:homepage": {

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

56 of 215

⚠

is determined by looking up the foaf prefix in the context.

Warning

If a compact IRI is used as a term, it must expand to the value that

compact IRI would have on its own when expanded. This represents a

change to the original 1.0 algorithm to prevent terms from expanding to a

different IRI, which could lead to undesired results.

IRIs may also be used in the key position in a context:

EXAMPLE 42: Illegal Aliasing of a compact IRI to a different IRI

{

 "@context": {

 "foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "foaf:age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "foaf:homepage": {

"@id": "http://schema.org/url",

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

57 of 215

⚠

In order for the IRI to match above, the IRI needs to be used in the JSON-LD

document. Also note that foaf:homepage will not use the { "@type": "@id" }

declaration because foaf:homepage is not the same as http://xmlns.com

/foaf/0.1/homepage. That is, terms are looked up in a context using direct

string comparison before the prefix lookup mechanism is applied.

Warning

Neither an IRI reference nor a compact IRI may expand to some other

unrelated IRI. This represents a change to the original 1.0 algorithm which

allowed this behavior but discouraged it.

The only other exception for using terms in the context is that circular

definitions are not allowed. That is, a definition of term1 cannot depend on

the definition of term2 if term2 also depends on term1. For example, the

following context definition is illegal:

EXAMPLE 43: Associating context definitions with IRIs

{

 "@context": {

 "foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "foaf:age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "http://xmlns.com/foaf/0.1/homepage": {

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

58 of 215

This section is non-normative.

An expanded term definition can include a @context property, which defines a

context (a scoped context) for values of properties defined using that term.

When used for a property, this is called a property-scoped context. This

allows values to use term definitions, the base IRI, vocabulary mappings or

the default language which are different from the node object they are

contained in, as if the context was specified within the value itself.

In this case, the social profile is defined using the schema.org vocabulary, but

EXAMPLE 44: Illegal circular definition of terms within a context

{

 "@context": {

"term1": "term2:foo",

 "term2": "term1:bar"

 },

 ...

}

4.1.8 Scoped Contexts§

Input

EXAMPLE 45: Defining an @context within a term definition

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "name": "http://schema.org/name",

 "interest": {

 "@id": "http://xmlns.com/foaf/0.1/interest",

"@context": {"@vocab": "http://xmlns.com/foaf/0.1/"}

 }

 },

 "name": "Manu Sporny",

 "interest": {

 "@id": "https://www.w3.org/TR/json-ld11/",

 "name": "JSON-LD",

 "topic": "Linking Data"

 }

}

https://www.w3.org/TR/json-ld11/

59 of 215

interest is imported from FOAF, and is used to define a node describing one

of Manu's interests where those properties now come from the FOAF

vocabulary.

Expanding this document, uses a combination of terms defined in the outer

context, and those defined specifically for that term in a property-scoped

context.

Scoping can also be performed using a term used as a value of @type:

Scoping on @type is useful when common properties are used to relate things

of different types, where the vocabularies in use within different entities calls

for different context scoping. For example, hasPart/partOf may be common

terms used in a document, but mean different things depending on the

context. A type-scoped context is only in effect for the node object on which

the type is used; the previous in-scope contexts are placed back into effect

when traversing into another node object. As described further in § 4.1.9

Context Propagation, this may be controlled using the @propagate keyword.

Input

EXAMPLE 46: Defining an @context within a term definition used on

@type

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "name": "http://schema.org/name",

 "interest": "http://xmlns.com/foaf/0.1/interest",

 "Person": "http://schema.org/Person",

"Document": {

 "@id": "http://xmlns.com/foaf/0.1/Document",

"@context": {"@vocab": "http://xmlns.com/foaf/0.1/"}

 }

 },

 "@type": "Person",

 "name": "Manu Sporny",

 "interest": {

 "@id": "https://www.w3.org/TR/json-ld11/",

"@type": "Document",

 "name": "JSON-LD",

 "topic": "Linking Data"

 }

}

https://www.w3.org/TR/json-ld11/

60 of 215

NOTE

Any property-scoped or local contexts that were introduced in the node

object would still be in effect when traversing into another node object.

When expanding, each value of @type is considered (ordering them

lexicographically) where that value is also a term in the active context having

its own type-scoped context. If so, that the scoped context is applied to the

active context.

NOTE

The values of @type are unordered, so if multiple types are listed, the order

that type-scoped contexts are applied is based on lexicographical ordering.

For example, consider the following semantically equivalent examples. The

first example, shows how properties and types can define their own scoped

contexts, which are included when expanding.

https://www.w3.org/TR/json-ld11/

61 of 215

Contexts are processed depending on how they are defined. A property-

scoped context is processed first, followed by any embedded context,

followed lastly by the type-scoped contexts, in the appropriate order. The

EXAMPLE 47: Expansion using embedded and scoped contexts

{

"@context": {

"@version": 1.1,

"@vocab": "http://example.com/vocab/",

"property": {

"@id": "http://example.com/vocab/property",

"@context": {

"term1": "http://example.com/vocab/term1"

 ↑ Scoped context for "property" defines term1

 }

 },

"Type1": {

"@id": "http://example.com/vocab/Type1",

"@context": {

"term3": "http://example.com/vocab/term3"

 ↑ Scoped context for "Type1" defines term3

 }

 },

"Type2": {

"@id": "http://example.com/vocab/Type2",

"@context": {

"term4": "http://example.com/vocab/term4"

 ↑ Scoped context for "Type2" defines term4

 }

 }

 },

"property": {

"@context": {

"term2": "http://example.com/vocab/term2"

 ↑ Embedded context defines term2

 },

"@type": ["Type2", "Type1"],

"term1": "a",

"term2": "b",

"term3": "c",

"term4": "d"

 }

}

https://www.w3.org/TR/json-ld11/

62 of 215

previous example is logically equivalent to the following:

NOTE

If a term defines a scoped context, and then that term is later redefined,

the association of the context defined in the earlier expanded term

definition is lost within the scope of that redefinition. This is consistent

with term definitions of a term overriding previous term definitions from

earlier less deeply nested definitions, as discussed in § 4.1 Advanced

Context Usage.

EXAMPLE 48: Expansion using embedded and scoped contexts

(embedding equivalent)

{

"@context": {

"@vocab": "http://example.com/vocab/",

"property": "http://example.com/vocab/property",

"Type1": "http://example.com/vocab/Type1",

"Type2": "http://example.com/vocab/Type2"

 },

"property": {

"@context": [{

"term1": "http://example.com/vocab/term1"

 ↑ Previously scoped context for "property" defines term1

 }, {

"term2": "http://example.com/vocab/term2"

 ↑ Embedded context defines term2

 }, {

"term3": "http://example.com/vocab/term3"

 ↑ Previously scoped context for "Type1" defines term3

 }, {

"term4": "http://example.com/vocab/term4"

 ↑ Previously scoped context for "Type2" defines term4

 }],

"@type": ["Type2", "Type1"],

"term1": "a",

"term2": "b",

"term3": "c",

"term4": "d"

 }

}

https://www.w3.org/TR/json-ld11/

63 of 215

NOTE

Scoped Contexts are a new feature in JSON-LD 1.1.

This section is non-normative.

Once introduced, contexts remain in effect until a subsequent context

removes it by setting @context to null, or by redefining terms, with the

exception of type-scoped contexts, which limit the effect of that context until

the next node object is entered. This behavior can be changed using the

@propagate keyword.

The following example illustrates how terms defined in a context with

@propagate set to false are effectively removed when descending into new

node object.

4.1.9 Context Propagation§

Input

EXAMPLE 49: Marking a context to not propagate

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "term": {

 "@id": "http://example.org/original",

 "@context": {

 "@propagate": false,

 ↑ Scoped context only lasts in one node-object

 "term": "http://example.org/non-propagated-term"

 }

 }

 },

 "term": {

 ↑ This term is the original

 "term": {

 ↑ This term is from the scoped context

 "term": "This term is from the first context"

 ↑ This term is the original again

 }

 }

}

https://www.w3.org/TR/json-ld11/

64 of 215

NOTE

Contexts included within an array must all have the same value for

@propagate due to the way that rollback is defined in JSON-LD 1.1

Processing Algorithms and API.

This section is non-normative.

JSON-LD 1.0 included mechanisms for modifying the context that is in effect.

This included the capability to load and process a remote context and then

apply further changes to it via new contexts.

However, with the introduction of JSON-LD 1.1, it is also desirable to be able

to load a remote context, in particular an existing JSON-LD 1.0 context, and

apply JSON-LD 1.1 features to it prior to processing.

By using the @import keyword in a context, another remote context, referred

to as an imported context, can be loaded and modified prior to processing.

The modifications are expressed in the context that includes the @import

keyword, referred to as the wrapping context. Once an imported context is

loaded, the contents of the wrapping context are merged into it prior to

processing. The merge operation will cause each key-value pair in the

wrapping context to be added to the loaded imported context, with the

wrapping context key-value pairs taking precedence.

By enabling existing contexts to be reused and edited inline prior to

processing, context-wide keywords can be applied to adjust all term

definitions in the imported context. Similarly, term definitions can be

replaced prior to processing, enabling adjustments that, for instance, ensure

term definitions match previously protected terms or that they include

additional type coercion information.

The following examples illustrate how @import can be used to express a type-

scoped context that loads an imported context and sets @propagate to true, as

a technique for making other similar modifications.

Suppose there was a context that could be referenced remotely via the URL

https://json-ld.org/contexts/remote-context.jsonld:

4.1.10 Imported Contexts§

https://www.w3.org/TR/json-ld11/

65 of 215

A wrapping context could be used to source it and modify it:

The effect would be the same as if the entire imported context had been

copied into the type-scoped context:

EXAMPLE 50: A remote context to be imported in a type-scoped context

{

 "@context": {

 "Type1": "http://example.com/vocab/Type1",

 "Type2": "http://example.com/vocab/Type2",

 "term1": "http://example.com/vocab#term1",

 "term2": "http://example.com/vocab#term2",

 ...

 }

}

EXAMPLE 51: Sourcing a context in a type-scoped context and setting it to

propagate

{

 "@context": {

 "@version": 1.1,

 "MyType": {

 "@id": "http://example.com/vocab#MyType",

 "@context": {

 "@version": 1.1,

 "@import": "https://json-ld.org/contexts/remote-context.jsonld",

 "@propagate": true

 }

 }

 }

}

https://www.w3.org/TR/json-ld11/

66 of 215

Similarly, the wrapping context may replace term definitions or set other

context-wide keywords that may affect how the imported context term

definitions will be processed:

Again, the effect would be the same as if the entire imported context had

been copied into the context:

EXAMPLE 52: Result of sourcing a context in a type-scoped context and

setting it to propagate

{

 "@context": {

 "@version": 1.1,

 "MyType": {

 "@id": "http://example.com/vocab#MyType",

 "@context": {

 "@version": 1.1,

 "Type1": "http://example.com/vocab/Type1",

 "Type2": "http://example.com/vocab/Type2",

 "term1": "http://example.com/vocab#term1",

 "term2": "http://example.com/vocab#term2",

 ...

 "@propagate": true

 }

 }

 }

}

EXAMPLE 53: Sourcing a context to modify @vocab and a term definition

{

 "@context": {

 "@version": 1.1,

 "@import": "https://json-ld.org/contexts/remote-context.jsonld",

 "@vocab": "http://example.org/vocab#",

 ↑ This will replace any previous @vocab definition prior to processing it

 "term1": {

 "@id": "http://example.org/vocab#term1",

 "@type": "http://www.w3.org/2001/XMLSchema#integer"

 }

 ↑ This will replace the old term1 definition prior to processing it

 }

}

https://www.w3.org/TR/json-ld11/

67 of 215

The result of loading imported contexts must be context definition, not an IRI

or an array. Additionally, the imported context cannot include an @import

entry.

This section is non-normative.

JSON-LD is used in many specifications as the specified data format.

However, there is also a desire to allow some JSON-LD contents to be

processed as plain JSON, without using any of the JSON-LD algorithms.

Because JSON-LD is very flexible, some terms from the original format may

be locally overridden through the use of embedded contexts, and take a

different meaning for JSON-LD based implementations. On the other hand,

"plain JSON" implementations may not be able to interpret these embedded

contexts, and hence will still interpret those terms with their original

meaning. To prevent this divergence of interpretation, JSON-LD 1.1 allows

term definitions to be protected.

A protected term definition is a term definition with an entry @protected

set to true. It generally prevents further contexts from overriding this term

definition, either through a new definition of the same term, or through

clearing the context with "@context": null. Such attempts will raise an error

EXAMPLE 54: Result of sourcing a context to modify @vocab and a term

definition

{

 "@context": {

 "@version": 1.1,

 "Type1": "http://example.com/vocab/Type1",

 "Type2": "http://example.com/vocab/Type2",

 "term1": {

 "@id": "http://example.org/vocab#term1",

 "@type": "http://www.w3.org/2001/XMLSchema#integer"

 },

 ↑ Note term1 has been replaced prior to processing

 "term2": "http://example.com/vocab#term2",

 ...,

 "@vocab": "http://example.org/vocab#"

 }

}

4.1.11 Protected Term Definitions§

https://www.w3.org/TR/json-ld11/

68 of 215

and abort the processing (except in some specific situations described

below).

When all or most term definitions of a context need to be protected, it is

possible to add an entry @protected set to true to the context itself. It has the

same effect as protecting each of its term definitions individually. Exceptions

can be made by adding an entry @protected set to false in some term

definitions.

EXAMPLE 55: A protected term definition can generally not be overridden

{

 "@context": [

 {

"@version": 1.1,

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "knows": "http://xmlns.com/foaf/0.1/knows",

 "name": {

 "@id": "http://xmlns.com/foaf/0.1/name",

"@protected": true

 }

 },

 {

– this attempt will fail with an error

"name": "http://schema.org/name"

 }

],

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": {

 "@context": [

– this attempt would also fail with an error

null,

 "http://schema.org/"

],

 "name": "Gregg Kellogg"

 }

}

https://www.w3.org/TR/json-ld11/

69 of 215

While protected terms can in general not be overridden, there are two

exceptions to this rule. The first exception is that a context is allowed to

redefine a protected term if the new definition is identical to the protected

term definition (modulo the @protected flag). The rationale is that the new

definition does not violate the protection, as it does not change the semantics

of the protected term. This is useful for widespread term definitions, such as

aliasing @type to type, which may occur (including in a protected form) in

several contexts.

Input

EXAMPLE 56: A protected @context with an exception

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": [

 {

"@version": 1.1,

"@protected": true,

 "name": "http://schema.org/name",

 "member": "http://schema.org/member",

 "Person": {

 "@id": "http://schema.org/Person",

"@protected": false

 }

 }

],

 "name": "Digital Bazaar",

 "member": {

 "@context": {

– name *is* protected, so the following would fail with an error

 – "name": "http://xmlns.com/foaf/0.1/Person",

 – Person is *not* protected, and can be overridden

 "Person": "http://xmlns.com/foaf/0.1/Person"

 },

 "@type": "Person",

 "name": "Manu Sporny"

 }

}

https://www.w3.org/TR/json-ld11/

70 of 215

The second exception is that a property-scoped context is not affected by

protection, and can therefore override protected terms, either with a new

term definition, or by clearing the context with "@context": null.

The rationale is that "plain JSON" implementations, relying on a given

specification, will only traverse properties defined by that specification.

Scoped contexts belonging to the specified properties are part of the

specification, so the "plain JSON" implementations are expected to be aware

of the change of semantics they induce. Scoped contexts belonging to other

properties apply to parts of the document that "plain JSON" implementations

EXAMPLE 57: Overriding permitted if both definitions are identical

Original Expanded Statements Turtle Open in playground

{

 "@context": [

 {

 "@version": 1.1,

 "@protected": true,

"id": "@id",

 "type": "@type",

 "Organization": "http://example.org/orga/Organization",

 "member": {

 "@id": "http://example.org/orga/member",

 "@type": "@id"

 }

 },

 {

"id": "@id",

 "type": "@type",

– Those "redefinitions" do not raise an error.

 – Note however that the terms are still protected

 "Person": "http://schema.org/Person",

 "name": "http://schema.org/name"

 }

],

 "id": "https://digitalbazaar.com/",

 "type": "Organization",

 "member" : {

 "id": "http://manu.sporny.org/about#manu",

 "type": "Person",

 "name": "Manu Sporny"

 }

}

https://www.w3.org/TR/json-ld11/

71 of 215

will ignore. In both cases, there is therefore no risk of diverging

interpretations between JSON-LD-aware implementations and "plain JSON"

implementations, so overriding is permitted.

Input

EXAMPLE 58: overriding permitted in property scoped context

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": [

 {

– This context reflects the specification used by "plain JSON" implementations

"@version": 1.1,

"@protected": true,

 "Organization": "http://schema.org/Organization",

 "name": "http://schema.org/name",

 "employee": {

 "@id": "http://schema.org/employee",

"@context": {

 "@protected": true,

 "name": "http://schema.org/familyName"

 }

↑ overrides the definition of "name"

 }

 },

 {

– This context extends the previous one,

 – only JSON-LD-aware implementations are expected to use it

 "location": {

 "@id": "http://xmlns.com/foaf/0.1/based_near",

 "@context": [

null,

↑ clears the context entirely, including all protected terms

 { "@vocab": "http://xmlns.com/foaf/0.1/" }

]

 }

 }

],

 "@type": "Organization",

 "name": "Digital Bazaar",

 "employee" : {

 "name": "Sporny",

 "location": {"name": "Blacksburg, Virginia"}

 }

}

https://www.w3.org/TR/json-ld11/

72 of 215

NOTE

By preventing terms from being overridden, protection also prevents any

adaptation of a term (e.g., defining a more precise datatype, restricting

the term's use to lists, etc.). This kind of adaptation is frequent with some

general purpose contexts, for which protection would therefore hinder

their usability. As a consequence, context publishers should use this

feature with care.

NOTE

Protected term definitions are a new feature in JSON-LD 1.1.

This section is non-normative.

Values are leaf nodes in a graph associated with scalar values such as strings,

dates, times, and other such atomic values.

This section is non-normative.

A value with an associated type, also known as a typed value, is indicated by

associating a value with an IRI which indicates the value's type. Typed values

may be expressed in JSON-LD in three ways:

1. By utilizing the @type keyword when defining a term within an @context

section.

2. By utilizing a value object.

3. By using a native JSON type such as number, true, or false.

The first example uses the @type keyword to associate a type with a particular

term in the @context:

4.2 Describing Values§

4.2.1 Typed Values§

https://www.w3.org/TR/json-ld11/

73 of 215

The modified key's value above is automatically interpreted as a dateTime

value because of the information specified in the @context. The example tabs

show how a JSON-LD processor will interpret the data.

The second example uses the expanded form of setting the type information

in the body of a JSON-LD document:

Both examples above would generate the value 2010-05-29T14:17:39+02:00

with the type http://www.w3.org/2001/XMLSchema#dateTime. Note that it is also

possible to use a term or a compact IRI to express the value of a type.

Input

EXAMPLE 59: Expanded term definition with type coercion

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": {

 "modified": {

 "@id": "http://purl.org/dc/terms/modified",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 }

 },

...

 "@id": "http://example.com/docs/1",

 "modified": "2010-05-29T14:17:39+02:00",

 ...

}

Input

EXAMPLE 60: Expanded value with type

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "modified": {

 "@id": "http://purl.org/dc/terms/modified"

 }

 },

...

 "modified": {

 "@value": "2010-05-29T14:17:39+02:00",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 }

...

}

https://www.w3.org/TR/json-ld11/

74 of 215

NOTE

The @type keyword is also used to associate a type with a node. The

concept of a node type and a value type are distinct. For more on adding

types to nodes, see § 3.5 Specifying the Type.

NOTE

When expanding, an @type defined within a term definition can be

associated with a string value to create an expanded value object, which is

described in § 4.2.3 Type Coercion. Type coercion only takes place on

string values, not for values which are maps, such as node objects and

value objects in their expanded form.

A node type specifies the type of thing that is being described, like a person,

place, event, or web page. A value type specifies the data type of a particular

value, such as an integer, a floating point number, or a date.

The first use of @type associates a node type (http://schema.org/BlogPosting)

with the node, which is expressed using the @id keyword. The second use of

@type associates a value type (http://www.w3.org/2001/XMLSchema#dateTime)

with the value expressed using the @value keyword. As a general rule, when

@value and @type are used in the same map, the @type keyword is expressing a

value type. Otherwise, the @type keyword is expressing a node type. The

example above expresses the following data:

EXAMPLE 61: Example demonstrating the context-sensitivity for @type

{

...

 "@id": "http://example.org/posts#TripToWestVirginia",

"@type": "http://schema.org/BlogPosting", ← This is a node type

 "http://purl.org/dc/terms/modified": {

 "@value": "2010-05-29T14:17:39+02:00",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime" ← This is a value type

 }

...

}

https://www.w3.org/TR/json-ld11/

75 of 215

⚠

This section is non-normative.

At times, it is useful to include JSON within JSON-LD that is not interpreted

as JSON-LD. Generally, a JSON-LD processor will ignore properties which

don't map to IRIs, but this causes them to be excluded when performing

various algorithmic transformations. But, when the data that is being

described is, itself, JSON, it's important that it survive algorithmic

transformations.

Warning

JSON-LD is intended to allow native JSON to be interpreted through the

use of a context. The use of JSON literals creates blobs of data which are

not available for interpretation. It is for use only in the rare cases that

JSON cannot be represented as JSON-LD.

When a term is defined with @type set to @json, a JSON-LD processor will

treat the value as a JSON literal, rather than interpreting it further as JSON-

LD. In the expanded document form, such JSON will become the value of

@value within a value object having "@type": "@json".

When transformed into RDF, the JSON literal will have a lexical form based

on a specific serialization of the JSON, as described in Compaction algorithm

of [JSON-LD11-API] and the JSON datatype.

The following example shows an example of a JSON Literal contained as the

value of a property. Note that the RDF results use a canonicalized form of the

JSON to ensure interoperability between different processors. JSON

EXAMPLE 62: Example demonstrating the context-sensitivity for @type

(statements)

Compacted (Input) Turtle Open in playground

Subject Property Value

http://example.org

/posts#TripToWestVirginia
rdf:type schema:BlogPosting

http://example.org

/posts#TripToWestVirginia
dcterms:modified 2010-05-29T14:17:39+02:00

4.2.2 JSON Literals§

https://www.w3.org/TR/json-ld11/

76 of 215

canonicalization is described in Data Round Tripping in [JSON-LD11-API].

NOTE

Generally, when a JSON-LD processor encounters null, the associated

entry or value is removed. However, null is a valid JSON token; when used

as the value of a JSON literal, a null value will be preserved.

This section is non-normative.

JSON-LD supports the coercion of string values to particular data types. Type

coercion allows someone deploying JSON-LD to use string property values

and have those values be interpreted as typed values by associating an IRI

with the value in the expanded value object representation. Using type

coercion, string value representation can be used without requiring the data

type to be specified explicitly with each piece of data.

Type coercion is specified within an expanded term definition using the @type

key. The value of this key expands to an IRI. Alternatively, the keyword @id or

@vocab may be used as value to indicate that within the body of a JSON-LD

document, a string value of a term coerced to @id or @vocab is to be

Input

EXAMPLE 63: JSON Literal

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "e": {"@id": "http://example.com/vocab/json", "@type": "@json"}

 },

 "e": [

 56.0,

 {

 "d": true,

 "10": null,

 "1": []

 }

]

}

4.2.3 Type Coercion§

https://www.w3.org/TR/json-ld11/

77 of 215

interpreted as an IRI. The difference between @id and @vocab is how values

are expanded to IRIs. @vocab first tries to expand the value by interpreting it

as term. If no matching term is found in the active context, it tries to expand

it as an IRI or a compact IRI if there's a colon in the value; otherwise, it will

expand the value using the active context's vocabulary mapping, if present.

Values coerced to @id in contrast are expanded as an IRI or a compact IRI if a

colon is present; otherwise, they are interpreted as relative IRI references.

NOTE

The ability to coerce a value using a term definition is distinct from setting

one or more types on a node object, as the former does not result in new

data being added to the graph, while the later manages node types

through adding additional relationships to the graph.

Terms or compact IRIs used as the value of a @type key may be defined within

the same context. This means that one may specify a term like xsd and then

use xsd:integer within the same context definition.

The example below demonstrates how a JSON-LD author can coerce values to

typed values and IRIs.

https://www.w3.org/TR/json-ld11/

78 of 215

It is important to note that terms are only used in expansion for vocabulary-

relative positions, such as for keys and values of map entries. Values of @id

are considered to be document-relative, and do not use term definitions for

expansion. For example, consider the following:

Input

EXAMPLE 64: Expanded term definition with types

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "http://xmlns.com/foaf/0.1/name",

 "age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 "@id": "http://example.com/people#john",

 "name": "John Smith",

 "age": "41",

 "homepage": [

 "http://personal.example.org/",

 "http://work.example.com/jsmith/"

]

}

https://www.w3.org/TR/json-ld11/

79 of 215

The unexpected result is that "barney" expands to both http://example1.com

/barney and http://example2.com/barney, depending where it is encountered.

String values interpreted as IRIs because of the associated term definitions

are typically considered to be document-relative. In some cases, it makes

sense to interpret these relative to the vocabulary, prescribed using "@type":

"@vocab" in the term definition, though this can lead to unexpected

consequences such as these.

In the previous example, "barney" appears twice, once as the value of @id,

which is always interpreted as a document-relative IRI, and once as the value

of "fred", which is defined to be vocabulary-relative, thus the different

expanded values.

For more on this see § 4.1.2 Default Vocabulary.

A variation on the previous example using "@type": "@id" instead of @vocab

illustrates the behavior of interpreting "barney" relative to the document:

Input

EXAMPLE 65: Term expansion for values, not identifiers

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@base": "http://example1.com/",

 "@vocab": "http://example2.com/",

 "knows": {"@type": "@vocab"}

 },

 "@id": "fred",

 "knows": [

 {"@id": "barney", "mnemonic": "the sidekick"},

 "barney"

]

}

https://www.w3.org/TR/json-ld11/

80 of 215

NOTE

The triple ex1:fred ex2:knows ex1:barney . is emitted twice, but exists

only once in an output dataset, as it is a duplicate triple.

Terms may also be defined using IRIs or compact IRIs. This allows coercion

rules to be applied to keys which are not represented as a simple term. For

example:

Input

EXAMPLE 66: Terms not expanded when document-relative

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@base": "http://example1.com/",

 "@vocab": "http://example2.com/",

 "knows": {"@type": "@id"}

 },

 "@id": "fred",

 "knows": [

 {"@id": "barney", "mnemonic": "the sidekick"},

 "barney"

]

}

https://www.w3.org/TR/json-ld11/

81 of 215

In this case the @id definition in the term definition is optional. If it does exist,

the IRI or compact IRI representing the term will always be expanded to IRI

defined by the @id key—regardless of whether a prefix is defined or not.

Type coercion is always performed using the unexpanded value of the key. In

the example above, that means that type coercion is done looking for

foaf:age in the active context and not for the corresponding, expanded IRI

http://xmlns.com/foaf/0.1/age.

NOTE

Keys in the context are treated as terms for the purpose of expansion and

value coercion. At times, this may result in multiple representations for

the same expanded IRI. For example, one could specify that dog and cat

both expanded to http://example.com/vocab#animal. Doing this could be

useful for establishing different type coercion or language specification

rules.

Input

EXAMPLE 67: Term definitions using IRIs and compact IRIs

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "foaf:age": {

"@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "http://xmlns.com/foaf/0.1/homepage": {

 "@type": "@id"

 }

 },

 "foaf:name": "John Smith",

 "foaf:age": "41",

 "http://xmlns.com/foaf/0.1/homepage": [

 "http://personal.example.org/",

 "http://work.example.com/jsmith/"

]

}

4.2.4 String Internationalization

https://www.w3.org/TR/json-ld11/

82 of 215

This section is non-normative.

At times, it is important to annotate a string with its language. In JSON-LD

this is possible in a variety of ways. First, it is possible to define a default

language for a JSON-LD document by setting the @language key in the

context:

The example above would associate the ja language tag with the two strings

花澄 and 科学者 Languages tags are defined in [BCP47]. The default language

applies to all string values that are not type coerced.

To clear the default language for a subtree, @language can be set to null in an

intervening context, such as a scoped context as follows:

Input

EXAMPLE 68: Setting the default language of a JSON-LD document

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": {

 "name": "http://example.org/name",

 "occupation": "http://example.org/occupation",

...

 "@language": "ja"

 },

 "name": "花澄",
 "occupation": "科学者"
}

https://www.w3.org/TR/json-ld11/

83 of 215

Second, it is possible to associate a language with a specific term using an

expanded term definition:

The example above would associate 忍者 with the specified default language

tag ja, Ninja with the language tag en, and Nindža with the language tag cs.

The value of name, Yagyū Muneyoshi wouldn't be associated with any

language tag since @language was reset to null in the expanded term

EXAMPLE 69: Clearing default language

{

 "@context": {

...

"@version": 1.1,

 "@vocab": "http://example.com/",

 "@language": "ja",

 "details": {

"@context": {

 "@language": null

 }

 }

 },

 "name": "花澄",
 "details": {"occupation": "Ninja"}

}

EXAMPLE 70: Expanded term definition with language

{

 "@context": {

...

 "ex": "http://example.com/vocab/",

 "@language": "ja",

 "name": { "@id": "ex:name", "@language": null },

 "occupation": { "@id": "ex:occupation" },

 "occupation_en": { "@id": "ex:occupation", "@language": "en" },

 "occupation_cs": { "@id": "ex:occupation", "@language": "cs" }

 },

"name": "Yagyū Muneyoshi",

 "occupation": "忍者",
 "occupation_en": "Ninja",

 "occupation_cs": "Nindža",

 ...

}

https://www.w3.org/TR/json-ld11/

84 of 215

definition.

NOTE

Language associations are only applied to plain strings. Typed values or

values that are subject to type coercion are not language tagged.

Just as in the example above, systems often need to express the value of a

property in multiple languages. Typically, such systems also try to ensure that

developers have a programmatically easy way to navigate the data structures

for the language-specific data. In this case, language maps may be utilized.

The example above expresses exactly the same information as the previous

example but consolidates all values in a single property. To access the value

in a specific language in a programming language supporting dot-notation

accessors for object properties, a developer may use the property.language

pattern (when languages are limited to the primary language sub-tag, and do

not depend on other sub-tags, such as "en-us"). For example, to access the

occupation in English, a developer would use the following code snippet:

obj.occupation.en.

Third, it is possible to override the default language by using a value object:

EXAMPLE 71: Language map expressing a property in three languages

{

 "@context": {

...

 "occupation": { "@id": "ex:occupation", "@container": "@language" }

 },

 "name": "Yagyū Muneyoshi",

 "occupation": {

 "ja": "忍者",
 "en": "Ninja",

 "cs": "Nindža"

 }

...

}

https://www.w3.org/TR/json-ld11/

85 of 215

This makes it possible to specify a plain string by omitting the @language tag

or setting it to null when expressing it using a value object:

See § 9.8 Language Maps for a description of using language maps to set the

language of mapped values.

This section is non-normative.

It is also possible to annotate a string, or language-tagged string, with its

base direction. As with language, it is possible to define a default base

EXAMPLE 72: Overriding default language using an expanded value

{

 "@context": {

...

 "@language": "ja"

 },

 "name": "花澄",
 "occupation": {

 "@value": "Scientist",

 "@language": "en"

 }

}

EXAMPLE 73: Removing language information using an expanded value

{

 "@context": {

...

 "@language": "ja"

 },

 "name": {

 "@value": "Frank"

 },

 "occupation": {

 "@value": "Ninja",

 "@language": "en"

 },

 "speciality": "⼿裏剣"
}

4.2.4.1 Base Direction§

https://www.w3.org/TR/json-ld11/

86 of 215

direction for a JSON-LD document by setting the @direction key in the

context:

The example above would associate the ar-EG language tag and "rtl" base

direction with the two strings HTMLوCSS: بيولاعقاومءاشنإوميمصت and ةبتكم . The

default base direction applies to all string values that are not type coerced.

To clear the default base direction for a subtree, @direction can be set to null

in an intervening context, such as a scoped context as follows:

Input

EXAMPLE 74: Setting the default base direction of a JSON-LD document

Compacted (Input) Expanded (Result) Statements Turtle (drops direction) Turtle (with datatype)

Turtle (with bnode structure) Open in playground
{

 "@context": {

 "title": "http://example.org/title",

 "publisher": "http://example.org/publisher",

...

"@language": "ar-EG",

 "@direction": "rtl"

 },

"title": "HTML و CSS: بيولا عقاوم ءاشنإ و ميمصت ",

 "publisher": " ةبتكم "

}

EXAMPLE 75: Clearing default base direction

{

 "@context": {

...

"@version": 1.1,

 "@vocab": "http://example.com/",

 "@language": "ar-EG",

 "@direction": "rtl",

 "details": {

"@context": {

 "@direction": null

 }

 }

 },

 "title": "HTML و CSS: بيولا عقاوم ءاشنإ و ميمصت ",

 "details": {"genre": "Technical Publication"}

}

https://www.w3.org/TR/json-ld11/

87 of 215

Second, it is possible to associate a base direction with a specific term using

an expanded term definition:

The example above would create three properties:

SubjectProperty Value LanguageDirection

_:b0
http://example.com

/vocab/publisher
ةبتكم ar-EG

_:b0
http://example.com

/vocab/title

HTMLوCSS: وميمصت

بيولاعقاومءاشنإ
ar-EG rtl

_:b0
http://example.com

/vocab/title

HTML and CSS:

Design and Build

Websites

en ltr

NOTE

Base direction associations are only applied to plain strings and language-

tagged strings. Typed values or values that are subject to type coercion

are not given a base direction.

Third, it is possible to override the default base direction by using a value

object:

EXAMPLE 76: Expanded term definition with language and direction

{

 "@context": {

...

 "@version": 1.1,

 "@language": "ar-EG",

 "@direction": "rtl",

 "ex": "http://example.com/vocab/",

 "publisher": { "@id": "ex:publisher", "@direction": null },

 "title": { "@id": "ex:title" },

 "title_en": { "@id": "ex:title", "@language": "en", "@direction": "ltr"

 },

"publisher": " ةبتكم ",

 "title": "HTML و CSS: بيولا عقاوم ءاشنإ و ميمصت ",

 "title_en": "HTML and CSS: Design and Build Websites",

 ...

}

https://www.w3.org/TR/json-ld11/

88 of 215

See Strings on the Web: Language and Direction Metadata [string-meta] for a

deeper discussion of base direction.

This section is non-normative.

A JSON-LD author can express multiple values in a compact way by using

arrays. Since graphs do not describe ordering for links between nodes, arrays

in JSON-LD do not convey any ordering of the contained elements by default.

This is exactly the opposite from regular JSON arrays, which are ordered by

default. For example, consider the following simple document:

Multiple values may also be expressed using the expanded form:

EXAMPLE 77: Overriding default language and default base direction

using an expanded value

{

 "@context": {

...

 "@language": "ar-EG",

 "@direction": "rtl"

 },

 "title": "HTML و CSS: بيولا عقاوم ءاشنإ و ميمصت ",

 "author": {

 "@value": "Jon Duckett",

 "@language": "en",

 "@direction": null

 }

}

4.3 Value Ordering§

Input

EXAMPLE 78: Multiple values with no inherent order

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},

...

 "@id": "http://example.org/people#joebob",

 "foaf:nick": ["joe", "bob", "JB"],

 ...

}

https://www.w3.org/TR/json-ld11/

89 of 215

NOTE

The example shown above would generates statement, again with no

inherent order.

Although multiple values of a property are typically of the same type, JSON-

LD places no restriction on this, and a property may have values of different

types:

Input

EXAMPLE 79: Using an expanded form to set multiple values

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {"dcterms": "http://purl.org/dc/terms/"},

 "@id": "http://example.org/articles/8",

 "dcterms:title": [

 {

 "@value": "Das Kapital",

 "@language": "de"

 },

 {

 "@value": "Capital",

 "@language": "en"

 }

]

}

Input

EXAMPLE 80: Multiple array values of different types

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {"ex": "http://example.org/"},

 "@id": "http://example.org/people#michael",

 "ex:name": [

 "Michael",

 {"@value": "Mike"},

 {"@value": "Miguel", "@language": "es"},

 { "@id": "https://www.wikidata.org/wiki/Q4927524" },

 42

]

}

https://www.w3.org/TR/json-ld11/

90 of 215

NOTE

When viewed as statements, the values have no inherent order.

This section is non-normative.

As the notion of ordered collections is rather important in data modeling, it is

useful to have specific language support. In JSON-LD, a list may be

represented using the @list keyword as follows:

This describes the use of this array as being ordered, and order is maintained

when processing a document. If every use of a given multi-valued property is

a list, this may be abbreviated by setting @container to @list in the context:

4.3.1 Lists§

Input

EXAMPLE 81: An ordered collection of values in JSON-LD

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},

...

 "@id": "http://example.org/people#joebob",

 "foaf:nick": {

 "@list": ["joe", "bob", "jaybee"]

 },

 ...

}

https://www.w3.org/TR/json-ld11/

91 of 215

The implementation of lists in RDF depends on linking anonymous nodes

together using the properties rdf:first and rdf:rest, with the end of the list

defined as the resource rdf:nil, as the "statements" tab illustrates. This

allows order to be represented within an unordered set of statements.

Both JSON-LD and Turtle provide shortcuts for representing ordered lists.

In JSON-LD 1.1, lists of lists, where the value of a list object, may itself be a

list object, are fully supported.

Note that the "@container": "@list" definition recursively describes array

values of lists as being, themselves, lists. For example, in The GeoJSON

Format (see [RFC7946]), coordinates are an ordered list of positions, which

are represented as an array of two or more numbers:

Input

EXAMPLE 82: Specifying that a collection is ordered in the context

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": {

...

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

 "@container": "@list"

 }

 },

...

 "@id": "http://example.org/people#joebob",

 "nick": ["joe", "bob", "jaybee"],

 ...

}

https://www.w3.org/TR/json-ld11/

92 of 215

For these examples, it's important that values expressed within bbox and

coordinates maintain their order, which requires the use of embedded list

structures. In JSON-LD 1.1, we can express this using recursive lists, by

simply adding the appropriate context definition:

EXAMPLE 83: Coordinates expressed in GeoJSON

{

 "type": "Feature",

 "bbox": [-10.0, -10.0, 10.0, 10.0],

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [-10.0, -10.0],

 [10.0, -10.0],

 [10.0, 10.0],

 [-10.0, -10.0]

]

]

 }

//...

}

https://www.w3.org/TR/json-ld11/

93 of 215

Note that coordinates includes three levels of lists.

Values of terms associated with an @list container are always represented in

the form of an array, even if there is just a single value or no value at all.

This section is non-normative.

While @list is used to describe ordered lists, the @set keyword is used to

describe unordered sets. The use of @set in the body of a JSON-LD document

is optimized away when processing the document, as it is just syntactic sugar.

However, @set is helpful when used within the context of a document. Values

of terms associated with an @set container are always represented in the

form of an array, even if there is just a single value that would otherwise be

optimized to a non-array form in compact form (see § 5.2 Compacted

Input

EXAMPLE 84: Coordinates expressed in JSON-LD

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "https://purl.org/geojson/vocab#",

 "type": "@type",

 "bbox": {"@container": "@list"},

 "coordinates": {"@container": "@list"}

 },

 "type": "Feature",

 "bbox": [-10.0, -10.0, 10.0, 10.0],

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [-10.0, -10.0],

 [10.0, -10.0],

 [10.0, 10.0],

 [-10.0, -10.0]

]

]

 }

//...

}

4.3.2 Sets§

https://www.w3.org/TR/json-ld11/

94 of 215

Document Form). This makes post-processing of JSON-LD documents easier

as the data is always in array form, even if the array only contains a single

value.

This describes the use of this array as being unordered, and order may

change when processing a document. By default, arrays of values are

unordered, but this may be made explicit by setting @container to @set in the

context:

Since JSON-LD 1.1, the @set keyword may be combined with other container

specifications within an expanded term definition to similarly cause

compacted values of indexes to be consistently represented using arrays. See

§ 4.6 Indexed Values for a further discussion.

Input

EXAMPLE 85: An unordered collection of values in JSON-LD

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},

...

 "@id": "http://example.org/people#joebob",

 "foaf:nick": {

 "@set": ["joe", "bob", "jaybee"]

 },

 ...

}

Input

EXAMPLE 86: Specifying that a collection is unordered in the context

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

"@context": {

...

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

 "@container": "@set"

 }

 },

...

 "@id": "http://example.org/people#joebob",

 "nick": ["joe", "bob", "jaybee"],

 ...

}

https://www.w3.org/TR/json-ld11/

95 of 215

This section is non-normative.

Unless the processing mode is set to json-ld-1.0, @type may be used with an

expanded term definition with @container set to @set; no other entries may be

set within such an expanded term definition. This is used by the Compaction

algorithm to ensure that the values of @type (or an alias) are always

represented in an array.

This section is non-normative.

Many JSON APIs separate properties from their entities using an

intermediate object; in JSON-LD these are called nested properties. For

example, a set of possible labels may be grouped under a common property:

4.3.3 Using @set with @type§

EXAMPLE 87: Setting @container: @set on @type

{

"@context": {

"@version": 1.1,

"@type": {"@container": "@set"}

 },

"@type": ["http:/example.org/type"]

}

4.4 Nested Properties§

https://www.w3.org/TR/json-ld11/

96 of 215

By defining labels using the keyword @nest, a JSON-LD processor will ignore

the nesting created by using the labels property and process the contents as

if it were declared directly within containing object. In this case, the labels

property is semantically meaningless. Defining it as equivalent to @nest

causes it to be ignored when expanding, making it equivalent to the

following:

Input

EXAMPLE 88: Nested properties

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "skos": "http://www.w3.org/2004/02/skos/core#",

"labels": "@nest",

 "main_label": {"@id": "skos:prefLabel"},

 "other_label": {"@id": "skos:altLabel"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 },

 "@id": "http://example.org/myresource",

 "homepage": "http://example.org",

 "labels": {

 "main_label": "This is the main label for my resource",

 "other_label": "This is the other label"

 }

}

Input

EXAMPLE 89: Nested properties folded into containing object

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "skos": "http://www.w3.org/2004/02/skos/core#",

 "main_label": {"@id": "skos:prefLabel"},

 "other_label": {"@id": "skos:altLabel"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 },

 "@id": "http://example.org/myresource",

 "homepage": "http://example.org",

"main_label": "This is the main label for my resource",

 "other_label": "This is the other label"

}

https://www.w3.org/TR/json-ld11/

97 of 215

Similarly, term definitions may contain a @nest property referencing a term

aliased to @nest which will cause such properties to be nested under that

aliased term when compacting. In the example below, both main_label and

other_label are defined with "@nest": "labels", which will cause them to be

serialized under labels when compacting.

Input

EXAMPLE 90: Defining property nesting - Expanded Input

[{

 "@id": "http://example.org/myresource",

 "http://xmlns.com/foaf/0.1/homepage": [

 {"@id": "http://example.org"}

],

 "http://www.w3.org/2004/02/skos/core#prefLabel": [

 {"@value": "This is the main label for my resource"}

],

 "http://www.w3.org/2004/02/skos/core#altLabel": [

 {"@value": "This is the other label"}

]

}]

Context

EXAMPLE 91: Defining property nesting - Context

{

 "@context": {

"@version": 1.1,

 "skos": "http://www.w3.org/2004/02/skos/core#",

"labels": "@nest",

 "main_label": {"@id": "skos:prefLabel", "@nest": "labels"},

 "other_label": {"@id": "skos:altLabel", "@nest": "labels"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 }

}

https://www.w3.org/TR/json-ld11/

98 of 215

NOTE

Nested properties are a new feature in JSON-LD 1.1.

This section is non-normative.

Embedding is a JSON-LD feature that allows an author to use node objects

as property values. This is a commonly used mechanism for creating a parent-

child relationship between two nodes.

Without embedding, node objects can be linked by referencing the identifier

of another node object. For example:

Result

EXAMPLE 92: Defining property nesting

Compacted (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "skos": "http://www.w3.org/2004/02/skos/core#",

"labels": "@nest",

 "main_label": {"@id": "skos:prefLabel", "@nest": "labels"},

 "other_label": {"@id": "skos:altLabel", "@nest": "labels"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 },

 "@id": "http://example.org/myresource",

 "homepage": "http://example.org",

"labels": {

 "main_label": "This is the main label for my resource",

 "other_label": "This is the other label"

 }

}

4.5 Embedding§

https://www.w3.org/TR/json-ld11/

99 of 215

The previous example describes two node objects, for Manu and Gregg, with

the knows property defined to treat string values as identifiers. Embedding

allows the node object for Gregg to be embedded as a value of the knows

property:

A node object, like the one used above, may be used in any value position in

the body of a JSON-LD document.

Input

EXAMPLE 93: Referencing node objects

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

"knows": {"@type": "@id"}

 },

 "@graph": [{

 "name": "Manu Sporny",

 "@type": "Person",

"knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

 }]

}

Input

EXAMPLE 94: Embedding a node object as property value of another node

object

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

 "@type": "Person",

 "name": "Manu Sporny",

"knows": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

}

https://www.w3.org/TR/json-ld11/

100 of 215

While it is considered a best practice to identify nodes in a graph, at times

this is impractical. In the data model, nodes without an explicit identifier are

called blank nodes, which can be represented in a serialization such as JSON-

LD using a blank node identifier. In the previous example, the top-level node

for Manu does not have an identifier, and does not need one to describe it

within the data model. However, if we were to want to describe a knows

relationship from Gregg to Manu, we would need to introduce a blank node

identifier (here _:b0).

Blank node identifiers may be automatically introduced by algorithms such as

flattening, but they are also useful for authors to describe such relationships

directly.

This section is non-normative.

At times, it becomes necessary to be able to express information without

being able to uniquely identify the node with an IRI. This type of node is

called a blank node. JSON-LD does not require all nodes to be identified using

@id. However, some graph topologies may require identifiers to be

serializable. Graphs containing loops, e.g., cannot be serialized using

embedding alone, @id must be used to connect the nodes. In these situations,

one can use blank node identifiers, which look like IRIs using an underscore

Input

EXAMPLE 95: Referencing an unidentified node

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

"@id": "_:b0",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

"knows": {"@id": "_:b0"}

 }

}

4.5.1 Identifying Blank Nodes§

https://www.w3.org/TR/json-ld11/

101 of 215

(_) as scheme. This allows one to reference the node locally within the

document, but makes it impossible to reference the node from an external

document. The blank node identifier is scoped to the document in which it is

used.

The example above contains information about two secret agents that cannot

be identified with an IRI. While expressing that agent 1 knows agent 2 is

possible without using blank node identifiers, it is necessary to assign agent 1

an identifier so that it can be referenced from agent 2.

It is worth noting that blank node identifiers may be relabeled during

processing. If a developer finds that they refer to the blank node more than

once, they should consider naming the node using a dereferenceable IRI so

that it can also be referenced from other documents.

This section is non-normative.

Sometimes multiple property values need to be accessed in a more direct

fashion than iterating though multiple array values. JSON-LD provides an

indexing mechanism to allow the use of an intermediate map to associate

specific indexes with associated values.

Data Indexing
As described in § 4.6.1 Data Indexing, data indexing allows an arbitrary

key to reference a node or value.

Language Indexing

Input

EXAMPLE 96: Specifying a local blank node identifier

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": "http://schema.org/",

...

 "@id": "_:n1",

 "name": "Secret Agent 1",

 "knows": {

 "name": "Secret Agent 2",

 "knows": { "@id": "_:n1" }

 }

}

4.6 Indexed Values§

https://www.w3.org/TR/json-ld11/

102 of 215

As described in § 4.6.2 Language Indexing, language indexing allows a

language to reference a string and be interpreted as the language

associated with that string.

Node Identifier Indexing
As described in § 4.6.3 Node Identifier Indexing, node identifier indexing

allows an IRI to reference a node and be interpreted as the identifier of

that node.

Node Type Indexing
As described in § 4.6.4 Node Type Indexing, node type indexing allows an

IRI to reference a node and be interpreted as a type of that node.

See § 4.9 Named Graphs for other uses of indexing in JSON-LD.

This section is non-normative.

Databases are typically used to make access to data more efficient.

Developers often extend this sort of functionality into their application data to

deliver similar performance gains. This data may have no meaning from a

Linked Data standpoint, but is still useful for an application.

JSON-LD introduces the notion of index maps that can be used to structure

data into a form that is more efficient to access. The data indexing feature

allows an author to structure data using a simple key-value map where the

keys do not map to IRIs. This enables direct access to data instead of having

to scan an array in search of a specific item. In JSON-LD such data can be

specified by associating the @index keyword with a @container declaration in

the context:

4.6.1 Data Indexing§

https://www.w3.org/TR/json-ld11/

103 of 215

In the example above, the athletes term has been marked as an index map.

The catcher and pitcher keys will be ignored semantically, but preserved

syntactically, by the JSON-LD Processor. If used in JavaScript, this can allow

a developer to access a particular athlete using the following code snippet:

obj.athletes.pitcher.

The interpretation of the data is expressed in the statements table. Note how

the index keys do not appear in the statements, but would continue to

exist if the document were compacted or expanded (see § 5.2 Compacted

Document Form and § 5.1 Expanded Document Form) using a JSON-LD

processor.

Input

EXAMPLE 97: Indexing data in JSON-LD

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "athletes": {

 "@id": "schema:athlete",

"@container": "@index"

 },

 "position": "schema:jobTitle"

 },

 "@id": "http://example.com/",

 "@type": "schema:SportsTeam",

 "name": "San Franciso Giants",

"athletes": {

 "catcher": {

 "@type": "schema:Person",

 "name": "Buster Posey",

 "position": "Catcher"

 },

 "pitcher": {

 "@type": "schema:Person",

 "name": "Madison Bumgarner",

 "position": "Starting Pitcher"

 },

 }

}

https://www.w3.org/TR/json-ld11/

104 of 215

⚠ Warning

As data indexes are not preserved when round-tripping to RDF; this

feature should be used judiciously. Often, other indexing mechanisms,

which are preserved, are more appropriate.

The value of @container can also be an array containing both @index and @set.

When compacting, this ensures that a JSON-LD Processor will use the array

form for all values of indexes.

Unless the processing mode is set to json-ld-1.0, the special index @none is

used for indexing data which does not have an associated index, which is

useful to maintain a normalized representation.

https://www.w3.org/TR/json-ld11/

105 of 215

This section is non-normative.

In its simplest form (as in the examples above), data indexing assigns no

semantics to the keys of an index map. However, in some situations, the keys

Input

EXAMPLE 98: Indexing data using @none

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "athletes": {

 "@id": "schema:athlete",

 "@container": "@index"

 },

 "position": "schema:jobTitle"

 },

 "@id": "http://example.com/",

 "@type": "schema:SportsTeam",

 "name": "San Franciso Giants",

 "athletes": {

 "catcher": {

 "@type": "schema:Person",

 "name": "Buster Posey",

 "position": "Catcher"

 },

 "pitcher": {

 "@type": "schema:Person",

 "name": "Madison Bumgarner",

 "position": "Starting Pitcher"

 },

"@none": {

 "name": "Lou Seal",

 "position": "Mascot"

 },

 }

}

4.6.1.1 Property-based data indexing§

https://www.w3.org/TR/json-ld11/

106 of 215

used to index objects are semantically linked to these objects, and should be

preserved not only syntactically, but also semantically.

Unless the processing mode is set to json-ld-1.0, "@container": "@index" in a

term description can be accompanied with an "@index" key. The value of that

key must map to an IRI, which identifies the semantic property linking each

object to its key.

Input

EXAMPLE 99: Property-based data indexing

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "athletes": {

 "@id": "schema:athlete",

 "@container": "@index",

"@index": "schema:jobTitle"

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:SportsTeam",

 "name": "San Franciso Giants",

"athletes": {

 "Catcher": {

↑ "Catcher" will add `"schema:jobTitle": "Catcher"` when expanded

 "@type": "schema:Person",

 "name": "Buster Posey"

 },

 "Starting Pitcher": {

 "@type": "schema:Person",

 "name": "Madison Bumgarner"

 },

 }

}

https://www.w3.org/TR/json-ld11/

107 of 215

NOTE

When using property-based data indexing, index maps can only be used on

node objects, not value objects or graph objects. Value objects are

restricted to have only certain keys and do not support arbitrary

properties.

This section is non-normative.

JSON which includes string values in multiple languages may be represented

using a language map to allow for easily indexing property values by

language tag. This enables direct access to language values instead of having

to scan an array in search of a specific item. In JSON-LD such data can be

specified by associating the @language keyword with a @container declaration

in the context:

In the example above, the label term has been marked as a language map.

The en and de keys are implicitly associated with their respective values by

the JSON-LD Processor. This allows a developer to access the German version

of the label using the following code snippet: obj.label.de, which, again, is

only appropriate when languages are limited to the primary language sub-tag

4.6.2 Language Indexing§

Input

EXAMPLE 100: Indexing languaged-tagged strings in JSON-LD

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

 "@container": "@language"

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": "The Queen",

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

108 of 215

and do not depend on other sub-tags, such as "de-at".

The value of @container can also be an array containing both @language and

@set. When compacting, this ensures that a JSON-LD Processor will use the

array form for all values of language tags.

Unless the processing mode is set to json-ld-1.0, the special index @none is

used for indexing strings which do not have a language; this is useful to

maintain a normalized representation for string values not having a datatype.

Input

EXAMPLE 101: Indexing languaged-tagged strings in JSON-LD with @set

representation

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

 "@container": ["@language", "@set"]

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": ["The Queen"],

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

109 of 215

This section is non-normative.

In addition to index maps, JSON-LD introduces the notion of id maps for

structuring data. The id indexing feature allows an author to structure data

using a simple key-value map where the keys map to IRIs. This enables direct

access to associated node objects instead of having to scan an array in search

of a specific item. In JSON-LD such data can be specified by associating the

@id keyword with a @container declaration in the context:

Input

EXAMPLE 102: Indexing languaged-tagged strings using @none for no

language

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

 "@container": "@language"

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": "The Queen",

 "de": ["Die Königin", "Ihre Majestät"],

"@none": "The Queen"

 }

}

4.6.3 Node Identifier Indexing§

https://www.w3.org/TR/json-ld11/

110 of 215

In the example above, the post term has been marked as an id map. The

http://example.com/posts/1/en and http://example.com/posts/1/de keys will

be interpreted as the @id property of the node object value.

The interpretation of the data above is exactly the same as that in § 4.6.1

Data Indexing using a JSON-LD processor.

The value of @container can also be an array containing both @id and @set.

When compacting, this ensures that a JSON-LD processor will use the array

form for all values of node identifiers.

Input

EXAMPLE 103: Indexing data in JSON-LD by node identifiers

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

"@container": "@id",

 "@context": {

 "@base": "http://example.com/posts/"

 }

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

"1/en": {

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

"1/de": {

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 }

 }

}

https://www.w3.org/TR/json-ld11/

111 of 215

The special index @none is used for indexing node objects which do not have

an @id, which is useful to maintain a normalized representation. The @none

index may also be a term which expands to @none, such as the term none used

in the example below.

Input

EXAMPLE 104: Indexing data in JSON-LD by node identifiers with @set

representation

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": ["@id", "@set"]

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "http://example.com/posts/1/en": [{

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 }],

 "http://example.com/posts/1/de": [{

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 }]

 }

}

https://www.w3.org/TR/json-ld11/

112 of 215

NOTE

Id maps are a new feature in JSON-LD 1.1.

This section is non-normative.

Input

EXAMPLE 105: Indexing data in JSON-LD by node identifiers using @none

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": "@id"

 },

"none": "@none"

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "http://example.com/posts/1/en": {

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "http://example.com/posts/1/de": {

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 },

"none": {

 "body": "Description for object without an @id",

 "words": 20

 }

 }

}

4.6.4 Node Type Indexing§

https://www.w3.org/TR/json-ld11/

113 of 215

In addition to id and index maps, JSON-LD introduces the notion of type maps

for structuring data. The type indexing feature allows an author to structure

data using a simple key-value map where the keys map to IRIs. This enables

data to be structured based on the @type of specific node objects. In JSON-LD

such data can be specified by associating the @type keyword with a

@container declaration in the context:

In the example above, the affiliation term has been marked as a type map.

The schema:Corporation and schema:ProfessionalService keys will be

interpreted as the @type property of the node object value.

The value of @container can also be an array containing both @type and @set.

When compacting, this ensures that a JSON-LD processor will use the array

form for all values of types.

Input

EXAMPLE 106: Indexing data in JSON-LD by type

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "affiliation": {

 "@id": "schema:affiliation",

"@container": "@type"

 }

 },

 "name": "Manu Sporny",

 "affiliation": {

"schema:Corporation": {

 "@id": "https://digitalbazaar.com/",

 "name": "Digital Bazaar"

 },

"schema:ProfessionalService": {

 "@id": "https://spec-ops.io",

 "name": "Spec-Ops"

 }

 }

}

https://www.w3.org/TR/json-ld11/

114 of 215

The special index @none is used for indexing node objects which do not have

an @type, which is useful to maintain a normalized representation. The @none

index may also be a term which expands to @none, such as the term none used

in the example below.

Input

EXAMPLE 107: Indexing data in JSON-LD by type with @set

representation

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "affiliation": {

 "@id": "schema:affiliation",

 "@container": ["@type", "@set"]

 }

 },

 "name": "Manu Sporny",

 "affiliation": {

 "schema:Corporation": [{

 "@id": "https://digitalbazaar.com/",

 "name": "Digital Bazaar"

 }],

 "schema:ProfessionalService": [{

 "@id": "https://spec-ops.io",

 "name": "Spec-Ops"

 }]

 }

}

https://www.w3.org/TR/json-ld11/

115 of 215

As with id maps, when used with @type, a container may also include @set to

ensure that key values are always contained in an array.

NOTE

Type maps are a new feature in JSON-LD 1.1.

This section is non-normative.

Input

EXAMPLE 108: Indexing data in JSON-LD by type using @none

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "affiliation": {

 "@id": "schema:affiliation",

 "@container": "@type"

 },

"none": "@none"

 },

 "name": "Manu Sporny",

 "affiliation": {

 "schema:Corporation": {

 "@id": "https://digitalbazaar.com/",

 "name": "Digital Bazaar"

 },

 "schema:ProfessionalService": {

 "@id": "https://spec-ops.io",

 "name": "Spec-Ops"

 },

"none": {

 "@id": "https://greggkellogg.net/",

 "name": "Gregg Kellogg"

 }

 }

}

4.7 Included Nodes§

https://www.w3.org/TR/json-ld11/

116 of 215

Sometimes it is also useful to list node objects as part of another node object.

For instance, to represent a set of resources which are used by some other

resource. Included blocks may be also be used to collect such secondary node

objects which can be referenced from a primary node object. For an example,

consider a node object containing a list of different items, some of which

share some common elements:

When flattened, this will move the enum:c6 and enum:s2 elements from the

included block into the outer array.

Input

EXAMPLE 109: Included Blocks

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.org/",

 "classification": {"@type": "@vocab"},

 "service": {"@type": "@vocab"}

 },

 "@id": "http://example.org/base/1",

 "@type": "Thing-with-Items",

 "items": [{

 "@id":"http://example.org/base/2",

 "classification": "enum#c6",

 "service": "enum#s2"

 }, {

 "@id": "http://example.org/base/3",

 "classification": "enum#c6"

 }],

"@included": [{

 "@id": "http://example.org/enum#c6",

 "@type": "Type",

 "label": "Classification 6"

 }, {

 "@id": "http://example.org/enum#s2",

 "@type": "Service",

 "label": "Login Service"

 }]

}

https://www.w3.org/TR/json-ld11/

117 of 215

Included resources are described in Inclusion of Related Resources of JSON

API [JSON.API] as a way to include related resources associated with some

primary resource; @included provides an analogous possibility in JSON-LD.

As a by product of the use of @included within node objects, a map may

contain only @included, to provide a feature similar to that described in § 4.1

Advanced Context Usage, where @graph is used to described disconnected

nodes.

Result

EXAMPLE 110: Flattened form for included blocks

Flattened (Result) Statements Turtle Open in playground

 [{

 "@id": "http://example.org/base/1",

 "@type": ["http://example.org/Thing-with-Items"],

 "http://example.org/items": [

 {"@id": "http://example.org/base/2"},

 {"@id": "http://example.org/base/3"}

]

 }, {

 "@id": "http://example.org/enum#c6",

 "@type": ["http://example.org/Type"],

 "http://example.org/label": [{"@value": "Classification 6"}]

 }, {

 "@id": "http://example.org/enum#s2",

 "@type": ["http://example.org/Service"],

 "http://example.org/label": [{"@value": "Login Service"}]

 }, {

 "@id": "http://example.org/base/2",

 "http://example.org/classification": [

 {"@id": "http://example.org/enum#c6"}

],

 "http://example.org/service": [

 {"@id": "http://example.org/enum#s2"}

]

 }, {

 "@id": "http://example.org/base/3",

 "http://example.org/classification": [

 {"@id": "http://example.org/enum#c6"}

]

 }

]

https://www.w3.org/TR/json-ld11/

118 of 215

However, in contrast to @graph, @included does not interact with other

properties contained within the same map, a feature discussed further in

§ 4.9 Named Graphs.

This section is non-normative.

JSON-LD serializes directed graphs. That means that every property points

from a node to another node or value. However, in some cases, it is desirable

to serialize in the reverse direction. Consider for example the case where a

person and its children should be described in a document. If the used

vocabulary does not provide a children property but just a parent property,

every node representing a child would have to be expressed with a property

pointing to the parent as in the following example.

Input

EXAMPLE 111: Describing disconnected nodes with @included

Compacted (Input) Expanded (Result) Flattened Statements Turtle

Open in playground
{

 "@context": {

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"}

 },

"@included": [{

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }]

}

4.8 Reverse Properties§

https://www.w3.org/TR/json-ld11/

119 of 215

Expressing such data is much simpler by using JSON-LD's @reverse keyword:

The @reverse keyword can also be used in expanded term definitions to create

reverse properties as shown in the following example:

Input

EXAMPLE 112: A document with children linking to their parent

Compacted (Input) Expanded (Result) Statements Turtle Open in playground

[

 {

"@id": "#homer",

 "http://example.com/vocab#name": "Homer"

 }, {

 "@id": "#bart",

 "http://example.com/vocab#name": "Bart",

"http://example.com/vocab#parent": { "@id": "#homer" }

 }, {

 "@id": "#lisa",

 "http://example.com/vocab#name": "Lisa",

"http://example.com/vocab#parent": { "@id": "#homer" }

 }

]

Input

EXAMPLE 113: A person and its children using a reverse property

Compacted (Input) Expanded (Result) Flattened Statements Turtle

Open in playground
{

 "@id": "#homer",

 "http://example.com/vocab#name": "Homer",

"@reverse": {

"http://example.com/vocab#parent": [

 {

 "@id": "#bart",

 "http://example.com/vocab#name": "Bart"

 }, {

 "@id": "#lisa",

 "http://example.com/vocab#name": "Lisa"

 }

]

 }

}

https://www.w3.org/TR/json-ld11/

120 of 215

This section is non-normative.

At times, it is necessary to make statements about a graph itself, rather than

just a single node. This can be done by grouping a set of nodes using the

@graph keyword. A developer may also name data expressed using the @graph

keyword by pairing it with an @id keyword as shown in the following example:

Input

EXAMPLE 114: Using @reverse to define reverse properties

Compacted (Input) Expanded (Result) Flattened Statements Turtle

Open in playground
{

 "@context": { "name": "http://example.com/vocab#name",

"children": { "@reverse": "http://example.com/vocab#parent" }

 },

 "@id": "#homer",

 "name": "Homer",

"children": [

 {

 "@id": "#bart",

 "name": "Bart"

 }, {

 "@id": "#lisa",

 "name": "Lisa"

 }

]

}

4.9 Named Graphs§

https://www.w3.org/TR/json-ld11/

121 of 215

The example above expresses a named graph that is identified by the IRI

http://example.org/foaf-graph. That graph is composed of the statements

about Manu and Gregg. Metadata about the graph itself is expressed via the

generatedAt property, which specifies when the graph was generated.

When a JSON-LD document's top-level structure is a map that contains no

other keys than @graph and optionally @context (properties that are not

mapped to an IRI or a keyword are ignored), @graph is considered to express

the otherwise implicit default graph. This mechanism can be useful when a

number of nodes exist at the document's top level that share the same

context, which is, e.g., the case when a document is flattened. The @graph

keyword collects such nodes in an array and allows the use of a shared

context.

Input

EXAMPLE 115: Identifying and making statements about a graph

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

 "generatedAt": {

 "@id": "http://www.w3.org/ns/prov#generatedAtTime",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 },

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"}

 },

"@id": "http://example.org/foaf-graph",

 "generatedAt": "2012-04-09T00:00:00",

 "@graph": [

 {

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

]

}

https://www.w3.org/TR/json-ld11/

122 of 215

In this case, embedding can not be used as the graph contains unrelated

nodes. This is equivalent to using multiple node objects in array and defining

the @context within each node object:

Input

EXAMPLE 116: Using @graph to explicitly express the default graph

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

 "@graph": [

 {

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

 }

]

}

https://www.w3.org/TR/json-ld11/

123 of 215

This section is non-normative.

In some cases, it is useful to logically partition data into separate graphs,

without making this explicit within the JSON expression. For example, a JSON

document may contain data against which other metadata is asserted and it

is useful to separate this data in the data model using the notion of named

graphs, without the syntactic overhead associated with the @graph keyword.

An expanded term definition can use @graph as the value of @container. This

indicates that values of this term should be considered to be named graphs,

where the graph name is an automatically assigned blank node identifier

creating an implicitly named graph. When expanded, these become simple

graph objects.

A different example uses an anonymously named graph as follows:

Input

EXAMPLE 117: Context needs to be duplicated if @graph is not used

Compacted (Input) Expanded (Result) Statements TriG Open in playground

[

 {

"@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

 "knows": {"@type": "@id"}

 },

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 },

 {

"@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

 "knows": {"@type": "@id"}

 },

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

]

4.9.1 Graph Containers§

https://www.w3.org/TR/json-ld11/

124 of 215

The example above expresses an anonymously named graph making a

statement. The default graph includes a statement saying that the subject

wrote that statement. This is an example of separating statements into a

named graph, and then making assertions about the statements contained

within that named graph.

NOTE

Strictly speaking, the value of such a term is not a named graph, rather it

is the graph name associated with the named graph, which exists

separately within the dataset.

NOTE

Graph Containers are a new feature in JSON-LD 1.1.

This section is non-normative.

In addition to indexing node objects by index, graph objects may also be

indexed by an index. By using the @graph container type, introduced in § 4.9.1

Graph Containers in addition to @index, an object value of such a property is

Input

EXAMPLE 118: Implicitly named graph

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

 "@version": 1.1,

 "@base": "http://dbpedia.org/resource/",

 "said": "http://example.com/said",

"wrote": {"@id": "http://example.com/wrote", "@container": "@graph"}

 },

 "@id": "William_Shakespeare",

"wrote": {

 "@id": "Richard_III_of_England",

 "said": "My kingdom for a horse"

 }

}

4.9.2 Named Graph Data Indexing§

https://www.w3.org/TR/json-ld11/

125 of 215

treated as a key-value map where the keys do not map to IRIs, but are taken

from an @index property associated with named graphs which are their

values. When expanded, these must be simple graph objects

The following example describes a default graph referencing multiple named

graphs using an index map.

As with index maps, when used with @graph, a container may also include @set

to ensure that key values are always contained in an array.

The special index @none is used for indexing graphs which do not have an

@index key, which is useful to maintain a normalized representation. Note,

however, that compacting a document where multiple unidentified named

Input

EXAMPLE 119: Indexing graph data in JSON-LD

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": ["@graph", "@index"]

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

"post": {

 "en": {

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "de": {

 "@id": "http://example.com/posts/1/de",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl.

 "words": 1204

 }

 }

}

https://www.w3.org/TR/json-ld11/

126 of 215

graphs are compacted using the @none index will result in the content of

those graphs being merged. To prevent this, give each graph a distinct

@index key.

NOTE

Named Graph Data Indexing is a new feature in JSON-LD 1.1.

Input

EXAMPLE 120: Indexing graphs using @none for no index

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": ["@graph", "@index"]

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "en": {

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "@none": {

 "@id": "http://example.com/posts/1/no-language",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl.

 "words": 1204

 }

 }

}

4.9.3 Named Graph Indexing§

https://www.w3.org/TR/json-ld11/

127 of 215

This section is non-normative.

In addition to indexing node objects by identifier, graph objects may also be

indexed by their graph name. By using the @graph container type, introduced

in § 4.9.1 Graph Containers in addition to @id, an object value of such a

property is treated as a key-value map where the keys represent the

identifiers of named graphs which are their values.

The following example describes a default graph referencing multiple named

graphs using an id map.

https://www.w3.org/TR/json-ld11/

128 of 215

As with id maps, when used with @graph, a container may also include @set to

ensure that key values are always contained in an array.

As with id maps, the special index @none is used for indexing named graphs

which do not have an @id, which is useful to maintain a normalized

representation. The @none index may also be a term which expands to @none.

Input

EXAMPLE 121: Referencing named graphs using an id map

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

"@version": 1.1,

 "generatedAt": {

 "@id": "http://www.w3.org/ns/prov#generatedAtTime",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 },

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {

 "@id": "http://xmlns.com/foaf/0.1/knows",

 "@type": "@id"

 },

"graphMap": {

 "@id": "http://example.org/graphMap",

 "@container": ["@graph", "@id"]

 }

 },

 "@id": "http://example.org/foaf-graph",

 "generatedAt": "2012-04-09T00:00:00",

"graphMap": {

 "http://manu.sporny.org/about": {

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 },

"https://greggkellogg.net/foaf": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

 }

}

https://www.w3.org/TR/json-ld11/

129 of 215

Note, however, that if multiple graphs are represented without an @id,

they will be merged on expansion. To prevent this, use @none judiciously,

and consider giving graphs their own distinct identifier.

NOTE

Graph Containers are a new feature in JSON-LD 1.1.

Input

EXAMPLE 122: Referencing named graphs using an id map with @none

Compacted (Input) Expanded (Result) Statements TriG Open in playground

{

 "@context": {

 "@version": 1.1,

 "generatedAt": {

 "@id": "http://www.w3.org/ns/prov#generatedAtTime",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 },

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"},

 "graphMap": {

 "@id": "http://example.org/graphMap",

 "@container": ["@graph", "@id"]

 }

 },

 "@id": "http://example.org/foaf-graph",

 "generatedAt": "2012-04-09T00:00:00",

 "graphMap": {

"@none": [{

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }]

 }

}

https://www.w3.org/TR/json-ld11/

130 of 215

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines the interface to a JSON-LD Processor and includes a number of

methods used for manipulating different forms of JSON-LD (see § 5. Forms of

JSON-LD). This includes a general mechanism for loading remote documents,

including referenced JSON-LD documents and remote contexts, and

potentially extracting embedded JSON-LD from other formats such as

[HTML]. This is more fully described in Remote Document and Context

Retrieval in [JSON-LD11-API].

A documentLoader can be useful in a number of contexts where loading

remote documents can be problematic:

Remote context documents should be cached to prevent overloading the

location of the remote context for each request. Normally, an HTTP

caching infrastructure might be expected to handle this, but in some

contexts this might not be feasible. A documentLoader implementation

might provide separate logic for performing such caching.

Non-standard URL schemes may not be widely implemented, or may have

behavior specific to a given application domain. A documentLoader can

be defined to implement document retrieval semantics.

Certain well-known contexts may be statically cached within a

documentLoader implementation. This might be particularly useful in

embedded applications, where it is not feasible, or even possible, to

access remote documents.

For security purposes, the act of remotely retrieving a document may

provide a signal of application behavior. The judicious use of a

documentLoader can isolate the application and reduce its online

fingerprint.

This section is non-normative.

As with many data formats, there is no single correct way to describe data in

JSON-LD. However, as JSON-LD is used for describing graphs, certain

transformations can be used to change the shape of the data, without

changing its meaning as Linked Data.

4.10 Loading Documents§

5. Forms of JSON-LD§

https://www.w3.org/TR/json-ld11/

131 of 215

Expanded Document Form
Expansion is the process of taking a JSON-LD document and applying a

context so that the @context is no longer necessary. This process is

described further in § 5.1 Expanded Document Form.

Compacted Document Form
Compaction is the process of applying a provided context to an existing

JSON-LD document. This process is described further in § 5.2 Compacted

Document Form.

Flattened Document Form
Flattening is the process of extracting embedded nodes to the top level of

the JSON tree, and replacing the embedded node with a reference,

creating blank node identifiers as necessary. This process is described

further in § 5.3 Flattened Document Form.

Framed Document Form
Framing is used to shape the data in a JSON-LD document, using an

example frame document which is used to both match the flattened data

and show an example of how the resulting data should be shaped. This

process is described further in § 5.4 Framed Document Form.

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines a method for expanding a JSON-LD document. Expansion is the

process of taking a JSON-LD document and applying a context such that all

IRIs, types, and values are expanded so that the @context is no longer

necessary.

For example, assume the following JSON-LD input document:

5.1 Expanded Document Form§

https://www.w3.org/TR/json-ld11/

132 of 215

Running the JSON-LD Expansion algorithm against the JSON-LD input

document provided above would result in the following output:

JSON-LD's media type defines a profile parameter which can be used to

signal or request expanded document form. The profile URI identifying

expanded document form is http://www.w3.org/ns/json-ld#expanded.

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines a method for compacting a JSON-LD document. Compaction is

Input

EXAMPLE 123: Sample JSON-LD document to be expanded

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/"

}

Result

EXAMPLE 124: Expanded form for the previous example

Expanded (Result) Statements Turtle Open in playground

[

 {

 "http://xmlns.com/foaf/0.1/name": [

 { "@value": "Manu Sporny" }

],

 "http://xmlns.com/foaf/0.1/homepage": [

 { "@id": "http://manu.sporny.org/" }

]

 }

]

5.2 Compacted Document Form§

https://www.w3.org/TR/json-ld11/

133 of 215

the process of applying a developer-supplied context to shorten IRIs to terms

or compact IRIs and JSON-LD values expressed in expanded form to simple

values such as strings or numbers. Often this makes it simpler to work with

document as the data is expressed in application-specific terms. Compacted

documents are also typically easier to read for humans.

For example, assume the following JSON-LD input document:

Additionally, assume the following developer-supplied JSON-LD context:

Running the JSON-LD Compaction algorithm given the context supplied

above against the JSON-LD input document provided above would result in

the following output:

Input

EXAMPLE 125: Sample expanded JSON-LD document

[

 {

 "http://xmlns.com/foaf/0.1/name": ["Manu Sporny"],

 "http://xmlns.com/foaf/0.1/homepage": [

 {

 "@id": "http://manu.sporny.org/"

 }

]

 }

]

Context

EXAMPLE 126: Sample context

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 }

}

https://www.w3.org/TR/json-ld11/

134 of 215

JSON-LD's media type defines a profile parameter which can be used to

signal or request compacted document form. The profile URI identifying

compacted document form is http://www.w3.org/ns/json-ld#compacted.

The details of Compaction are described in the Compaction algorithm in

[JSON-LD11-API]. This section provides a short description of how the

algorithm operates as a guide to authors creating contexts to be used for

compacting JSON-LD documents.

The purpose of compaction is to apply the term definitions, vocabulary

mapping, default language, and base IRI to an existing JSON-LD document to

cause it to be represented in a form that is tailored to the use of the JSON-LD

document directly as JSON. This includes representing values as strings,

rather than value objects, where possible, shortening the use of list objects

into simple arrays, reversing the relationship between nodes, and using data

maps to index into multiple values instead of representing them as an array

of values.

This section is non-normative.

In an expanded JSON-LD document, IRIs are always represented as absolute

IRIs. In many cases, it is preferable to use a shorter version, either a relative

IRI reference, compact IRI, or term. Compaction uses a combination of

elements in a context to create a shorter form of these IRIs. See § 4.1.2

EXAMPLE 127: Compact form of the sample document once sample

context has been applied

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/"

}

5.2.1 Shortening IRIs§

https://www.w3.org/TR/json-ld11/

135 of 215

Default Vocabulary, § 4.1.3 Base IRI, and § 4.1.5 Compact IRIs for more

details.

The vocabulary mapping can be used to shorten IRIs that may be vocabulary

relative by removing the IRI prefix that matches the vocabulary mapping.

This is done whenever an IRI is determined to be vocabulary relative, i.e.,

used as a property, or a value of @type, or as the value of a term described as

"@type": "@vocab".

Input

Context

Result

EXAMPLE 128: Compacting using a default vocabulary

Given the following expanded document:

[{

 "@id": "http://example.org/places#BrewEats",

 "@type": ["http://example.org/Restaurant"],

 "http://example.org/name": [{"@value": "Brew Eats"}]

}]

And the following context:

{

 "@context": {

"@vocab": "http://example.org/"

 }

}

The compaction algorithm will shorten all vocabulary-relative IRIs that

begin with http://xmlns.com/foaf/0.1/:

{

 "@context": {

"@vocab": "http://example.org/"

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

"name": "Brew Eats"

}

Note that two IRIs were shortened, unnecessary arrays are removed, and

simple string values are replaced with the string.

See Security Considerations in § C. IANA Considerations for a discussion

on how string vocabulary-relative IRI resolution via concatenation.

https://www.w3.org/TR/json-ld11/

136 of 215

This section is non-normative.

To be unambiguous, the expanded document form always represents nodes

and values using node objects and value objects. Moreover, property values

are always contained within an array, even when there is only one value.

Sometimes this is useful to maintain a uniformity of access, but most JSON

data use the simplest possible representation, meaning that properties have

single values, which are represented as strings or as structured values such

as node objects. By default, compaction will represent values which are

simple strings as strings, but sometimes a value is an IRI, a date, or some

other typed value for which a simple string representation would loose

Input

Context

Result

EXAMPLE 129: Compacting using a base IRI

Given the following expanded document:

[{

 "@id": "http://example.com/document.jsonld",

 "http://www.w3.org/2000/01/rdf-schema#label": [{"@value": "Just a simple docu

}]

And the following context:

{

 "@context": {

"@base": "http://example.com/",

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 }

}

The compaction algorithm will shorten all document-relative IRIs that

begin with http://example.com/:

{

 "@context": {

"@base": "http://example.com/",

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 },

 "@id": "document.jsonld",

 "label": "Just a simple document"

}

5.2.2 Representing Values as Strings§

https://www.w3.org/TR/json-ld11/

137 of 215

information. By specifying this within a term definition, the semantics of a

string value can be inferred from the definition of the term used as a

property. See § 4.2 Describing Values for more details.

https://www.w3.org/TR/json-ld11/

138 of 215

Input

Context

EXAMPLE 130: Coercing Values to Strings

Given the following expanded document:

[{

 "http://example.com/plain": [

 {"@value": "string"},

 {"@value": true},

 {"@value": 1}

],

 "http://example.com/date": [

 {

 "@value": "2018-02-16",

 "@type": "http://www.w3.org/2001/XMLSchema#date"

 }

],

 "http://example.com/en": [

 {"@value": "English", "@language": "en"}

],

 "http://example.com/iri": [

 {"@id": "http://example.com/some-location"}

]

}]

And the following context:

{

 "@context": {

 "@vocab": "http://example.com/",

 "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"},

 "en": {"@language": "en"},

 "iri": {"@type": "@id"}

 }

}

The compacted version will use string values for the defined terms when

the values match the term definition. Note that there is no term defined

for "plain", that is created automatically using the vocabulary mapping.

Also, the other native values, 1 and true, can be represented without

defining a specific type mapping.

https://www.w3.org/TR/json-ld11/

139 of 215

This section is non-normative.

As described in § 4.3.1 Lists, JSON-LD has an expanded syntax for

representing ordered values, using the @list keyword. To simplify the

representation in JSON-LD, a term can be defined with "@container": "@list"

which causes all values of a property using such a term to be considered

ordered.

{

 "@context": {

 "@vocab": "http://example.com/",

 "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"},

 "en": {"@language": "en"},

 "iri": {"@type": "@id"}

 },

 "plain": ["string", true, 1],

 "date": "2018-02-16",

 "en": "English",

 "iri": "http://example.com/some-location"

}

5.2.3 Representing Lists as Arrays§

https://www.w3.org/TR/json-ld11/

140 of 215

This section is non-normative.

In some cases, the property used to relate two nodes may be better expressed

if the nodes have a reverse direction, for example, when describing a

Input

Context

EXAMPLE 131: Using Arrays for Lists

Given the following expanded document:

[{

 "http://xmlns.com/foaf/0.1/nick": [{

 "@list": [

 {"@value": "joe"},

 {"@value": "bob"},

 {"@value": "jaybee"}

]

 }]

}]

And the following context:

{

 "@context": {

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

"@container": "@list"

 }

 }

}

The compacted version eliminates the explicit list object.

{

 "@context": {

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

"@container": "@list"

 }

 },

 "nick": ["joe", "bob", "jaybee"]

}

5.2.4 Reversing Node Relationships§

https://www.w3.org/TR/json-ld11/

141 of 215

relationship between two people and a common parent. See § 4.8 Reverse

Properties for more details.

https://www.w3.org/TR/json-ld11/

142 of 215

Reverse properties can be even more useful when combined with framing,

Input

Context

EXAMPLE 132: Reversing Node Relationships

Given the following expanded document:

[{

 "@id": "http://example.org/#homer",

 "http://example.com/vocab#name": [{"@value": "Homer"}],

 "@reverse": {

 "http://example.com/vocab#parent": [{

 "@id": "http://example.org/#bart",

 "http://example.com/vocab#name": [{"@value": "Bart"}]

 }, {

 "@id": "http://example.org/#lisa",

 "http://example.com/vocab#name": [{"@value": "Lisa"}]

 }]

 }

}]

And the following context:

{

 "@context": {

 "name": "http://example.com/vocab#name",

 "children": { "@reverse": "http://example.com/vocab#parent"

 }

}

The compacted version eliminates the @reverse property by describing

"children" as the reverse of "parent".

{

 "@context": {

 "name": "http://example.com/vocab#name",

 "children": { "@reverse": "http://example.com/vocab#parent" }

 },

 "@id": "#homer",

 "name": "Homer",

 "children": [

 { "@id": "#bart", "name": "Bart"},

 { "@id": "#lisa", "name": "Lisa"}

]

}

https://www.w3.org/TR/json-ld11/

143 of 215

which can actually make node objects defined at the top-level of a document

to become embedded nodes. JSON-LD provides a means to index such values,

by defining an appropriate @container definition within a term definition.

This section is non-normative.

Properties with multiple values are typically represented using an unordered

array. This means that an application working on an internalized

representation of that JSON would need to iterate through the values of the

array to find a value matching a particular pattern, such as a language-

tagged string using the language en.

5.2.5 Indexing Values§

https://www.w3.org/TR/json-ld11/

144 of 215

Input

Context

EXAMPLE 133: Indexing language-tagged strings

Given the following expanded document:

[{

 "@id": "http://example.com/queen",

 "http://example.com/vocab/label": [

 {"@value": "The Queen", "@language": "en"},

 {"@value": "Die Königin", "@language": "de"},

 {"@value": "Ihre Majestät", "@language": "de"}

]

}]

And the following context:

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

"@container": "@language"

 }

 }

}

The compacted version uses a map value for "label", with the keys

representing the language tag and the values are the strings associated

with the relevant language tag.

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

"@container": "@language"

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": "The Queen",

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

145 of 215

Data can be indexed on a number of different keys, including @id, @type,

@language, @index and more. See § 4.6 Indexed Values and § 4.9 Named

Graphs for more details.

This section is non-normative.

Sometimes it's useful to compact a document, but keep the node object and

value object representations. For this, a term definition can set "@type":

"@none". This causes the Value Compaction algorithm to always use the object

form of values, although components of that value may be compacted.

5.2.6 Normalizing Values as Objects§

https://www.w3.org/TR/json-ld11/

146 of 215

Input

Context

EXAMPLE 134: Forcing Object Values

Given the following expanded document:

[{

 "http://example.com/notype": [

 {"@value": "string"},

 {"@value": true},

 {"@value": false},

 {"@value": 1},

 {"@value": 10.0},

 {"@value": "plain"},

 {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"},

 {"@value": "english", "@language": "en"},

 {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"},

 {"@id": "http://example.com/iri"}

]

}]

And the following context:

{

 "@context": {

 "@version": 1.1,

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "notype": {"@id": "http://example.com/notype", "@type": "@none"}

 }

}

The compacted version will use string values for the defined terms when

the values match the term definition. Also, the other native values, 1 and

true, can be represented without defining a specific type mapping.

https://www.w3.org/TR/json-ld11/

147 of 215

This section is non-normative.

Generally, when compacting, properties having only one value are

represented as strings or maps, while properties having multiple values are

represented as an array of strings or maps. This means that applications

accessing such properties need to be prepared to accept either

representation. To force all values to be represented using an array, a term

definition can set "@container": "@set". Moreover, @set can be used in

combination with other container settings, for example looking at our

language-map example from § 5.2.5 Indexing Values:

{

 "@context": {

 "@version": 1.1,

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "notype": {"@id": "http://example.com/notype", "@type": "@none"}

 },

 "notype": [

 {"@value": "string"},

 {"@value": true},

 {"@value": false},

 {"@value": 1},

 {"@value": 10.0},

 {"@value": "plain"},

 {"@value": "false", "@type": "xsd:boolean"},

 {"@value": "english", "@language": "en"},

 {"@value": "2018-02-17", "@type": "xsd:date"},

 {"@id": "http://example.com/iri"}

]

}

5.2.7 Representing Singular Values as Arrays§

https://www.w3.org/TR/json-ld11/

148 of 215

Input

Context

Result

EXAMPLE 135: Indexing language-tagged strings and @set

Given the following expanded document:

[{

 "@id": "http://example.com/queen",

 "http://example.com/vocab/label": [

 {"@value": "The Queen", "@language": "en"},

 {"@value": "Die Königin", "@language": "de"},

 {"@value": "Ihre Majestät", "@language": "de"}

]

}]

And the following context:

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.com/vocab/",

 "label": {

 "@container": ["@language", "@set"]

 }

 }

}

The compacted version uses a map value for "label" as before. and the

values are the relevant strings but always represented using an array.

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.com/vocab/",

 "label": {

 "@container": ["@language", "@set"]

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": ["The Queen"],

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

149 of 215

This section is non-normative.

When compacting, the Compaction algorithm will compact using a term for a

property only when the values of that property match the @container, @type,

and @language specifications for that term definition. This can actually split

values between different properties, all of which have the same IRI. In case

there is no matching term definition, the compaction algorithm will compact

using the absolute IRI of the property.

5.2.8 Term Selection§

https://www.w3.org/TR/json-ld11/

150 of 215

Input

Context

EXAMPLE 136: Term Selection

Given the following expanded document:

[{

 "http://example.com/vocab/property": [

 {"@value": "string"},

 {"@value": true},

 {"@value": 1},

 {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"},

 {"@value": "10", "@type": "http://www.w3.org/2001/XMLSchema#integer"},

 {"@value": "english", "@language": "en"},

 {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"},

 {"@id": "http://example.com/some-location"}

]

}]

And the following context:

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "integer": {"@id": "vocab:property", "@type": "xsd:integer"},

 "date": {"@id": "vocab:property", "@type": "xsd:date"},

 "english": {"@id": "vocab:property", "@language": "en"},

 "list": {"@id": "vocab:property", "@container": "@list"},

 "iri": {"@id": "vocab:property", "@type": "@id"}

 }

}

Note that the values that match the "integer", "english", "date", and "iri"

terms are properly matched, and that everything that does not explicitly

match is added to a property created using a compact IRI.

https://www.w3.org/TR/json-ld11/

151 of 215

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines a method for flattening a JSON-LD document. Flattening
collects all properties of a node in a single map and labels all blank nodes

with blank node identifiers. This ensures a shape of the data and

consequently may drastically simplify the code required to process JSON-LD

in certain applications.

For example, assume the following JSON-LD input document:

Result{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "integer": {"@id": "vocab:property", "@type": "xsd:integer"},

 "date": {"@id": "vocab:property", "@type": "xsd:date"},

 "english": {"@id": "vocab:property", "@language": "en"},

 "list": {"@id": "vocab:property", "@container": "@list"},

 "iri": {"@id": "vocab:property", "@type": "@id"}

 },

 "vocab:property": [

 "string", true, 1,

 {"@value": "false", "@type": "xsd:boolean"}

],

 "integer": "10",

 "english": "english",

 "date": "2018-02-17",

 "iri": "http://example.com/some-location"

}

5.3 Flattened Document Form§

https://www.w3.org/TR/json-ld11/

152 of 215

Running the JSON-LD Flattening algorithm against the JSON-LD input

document in the example above and using the same context would result in

the following output:

Input

EXAMPLE 137: Sample JSON-LD document to be flattened

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": "http://xmlns.com/foaf/0.1/knows"

 },

 "@id": "http://me.markus-lanthaler.com/",

 "name": "Markus Lanthaler",

 "knows": [

 {

 "@id": "http://manu.sporny.org/about#manu",

 "name": "Manu Sporny"

 }, {

 "name": "Dave Longley"

 }

]

}

https://www.w3.org/TR/json-ld11/

153 of 215

JSON-LD's media type defines a profile parameter which can be used to

signal or request flattened document form. The profile URI identifying

flattened document form is http://www.w3.org/ns/json-ld#flattened. It can be

combined with the profile URI identifying expanded document form or

compacted document form.

This section is non-normative.

The JSON-LD 1.1 Framing specification [JSON-LD11-FRAMING] defines a

method for framing a JSON-LD document. Framing is used to shape the data

in a JSON-LD document, using an example frame document which is used to

both match the flattened data and show an example of how the resulting data

should be shaped.

For example, assume the following JSON-LD frame:

EXAMPLE 138: Flattened and compacted form for the previous example

Open in playground

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": "http://xmlns.com/foaf/0.1/knows"

 },

 "@graph": [{

 "@id": "http://me.markus-lanthaler.com/",

 "name": "Markus Lanthaler",

 "knows": [

 { "@id": "http://manu.sporny.org/about#manu" },

 { "@id": "_:b0" }

]

 }, {

 "@id": "http://manu.sporny.org/about#manu",

 "name": "Manu Sporny"

 }, {

 "@id": "_:b0",

 "name": "Dave Longley"

 }]

}

5.4 Framed Document Form§

https://www.w3.org/TR/json-ld11/

154 of 215

This frame document describes an embedding structure that would place

objects with type Library at the top, with objects of type Book that were

linked to the library object using the contains property embedded as property

values. It also places objects of type Chapter within the referencing Book

object as embedded values of the Book object.

When using a flattened set of objects that match the frame components:

Frame

EXAMPLE 139: Sample library frame

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.org/"

 },

 "@type": "Library",

 "contains": {

 "@type": "Book",

 "contains": {

 "@type": "Chapter"

 }

 }

}

https://www.w3.org/TR/json-ld11/

155 of 215

The Frame Algorithm can create a new document which follows the structure

of the frame:

Input

EXAMPLE 140: Flattened library objects

{

 "@context": {

 "@vocab": "http://example.org/",

 "contains": {"@type": "@id"}

 },

 "@graph": [{

 "@id": "http://example.org/library",

 "@type": "Library",

 "contains": "http://example.org/library/the-republic"

 }, {

 "@id": "http://example.org/library/the-republic",

 "@type": "Book",

 "creator": "Plato",

 "title": "The Republic",

 "contains": "http://example.org/library/the-republic#introduction"

 }, {

 "@id": "http://example.org/library/the-republic#introduction",

 "@type": "Chapter",

 "description": "An introductory chapter on The Republic.",

 "title": "The Introduction"

 }]

}

https://www.w3.org/TR/json-ld11/

156 of 215

JSON-LD's media type defines a profile parameter which can be used to

signal or request framed document form. The profile URI identifying

framed document form is http://www.w3.org/ns/json-ld#framed.

JSON-LD's media type also defines a profile parameter which can be used to

identify a script element in an HTML document containing a frame. The first

script element of type application/ld+json;profile=http://www.w3.org

/ns/json-ld#frame will be used to find a frame..

Certain aspects of JSON-LD processing can be modified using HTTP Link
Headers [RFC8288]. These can be used when retrieving resources that are

not, themselves, JSON-LD, but can be interpreted as JSON-LD by using

information in a Link Relation.

When processing normal JSON documents, a link relation can be specified

using the HTTP Link Header returned when fetching a remote document, as

described in § 6.1 Interpreting JSON as JSON-LD.

EXAMPLE 141: Framed library objects

Open in playground

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.org/"

 },

 "@id": "http://example.org/library",

 "@type": "Library",

 "contains": {

 "@id": "http://example.org/library/the-republic",

 "@type": "Book",

 "contains": {

 "@id": "http://example.org/library/the-republic#introduction",

 "@type": "Chapter",

 "description": "An introductory chapter on The Republic.",

 "title": "The Introduction"

 },

 "creator": "Plato",

 "title": "The Republic"

 }

}

6. Modifying Behavior with Link Relationships§

https://www.w3.org/TR/json-ld11/

157 of 215

In other cases, a resource may be returned using a representation that

cannot easily be interpreted as JSON-LD. Normally, HTTP content negotiation

would be used to allow a client to specify a preference for JSON-LD over

another representation, but in certain situations, it is not possible or practical

for a server to respond appropriately to such requests. For this, an HTTP

Link Header can be used to provide an alternate location for a document to

be used in place of the originally requested resource, as described in § 6.2

Alternate Document Location.

Ordinary JSON documents can be interpreted as JSON-LD by providing an

explicit JSON-LD context document. One way to provide this is by using

referencing a JSON-LD context document in an HTTP Link Header. Doing so

allows JSON to be unambiguously machine-readable without requiring

developers to drastically change their documents and provides an upgrade

path for existing infrastructure without breaking existing clients that rely on

the application/json media type or a media type with a +json suffix as

defined in [RFC6839].

In order to use an external context with an ordinary JSON document, when

retrieving an ordinary JSON document via HTTP, processors MUST attempt

to retrieve any JSON-LD document referenced by a Link Header with:

rel="http://www.w3.org/ns/json-ld#context", and

type="application/ld+json".

The referenced document MUST have a top-level JSON object. The @context

entry within that object is added to the top-level JSON object of the

referencing document. If an array is at the top-level of the referencing

document and its items are JSON objects, the @context subtree is added to all

array items. All extra information located outside of the @context subtree in

the referenced document MUST be discarded. Effectively this means that the

active context is initialized with the referenced external context. A response

MUST NOT contain more than one HTTP Link Header using the

http://www.w3.org/ns/json-ld#context link relation.

Other mechanisms for providing a JSON-LD Context MAY be described for

other URI schemes.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] provides for an expandContext option for specifying a context to use

6.1 Interpreting JSON as JSON-LD§

https://www.w3.org/TR/json-ld11/

158 of 215

when expanding JSON documents programmatically.

The following example demonstrates the use of an external context with an

ordinary JSON document over HTTP:

Please note that JSON-LD documents served with the application/ld+json

media type MUST have all context information, including references to

external contexts, within the body of the document. Contexts linked via a

http://www.w3.org/ns/json-ld#context HTTP Link Header MUST be ignored

for such documents.

Documents which can't be directly interpreted as JSON-LD can provide an

alternate location containing JSON-LD. One way to provide this is by

referencing a JSON-LD document in an HTTP Link Header. This might be

useful, for example, when the URL associated with a namespace naturally

contains an HTML document, but the JSON-LD context associated with that

URL is located elsewhere.

To specify an alternate location, a non-JSON resource (i.e., one using a media

type other than application/json or a derivative) can return the alternate

location using a Link Header with:

EXAMPLE 142: Referencing a JSON-LD context from a JSON document via

an HTTP Link Header

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json,application/json,*/*;q=0.1

====================================

HTTP/1.1 200 OK

...

Content-Type: application/json

Link: <https://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#co

{

 "name": "Markus Lanthaler",

 "homepage": "http://www.markus-lanthaler.com/",

 "image": "http://twitter.com/account/profile_image/markuslanthaler"

}

6.2 Alternate Document Location§

https://www.w3.org/TR/json-ld11/

159 of 215

rel="alternate", and

type="application/ld+json".

A response MUST NOT contain more than one HTTP Link Header using the

alternate link relation with type="application/ld+json" .

Other mechanisms for providing an alternate location MAY be described for

other URI schemes.

The following example demonstrates the use of an alternate location with an

ordinary HTTP document over HTTP:

A processor seeing a non-JSON result will note the presence of the link

header and load that document instead.

EXAMPLE 143: Specifying an alternate location via an HTTP Link Header

GET /index.html HTTP/1.1

Host: example.com

Accept: application/ld+json,application/json,*/*;q=0.1

====================================

HTTP/1.1 200 OK

...

Content-Type: text/html

Link: <alternate.jsonld>; rel="alternate"; type="application/ld+json"

<html>

 <head>

 <title>Primary Entrypoint</title>

 </head>

 <body>

 <p>This is the primary entrypoint for a vocabulary</p>

 </body>

</html>

7. Embedding JSON-LD in HTML Documents§

https://www.w3.org/TR/json-ld11/

160 of 215

NOTE

This section describes features available with a documentLoader

supporting HTML script extraction. See Remote Document and Context

Retrieval for more information.

JSON-LD content can be easily embedded in HTML [HTML] by placing it in a

script element with the type attribute set to application/ld+json. Doing so

creates a data block.

Defining how such data may be used is beyond the scope of this specification.

The embedded JSON-LD document might be extracted as is or, e.g., be

interpreted as RDF.

If JSON-LD content is extracted as RDF [RDF11-CONCEPTS], it MUST be

expanded into an RDF Dataset using the Deserialize JSON-LD to RDF

Algorithm [JSON-LD11-API]. Unless a specific script is targeted (see § 7.3

Locating a Specific JSON-LD Script Element), all script elements with type

application/ld+json MUST be processed and merged into a single dataset

with equivalent blank node identifiers contained in separate script elements

treated as if they were in a single document (i.e., blank nodes are shared

between different JSON-LD script elements).

Input

EXAMPLE 144: Embedding JSON-LD in HTML

Compacted (Input) Expanded (Result) Statements Turtle

<script type="application/ld+json">

{

 "@context": "https://json-ld.org/contexts/person.jsonld",

 "@id": "http://dbpedia.org/resource/John_Lennon",

 "name": "John Lennon",

 "born": "1940-10-09",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}

</script>

https://www.w3.org/TR/json-ld11/

161 of 215

When processing a JSON-LD script element, the Document Base URL of the

containing HTML document, as defined in [HTML], is used to establish the

default base IRI of the enclosed JSON-LD content.

Input

EXAMPLE 145: Combining multiple JSON-LD script elements into a single

dataset

HTML Embedded (Input) Statements Turtle (Result)

<p>Data describing Dave</p>

<script type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://digitalbazaar.com/author/dlongley/",

 "@type": "Person",

 "name": "Dave Longley"

}

</script>

<p>Data describing Gregg</p>

<script type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

</script>

7.1 Inheriting base IRI from HTML's base element§

https://www.w3.org/TR/json-ld11/

162 of 215

HTML allows for Dynamic changes to base URLs. This specification does not

require any specific behavior, and to ensure that all systems process the base

IRI equivalently, authors SHOULD either use IRIs, or explicitly as defined in

§ 4.1.3 Base IRI. Implementations (particularly those natively operating in the

[DOM]) MAY take into consideration Dynamic changes to base URLs.

This section is non-normative.

Due to the HTML Restrictions for contents of <script> elements additional

encoding restrictions are placed on JSON-LD data contained in script

elements.

Authors should avoid using character sequences in scripts embedded in

HTML which may be confused with a comment-open, script-open, comment-

close, or script-close.

Input

EXAMPLE 146: Using the document base URL to establish the default

base IRI

Compacted (Input) Expanded (Result) Statements Turtle

<html>

 <head>

 <base href="http://dbpedia.org/resource/"/>

 <script type="application/ld+json">

 {

 "@context": "https://json-ld.org/contexts/person.jsonld",

 "@id": "John_Lennon",

 "name": "John Lennon",

 "born": "1940-10-09",

 "spouse": "Cynthia_Lennon"

 }

 </script>

</head>

</html>

7.2 Restrictions for contents of JSON-LD script elements§

https://www.w3.org/TR/json-ld11/

163 of 215

NOTE

Such content should be escaped as indicated below, however the content

will remain escaped after processing through the JSON-LD API [JSON-

LD11-API].

& → & (ampersand, U+0026)

< → < (less-than sign, U+003C)

> → > (greater-than sign, U+003E)

" → " (quotation mark, U+0022)

' → ' (apostrophe, U+0027)

A specific script element within an HTML document may be located using a

fragment identifier matching the unique identifier of the script element

within the HTML document located by a URL (see [DOM]). A JSON-LD

processor MUST extract only the specified data block's contents parsing it as

a standalone JSON-LD document and MUST NOT merge the result with any

other markup from the same HTML document.

For example, given an HTML document located at http://example.com

/document, a script element identified by "dave" can be targeted using the

URL http://example.com/document#dave.

Input

EXAMPLE 147: Embedding JSON-LD containing HTML in HTML

Compacted (Input) Expanded (Result) Turtle

<script type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@type": "WebPageElement",

 "name": "Encoding Issues",

 "description": "Issues list such as unescaped </script> or -->"

}

</script>

7.3 Locating a Specific JSON-LD Script Element§

https://www.w3.org/TR/json-ld11/

164 of 215

JSON-LD is a serialization format for Linked Data based on JSON. It is

therefore important to distinguish between the syntax, which is defined by

JSON in [RFC8259], and the data model which is an extension of the RDF

data model [RDF11-CONCEPTS]. The precise details of how JSON-LD relates

to the RDF data model are given in § 10. Relationship to RDF.

To ease understanding for developers unfamiliar with the RDF model, the

following summary is provided:

A JSON-LD document serializes a RDF Dataset [RDF11-CONCEPTS],

which is a collection of graphs that comprises exactly one default graph

and zero or more named graphs.

The default graph does not have a name and MAY be empty.

Each named graph is a pair consisting of an IRI or blank node identifier

(the graph name) and a graph. Whenever practical, the graph name

Input

EXAMPLE 148: Targeting a specific script element by id

Compacted (Input) Statements Turtle

Targeting a script element with id "gregg"

<p>Data describing Dave</p>

<script id="dave" type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://digitalbazaar.com/author/dlongley/",

 "@type": "Person",

 "name": "Dave Longley"

}

</script>

<p>Data describing Gregg</p>

<script id="gregg" type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

</script>

8. Data Model§

https://www.w3.org/TR/json-ld11/

165 of 215

SHOULD be an IRI.

A graph is a labeled directed graph, i.e., a set of nodes connected by

directed-arcs.

Every directed-arc is labeled with an IRI or a blank node identifier. Within

the JSON-LD syntax these arc labels are called properties. Whenever

practical, a directed-arc SHOULD be labeled with an IRI.

NOTE

The use of blank node identifiers to label properties is obsolete, and

may be removed in a future version of JSON-LD. Consider using a

document-relative IRI, instead, such as #.

Every node is an IRI, a blank node, or a literal, although syntactically lists

and native JSON values may be represented directly.

A node having an outgoing edge MUST be an IRI or a blank node.

A graph MUST NOT contain unconnected nodes, i.e., nodes which are not

connected by an property to any other node.

NOTE

This effectively just prohibits unnested, empty node objects and

unnested node objects that contain only an @id. A document may have

nodes which are unrelated, as long as one or more properties are

defined, or the node is referenced from another node object.

An IRI (Internationalized Resource Identifier) is a string that conforms to

the syntax defined in [RFC3987]. IRIs used within a graph SHOULD

return a Linked Data document describing the resource denoted by that

IRI when being dereferenced.

A blank node is a node which is neither an IRI, nor a JSON-LD value, nor

a list. A blank node is identified using a blank node identifier.

A blank node identifier is a string that can be used as an identifier for a

blank node within the scope of a JSON-LD document. Blank node

identifiers begin with _:.

EXAMPLE 149: Illegal Unconnected Node

{

"@id": "http://example.org/1"

}

https://www.w3.org/TR/json-ld11/

166 of 215

A JSON-LD value is a typed value, a string (which is interpreted as a

typed value with type xsd:string), a number (numbers with a non-zero

fractional part, i.e., the result of a modulo‑1 operation, or which are too

large to represent as integers (see Data Round Tripping) in [JSON-LD11-

API]), are interpreted as typed values with type xsd:double, all other

numbers are interpreted as typed values with type xsd:integer), true or

false (which are interpreted as typed values with type xsd:boolean), or a

language-tagged string.

A typed value consists of a value, which is a string, and a type, which is

an IRI.

A language-tagged string consists of a string and a non-empty language

tag as defined by [BCP47]. The language tag MUST be well-formed

according to section 2.2.9 Classes of Conformance of [BCP47].

Processors MAY normalize language tags to lowercase.

Either strings, or language-tagged strings may include a base direction,

which represents an extension to the underlying RDF data model.

A list is a sequence of zero or more IRIs, blank nodes, and JSON-LD

values. Lists are interpreted as RDF list structures [RDF11-MT].

JSON-LD documents MAY contain data that cannot be represented by the

data model defined above. Unless otherwise specified, such data is ignored

when a JSON-LD document is being processed. One result of this rule is that

properties which are not mapped to an IRI, a blank node, or keyword will be

ignored.

Additionally, the JSON serialization format is internally represented using the

JSON-LD internal representation, which uses the generic concepts of lists,

maps, strings, numbers, booleans, and null to describe the data represented

by a JSON document.

Figure 1 An illustration of a linked data dataset.

A description of the linked data dataset diagram is available in the Appendix. Image

available in SVG and PNG formats.

https://www.w3.org/TR/json-ld11/

167 of 215

The dataset described in this figure can be represented as follows:

Input

EXAMPLE 150: Linked Data Dataset

Compacted (Input) Expanded (Result) Statements TriG

{

 "@context": [

 "http://schema.org/",

 {"@base": "http://example.com/"}

],

 "@graph": [{

 "@id": "people/alice",

 "gender": [

 {"@value": "weiblich", "@language": "de"},

 {"@value": "female", "@language": "en"}

],

 "knows": {"@id": "people/bob"},

 "name": "Alice"

 }, {

 "@id": "graphs/1",

 "@graph": {

 "@id": "people/alice",

 "parent": {

 "@id": "people/bob",

 "name": "Bob"

 }

 }

 }, {

 "@id": "graphs/2",

 "@graph": {

 "@id": "people/bob",

 "sibling": {

 "name": "Mary",

 "sibling": {"@id": "people/bob"}

 }

 }

 }]

}

https://www.w3.org/TR/json-ld11/

168 of 215

NOTE

Note the use of @graph at the outer-most level to describe three top-level

resources (two of them named graphs). The named graphs use @graph in

addition to @id to provide the name for each graph.

This section restates the syntactic conventions described in the previous

sections more formally.

A JSON-LD document MUST be valid JSON text as described in [RFC8259],

or some format that can be represented in the JSON-LD internal

representation that is equivalent to valid JSON text.

A JSON-LD document MUST be a single node object, a map consisting of only

the entries @context and/or @graph, or an array of zero or more node objects.

In contrast to JSON, in JSON-LD the keys in objects MUST be unique.

Whenever a keyword is discussed in this grammar, the statements also apply

to an alias for that keyword.

NOTE

JSON-LD allows keywords to be aliased (see § 4.1.6 Aliasing Keywords for

details). For example, if the active context defines the term id as an alias

for @id, that alias may be legitimately used as a substitution for @id. Note

that keyword aliases are not expanded during context processing.

A term is a short-hand string that expands to an IRI, blank node identifier, or

keyword.

A term MUST NOT equal any of the JSON-LD keywords, other than @type.

When used as the prefix in a Compact IRI, to avoid the potential ambiguity of

a prefix being confused with an IRI scheme, terms SHOULD NOT come from

the list of URI schemes as defined in [IANA-URI-SCHEMES]. Similarly, to

9. JSON-LD Grammar§

9.1 Terms§

https://www.w3.org/TR/json-ld11/

169 of 215

avoid confusion between a Compact IRI and a term, terms SHOULD NOT

include a colon (:) and SHOULD be restricted to the form of isegment-nz-nc

as defined in [RFC3987].

To avoid forward-compatibility issues, a term SHOULD NOT start with an @

character followed exclusively by one or more ALPHA characters (see

[RFC5234]) as future versions of JSON-LD may introduce additional

keywords. Furthermore, the term MUST NOT be an empty string ("") as not

all programming languages are able to handle empty JSON keys.

See § 3.1 The Context and § 3.2 IRIs for further discussion on mapping terms

to IRIs.

A node object represents zero or more properties of a node in the graph

serialized by the JSON-LD document. A map is a node object if it exists

outside of a JSON-LD context and:

it is not the top-most map in the JSON-LD document consisting of no

other entries than @graph and @context,

it does not contain the @value, @list, or @set keywords, and

it is not a graph object.

The properties of a node in a graph may be spread among different node

objects within a document. When that happens, the keys of the different node

objects need to be merged to create the properties of the resulting node.

A node object MUST be a map. All keys which are not IRIs, compact IRIs,

terms valid in the active context, or one of the following keywords (or alias of

such a keyword) MUST be ignored when processed:

@context,

@id,

@included,

@graph,

@nest,

@type,

@reverse, or

@index

9.2 Node Objects§

https://www.w3.org/TR/json-ld11/

170 of 215

If the node object contains the @context key, its value MUST be null, an IRI

reference, a context definition, or an array composed of any of these.

If the node object contains the @id key, its value MUST be an IRI reference, or

a compact IRI (including blank node identifiers). See § 3.3 Node Identifiers,

§ 4.1.5 Compact IRIs, and § 4.5.1 Identifying Blank Nodes for further

discussion on @id values.

If the node object contains the @graph key, its value MUST be a node object or

an array of zero or more node objects. If the node object also contains an @id

keyword, its value is used as the graph name of a named graph. See § 4.9

Named Graphs for further discussion on @graph values. As a special case, if a

map contains no keys other than @graph and @context, and the map is the root

of the JSON-LD document, the map is not treated as a node object; this is

used as a way of defining node objects that may not form a connected graph.

This allows a context to be defined which is shared by all of the constituent

node objects.

If the node object contains the @type key, its value MUST be either an IRI

reference, a compact IRI (including blank node identifiers), a term defined in

the active context expanding into an IRI, or an array of any of these. See § 3.5

Specifying the Type for further discussion on @type values.

If the node object contains the @reverse key, its value MUST be a map

containing entries representing reverse properties. Each value of such a

reverse property MUST be an IRI reference, a compact IRI, a blank node

identifier, a node object or an array containing a combination of these.

If the node object contains the @included key, its value MUST be an included

block. See § 9.13 Included Blocks for further discussion on included blocks.

If the node object contains the @index key, its value MUST be a string. See

§ 4.6.1 Data Indexing for further discussion on @index values.

If the node object contains the @nest key, its value MUST be a map or an

array of map which MUST NOT include a value object. See § 9.14 Property

Nesting for further discussion on @nest values.

Keys in a node object that are not keywords MAY expand to an IRI using the

active context. The values associated with keys that expand to an IRI MUST

be one of the following:

string,

number,

https://www.w3.org/TR/json-ld11/

171 of 215

true,

false,

null,

node object,

graph object,

value object,

list object,

set object,

an array of zero or more of any of the possibilities above,

a language map,

an index map,

an included block

an id map, or

a type map

When framing, a frame object extends a node object to allow entries used

specifically for framing.

A frame object MAY include a default object as the value of any key which

is not a keyword. Values of @default MAY include the value @null, or an

array containing only @null, in addition to other values allowed in the

grammar for values of entry keys expanding to IRIs.

The values of @id and @type MAY additionally be an empty map

(wildcard), an array containing only an empty map, an empty array

(match none) an array of IRIs.

A frame object MAY include an entry with the key @embed with any value

from @always, @list, and @never.

A frame object MAY include entries with the boolean valued keys

@explicit, @omitDefault, or @requireAll

In addition to other property values, a property of a frame object MAY

include a value pattern (See § 9.6 Value Patterns).

See [JSON-LD11-FRAMING] for a description of how frame objects are used.

9.3 Frame Objects§

https://www.w3.org/TR/json-ld11/

172 of 215

A graph object represents a named graph, which MAY include an explicit

graph name. A map is a graph object if it exists outside of a JSON-LD context,

it contains an @graph entry (or an alias of that keyword), it is not the top-most

map in the JSON-LD document, and it consists of no entries other than

@graph, @index, @id and @context, or an alias of one of these keywords.

If the graph object contains the @context key, its value MUST be null, an IRI

reference, a context definition, or an array composed of any of these.

If the graph object contains the @id key, its value is used as the identifier

(graph name) of a named graph, and MUST be an IRI reference, or a compact

IRI (including blank node identifiers). See § 3.3 Node Identifiers, § 4.1.5

Compact IRIs, and § 4.5.1 Identifying Blank Nodes for further discussion on

@id values.

A graph object without an @id entry is also a simple graph object and

represents a named graph without an explicit identifier, although in the data

model it still has a graph name, which is an implicitly allocated blank node

identifier.

The value of the @graph key MUST be a node object or an array of zero or

more node objects. See § 4.9 Named Graphs for further discussion on @graph

values..

A value object is used to explicitly associate a type or a language with a value

to create a typed value or a language-tagged string and possibly associate a

base direction.

A value object MUST be a map containing the @value key. It MAY also contain

an @type, an @language, an @direction, an @index, or an @context key but

MUST NOT contain both an @type and either @language or @direction keys at

the same time. A value object MUST NOT contain any other keys that expand

to an IRI or keyword.

The value associated with the @value key MUST be either a string, a number,

true, false or null. If the value associated with the @type key is @json, the

value MAY be either an array or an object.

The value associated with the @type key MUST be a term, an IRI, a compact

9.4 Graph Objects§

9.5 Value Objects§

https://www.w3.org/TR/json-ld11/

173 of 215

IRI, a string which can be turned into an IRI using the vocabulary mapping,

@json, or null.

The value associated with the @language key MUST have the lexical form

described in [BCP47], or be null.

The value associated with the @direction key MUST be one of "ltr" or "rtl",

or be null.

The value associated with the @index key MUST be a string.

See § 4.2.1 Typed Values and § 4.2.4 String Internationalization for more

information on value objects.

When framing, a value pattern extends a value object to allow entries used

specifically for framing.

The values of @value, @language, @direction and @type MAY additionally be

an empty map (wildcard), an array containing only an empty map, an

empty array (match none), an array of strings.

A list represents an ordered set of values. A set represents an unordered set

of values. Unless otherwise specified, arrays are unordered in JSON-LD. As

such, the @set keyword, when used in the body of a JSON-LD document,

represents just syntactic sugar which is optimized away when processing the

document. However, it is very helpful when used within the context of a

document. Values of terms associated with an @set or @list container will

always be represented in the form of an array when a document is

processed—even if there is just a single value that would otherwise be

optimized to a non-array form in compacted document form. This simplifies

post-processing of the data as the data is always in a deterministic form.

A list object MUST be a map that contains no keys that expand to an IRI or

keyword other than @list and @index.

A set object MUST be a map that contains no keys that expand to an IRI or

keyword other than @set and @index. Please note that the @index key will be

ignored when being processed.

9.6 Value Patterns§

9.7 Lists and Sets§

https://www.w3.org/TR/json-ld11/

174 of 215

In both cases, the value associated with the keys @list and @set MUST be one

of the following types:

string,

number,

true,

false,

null,

node object,

value object, or

an array of zero or more of the above possibilities

See § 4.3 Value Ordering for further discussion on sets and lists.

A language map is used to associate a language with a value in a way that

allows easy programmatic access. A language map may be used as a term

value within a node object if the term is defined with @container set to

@language, or an array containing both @language and @set . The keys of a

language map MUST be strings representing [BCP47] language tags, the

keyword @none, or a term which expands to @none, and the values MUST be

any of the following types:

null,

string, or

an array of zero or more of the strings

See § 4.2.4 String Internationalization for further discussion on language

maps.

An index map allows keys that have no semantic meaning, but should be

preserved regardless, to be used in JSON-LD documents. An index map may

be used as a term value within a node object if the term is defined with

@container set to @index, or an array containing both @index and @set . The

values of the entries of an index map MUST be one of the following types:

9.8 Language Maps§

9.9 Index Maps§

https://www.w3.org/TR/json-ld11/

175 of 215

string,

number,

true,

false,

null,

node object,

value object,

list object,

set object,

an array of zero or more of the above possibilities

See § 4.6.1 Data Indexing for further information on this topic.

Index Maps may also be used to map indexes to associated named graphs, if

the term is defined with @container set to an array containing both @graph and

@index, and optionally including @set. The value consists of the node objects

contained within the named graph which is indexed using the referencing

key, which can be represented as a simple graph object if the value does not

include @id, or a named graph if it includes @id.

A property-based index map is a variant of index map were indexes are

semantically preserved in the graph as property values. A property-based

index map may be used as a term value within a node object if the term is

defined with @container set to @index, or an array containing both @index and

@set, and with @index set to a string. The values of a property-based index

map MUST be node objects or strings which expand to node objects.

When expanding, if the active context contains a term definition for the value

of @index, this term definition will be used to expand the keys of the index

map. Otherwise, the keys will be expanded as simple value objects. Each

node object in the expanded values of the index map will be added an

additional property value, where the property is the expanded value of

@index, and the value is the expanded referencing key.

See § 4.6.1.1 Property-based data indexing for further information on this

topic.

9.10 Property-based Index Maps§

https://www.w3.org/TR/json-ld11/

176 of 215

An id map is used to associate an IRI with a value that allows easy

programmatic access. An id map may be used as a term value within a node

object if the term is defined with @container set to @id, or an array containing

both @id and @set. The keys of an id map MUST be IRIs (IRI references or

compact IRIs (including blank node identifiers)), the keyword @none, or a term

which expands to @none, and the values MUST be node objects.

If the value contains a property expanding to @id, its value MUST be

equivalent to the referencing key. Otherwise, the property from the value is

used as the @id of the node object value when expanding.

Id Maps may also be used to map graph names to their named graphs, if the

term is defined with @container set to an array containing both @graph and

@id, and optionally including @set. The value consists of the node objects

contained within the named graph which is named using the referencing key.

A type map is used to associate an IRI with a value that allows easy

programmatic access. A type map may be used as a term value within a node

object if the term is defined with @container set to @type, or an array

containing both @type and @set. The keys of a type map MUST be IRIs (IRI

references or compact IRI (including blank node identifiers)), terms, or the

keyword @none, and the values MUST be node objects or strings which

expand to node objects.

If the value contains a property expanding to @type, and its value is contains

the referencing key after suitable expansion of both the referencing key and

the value, then the node object already contains the type. Otherwise, the

property from the value is added as a @type of the node object value when

expanding.

An included block is used to provide a set of node objects. An included block

MAY appear as the value of a member of a node object with either the key of

@included or an alias of @included. An included block is either a node object or

an array of node objects.

When expanding, multiple included blocks will be coalesced into a single

9.11 Id Maps§

9.12 Type Maps§

9.13 Included Blocks§

https://www.w3.org/TR/json-ld11/

177 of 215

included block.

A nested property is used to gather properties of a node object in a separate

map, or array of maps which are not value objects. It is semantically

transparent and is removed during the process of expansion. Property

nesting is recursive, and collections of nested properties may contain further

nesting.

Semantically, nesting is treated as if the properties and values were declared

directly within the containing node object.

A context definition defines a local context in a node object.

A context definition MUST be a map whose keys MUST be either terms,

compact IRIs, IRIs, or one of the keywords @base, @import, @language,

@propagate, @protected, @type, @version, or @vocab.

If the context definition has an @base key, its value MUST be an IRI reference,

or null.

If the context definition has an @direction key, its value MUST be one of "ltr"

or "rtl", or be null.

If the context definition contains the @import keyword, its value MUST be an

IRI reference. When used as a reference from an @import, the referenced

context definition MUST NOT include an @import key, itself.

If the context definition has an @language key, its value MUST have the lexical

form described in [BCP47] or be null.

If the context definition has an @propagate key, its value MUST be true or

false.

If the context definition has an @protected key, its value MUST be true or

false.

If the context definition has an @type key, its value MUST be a map with only

the entry @container set to @set, and optionally an entry @protected.

9.14 Property Nesting§

9.15 Context Definitions§

https://www.w3.org/TR/json-ld11/

178 of 215

If the context definition has an @version key, its value MUST be a number

with the value 1.1.

If the context definition has an @vocab key, its value MUST be an IRI

reference, a compact IRI, a blank node identifier, a term, or null.

The value of keys that are not keywords MUST be either an IRI, a compact

IRI, a term, a blank node identifier, a keyword, null, or an expanded term

definition.

An expanded term definition is used to describe the mapping between a term

and its expanded identifier, as well as other properties of the value associated

with the term when it is used as key in a node object.

An expanded term definition MUST be a map composed of zero or more keys

from @id, @reverse, @type, @language, @container, @context, @prefix,

@propagate, or @protected. An expanded term definition SHOULD NOT contain

any other keys.

When the associated term is @type, the expanded term definition MUST NOT

contain keys other than @container and @protected. The value of @container is

limited to the single value @set.

If the term being defined is not an IRI or a compact IRI and the active context

does not have an @vocab mapping, the expanded term definition MUST

include the @id key.

Term definitions with keys which are of the form of an IRI or a compact IRI

MUST NOT expand to an IRI other than the expansion of the key itself.

If the expanded term definition contains the @id keyword, its value MUST be

null, an IRI, a blank node identifier, a compact IRI, a term, or a keyword.

If an expanded term definition has an @reverse entry, it MUST NOT have @id

or @nest entries at the same time, its value MUST be an IRI, a blank node

identifier, a compact IRI, or a term. If an @container entry exists, its value

MUST be null, @set, or @index.

If the expanded term definition contains the @type keyword, its value MUST

be an IRI, a compact IRI, a term, null, or one of the keywords @id, @json,

@none, or @vocab.

9.15.1 Expanded term definition§

https://www.w3.org/TR/json-ld11/

179 of 215

If the expanded term definition contains the @language keyword, its value

MUST have the lexical form described in [BCP47] or be null.

If the expanded term definition contains the @container keyword, its value

MUST be either @list, @set, @language, @index, @id, @graph, @type, or be null or

an array containing exactly any one of those keywords, or a combination of

@set and any of @index, @id, @graph, @type, @language in any order . @container

may also be an array containing @graph along with either @id or @index and

also optionally including @set. If the value is @language, when the term is used

outside of the @context, the associated value MUST be a language map. If the

value is @index, when the term is used outside of the @context, the associated

value MUST be an index map.

If an expanded term definition has an @context entry, it MUST be a valid

context definition.

If the expanded term definition contains the @nest keyword, its value MUST

be either @nest, or a term which expands to @nest.

If the expanded term definition contains the @prefix keyword, its value MUST

be true or false.

If the expanded term definition contains the @propagate keyword, its value

MUST be true or false.

If the expanded term definition contains the @protected keyword, its value

MUST be true or false.

Terms MUST NOT be used in a circular manner. That is, the definition of a

term cannot depend on the definition of another term if that other term also

depends on the first term.

See § 3.1 The Context for further discussion on contexts.

JSON-LD keywords are described in § 1.7 Syntax Tokens and Keywords, this

section describes where each keyword may appear within different JSON-LD

structures.

Within node objects, value objects, graph objects, list objects, set objects, and

nested properties keyword aliases MAY be used instead of the corresponding

keyword, except for @context. The @context keyword MUST NOT bee aliased.

Within local contexts and expanded term definitions, keyword aliases MAY

9.16 Keywords§

https://www.w3.org/TR/json-ld11/

180 of 215

NOT used.

@base

The unaliased @base keyword MAY be used as a key in a context

definition. Its value MUST be an IRI reference, or null.

@container

The unaliased @container keyword MAY be used as a key in an expanded

term definition. Its value MUST be either @list, @set, @language, @index,

@id, @graph, @type, or be null, or an array containing exactly any one of

those keywords, or a combination of @set and any of @index, @id, @graph,

@type, @language in any order. The value may also be an array containing

@graph along with either @id or @index and also optionally including @set.

@context

The @context keyword MUST NOT be aliased, and MAY be used as a key

in the following objects:

node objects (see § 9.2 Node Objects),

value objects (see § 9.5 Value Objects),

graph objects (see § 9.4 Graph Objects),

list objects (see § 9.7 Lists and Sets),

set objects (see § 9.7 Lists and Sets),

nested properties (see § 9.14 Property Nesting), and

expanded term definitions (see § 9.15 Context Definitions).

The value of @context MUST be null, an IRI reference, a context

definition, or an array composed of any of these.

@direction

The @direction keyword MAY be aliased and MAY be used as a key in a

value object. Its value MUST be one of "ltr" or "rtl", or be null.

The unaliased @direction MAY be used as a key in a context definition.

See § 4.2.4.1 Base Direction for a further discussion.

@graph

The @graph keyword MAY be aliased and MAY be used as a key in a node

object or a graph object, where its value MUST be a value object, node

object, or an array of either value objects or node objects.

The unaliased @graph MAY be used as the value of the @container key

within an expanded term definition.

See § 4.9 Named Graphs.

https://www.w3.org/TR/json-ld11/

181 of 215

@id

The @id keyword MAY be aliased and MAY be used as a key in a node

object or a graph object.

The unaliased @id MAY be used as a key in an expanded term definition,

or as the value of the @container key within an expanded term definition.

The value of the @id key MUST be an IRI reference, or a compact IRI

(including blank node identifiers).

See § 3.3 Node Identifiers, § 4.1.5 Compact IRIs, and § 4.5.1 Identifying

Blank Nodes for further discussion on @id values.

@import

The unaliased @import keyword MAY be used in a context definition. Its

value MUST be an IRI reference. See § 4.1.10 Imported Contexts for a

further discussion.

@included

The @included keyword MAY be aliased and its value MUST be an

included block. This keyword is described further in § 4.7 Included

Nodes, and § 9.13 Included Blocks.

@index

The @index keyword MAY be aliased and MAY be used as a key in a node

object, value object, graph object, set object, or list object. Its value

MUST be a string.

The unaliased @index MAY be used as the value of the @container key

within an expanded term definition.

See § 9.9 Index Maps for a further discussion.

@json

The @json keyword MAY be aliased and MAY be used as the value of the

@type key within a value object or an expanded term definition.

See § 4.2.2 JSON Literals.

@language

The @language keyword MAY be aliased and MAY be used as a key in a

value object. Its value MUST be a string with the lexical form described

in [BCP47] or be null.

The unaliased @language MAY be used as a key in a context definition, or

as the value of the @container key within an expanded term definition.

See § 4.2.4 String Internationalization, § 9.8 Language Maps.

https://www.w3.org/TR/json-ld11/

182 of 215

@list

The @list keyword MAY be aliased and MUST be used as a key in a list

object. The unaliased @list MAY be used as the value of the @container

key within an expanded term definition. Its value MUST be one of the

following:

string,

number,

true,

false,

null,

node object,

value object, or

an array of zero or more of the above possibilities

See § 4.3 Value Ordering for further discussion on sets and lists.

@nest

The @nest keyword MAY be aliased and MAY be used as a key in a node

object, where its value must be a map.

The unaliased @nest MAY be used as the value of a simple term definition,

or as a key in an expanded term definition, where its value MUST be a

string expanding to @nest.

See § 9.14 Property Nesting for a further discussion.

@none

The @none keyword MAY be aliased and MAY be used as a key in an index

map, id map, language map, type map. See § 4.6.1 Data Indexing, § 4.6.2

Language Indexing, § 4.6.3 Node Identifier Indexing, § 4.6.4 Node Type

Indexing, § 4.9.3 Named Graph Indexing, or § 4.9.2 Named Graph Data

Indexing for a further discussion.

@prefix

The unaliased @prefix keyword MAY be used as a key in an expanded

term definition. Its value MUST be true or false. See § 4.1.5 Compact

IRIs and § 9.15 Context Definitions for a further discussion.

@propagate

The unaliased @propagate keyword MAY be used in a context definition.

Its value MUST be true or false. See § 4.1.9 Context Propagation for a

further discussion.

@protected

https://www.w3.org/TR/json-ld11/

183 of 215

The unaliased @protected keyword MAY be used in a context definition, or

an expanded term definition. Its value MUST be true or false. See

§ 4.1.11 Protected Term Definitions for a further discussion.

@reverse

The @reverse keyword MAY be aliased and MAY be used as a key in a

node object.

The unaliased @reverse MAY be used as a key in an expanded term

definition.

The value of the @reverse key MUST be an IRI reference, or a compact

IRI (including blank node identifiers).

See § 4.8 Reverse Properties and § 9.15 Context Definitions for further

discussion.

@set

The @set keyword MAY be aliased and MUST be used as a key in a set

object. Its value MUST be one of the following:

string,

number,

true,

false,

null,

node object,

value object, or

an array of zero or more of the above possibilities

The unaliased @set MAY be used as the value of the @container key within

an expanded term definition.

See § 4.3 Value Ordering for further discussion on sets and lists.

@type

The @type keyword MAY be aliased and MAY be used as a key in a node

object or a value object, where its value MUST be a term, IRI reference,

or a compact IRI (including blank node identifiers).

The unaliased @type MAY be used as a key in an expanded term definition,

where its value may also be either @id or @vocab, or as the value of the

@container key within an expanded term definition.

https://www.w3.org/TR/json-ld11/

184 of 215

Within a context, @type may be used as the key for an expanded term

definition, whose entries are limited to @container and @protected.

This keyword is described further in § 3.5 Specifying the Type and § 4.2.1

Typed Values.

@value

The @value keyword MAY be aliased and MUST be used as a key in a

value object. Its value key MUST be either a string, a number, true, false

or null. This keyword is described further in § 9.5 Value Objects.

@version

The unaliased @version keyword MAY be used as a key in a context

definition. Its value MUST be a number with the value 1.1. This keyword

is described further in § 9.15 Context Definitions.

@vocab

The unaliased @vocab keyword MAY be used as a key in a context

definition or as the value of @type in an expanded term definition. Its

value MUST be an IRI reference, a compact IRI, a blank node identifier, a

term, or null. This keyword is described further in § 9.15 Context

Definitions, and § 4.1.2 Default Vocabulary.

JSON-LD is a concrete RDF syntax as described in [RDF11-CONCEPTS].

Hence, a JSON-LD document is both an RDF document and a JSON document

and correspondingly represents an instance of an RDF data model. However,

JSON-LD also extends the RDF data model to optionally allow JSON-LD to

serialize generalized RDF Datasets. The JSON-LD extensions to the RDF

data model are:

In JSON-LD properties can be IRIs or blank nodes whereas in RDF

properties (predicates) have to be IRIs. This means that JSON-LD

serializes generalized RDF Datasets.

In JSON-LD lists use native JSON syntax, either contained in a list object,

or described as such within a context. Consequently, developers using the

JSON representation can access list elements directly rather than using

the vocabulary for collections described in [RDF-SCHEMA].

RDF values are either typed literals (typed values) or language-tagged

strings whereas JSON-LD also supports JSON's native data types, i.e.,

number, strings, and the boolean values true and false. The JSON-LD 1.1

Processing Algorithms and API specification [JSON-LD11-API] defines the

10. Relationship to RDF§

https://www.w3.org/TR/json-ld11/

185 of 215

conversion rules between JSON's native data types and RDF's

counterparts to allow round-tripping.

As an extension to the RDF data model, literals without an explicit

datatype MAY include a base direction. As there is currently no

standardized mechanism for representing the base direction of RDF

literals, the JSON-LD to standard RDF transformation loses the base

direction. However, the Deserialize JSON-LD to RDF Algorithm provides a

means of representing base direction using mechanisms which will

preserve round-tripping through non-standard RDF.

NOTE

The use of blank node identifiers to label properties is obsolete, and may

be removed in a future version of JSON-LD, as is the support for

generalized RDF Datasets.

Summarized, these differences mean that JSON-LD is capable of serializing

any RDF graph or dataset and most, but not all, JSON-LD documents can be

directly interpreted as RDF as described in RDF 1.1 Concepts [RDF11-

CONCEPTS].

Authors are strongly encouraged to avoid labeling properties using blank

node identifiers, instead, consider one of the following mechanisms:

a relative IRI reference, either relative to the document or the vocabulary

(see § 4.1.4 Using the Document Base for the Default Vocabulary for a

discussion on using the document base as part of the vocabulary

mapping),

a URN such as urn:example:1, see [URN], or

a "Skolem IRI" as per Replacing Blank Nodes with IRIs of [RDF11-

CONCEPTS].

The normative algorithms for interpreting JSON-LD as RDF and serializing

RDF as JSON-LD are specified in the JSON-LD 1.1 Processing Algorithms and

API specification [JSON-LD11-API].

Even though JSON-LD serializes RDF Datasets, it can also be used as a

graph source. In that case, a consumer MUST only use the default graph

and ignore all named graphs. This allows servers to expose data in languages

such as Turtle and JSON-LD using HTTP content negotiation.

https://www.w3.org/TR/json-ld11/

186 of 215

NOTE

Publishers supporting both dataset and graph syntaxes have to ensure that

the primary data is stored in the default graph to enable consumers that

do not support datasets to process the information.

This section is non-normative.

The process of serializing RDF as JSON-LD and deserializing JSON-LD to RDF

depends on executing the algorithms defined in RDF Serialization-

Deserialization Algorithms in the JSON-LD 1.1 Processing Algorithms and API

specification [JSON-LD11-API]. It is beyond the scope of this document to

detail these algorithms any further, but a summary of the necessary

operations is provided to illustrate the process.

The procedure to deserialize a JSON-LD document to RDF involves the

following steps:

1. Expand the JSON-LD document, removing any context; this ensures that

properties, types, and values are given their full representation as IRIs

and expanded values. Expansion is discussed further in § 5.1 Expanded

Document Form.

2. Flatten the document, which turns the document into an array of node

objects. Flattening is discussed further in § 5.3 Flattened Document

Form.

3. Turn each node object into a series of triples.

For example, consider the following JSON-LD document in compact form:

10.1 Serializing/Deserializing RDF§

https://www.w3.org/TR/json-ld11/

187 of 215

Running the JSON-LD Expansion and Flattening algorithms against the JSON-

LD input document in the example above would result in the following

output:

Deserializing this to RDF now is a straightforward process of turning each

EXAMPLE 151: Sample JSON-LD document

{

"@context": {

"name": "http://xmlns.com/foaf/0.1/name",

"knows": "http://xmlns.com/foaf/0.1/knows"

 },

"@id": "http://me.markus-lanthaler.com/",

"name": "Markus Lanthaler",

"knows": [

 {

"@id": "http://manu.sporny.org/about#manu",

"name": "Manu Sporny"

 }, {

"name": "Dave Longley"

 }

]

}

EXAMPLE 152: Flattened and expanded form for the previous example

[

 {

"@id": "_:b0",

"http://xmlns.com/foaf/0.1/name": "Dave Longley"

 }, {

"@id": "http://manu.sporny.org/about#manu",

"http://xmlns.com/foaf/0.1/name": "Manu Sporny"

 }, {

"@id": "http://me.markus-lanthaler.com/",

"http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",

"http://xmlns.com/foaf/0.1/knows": [

 { "@id": "http://manu.sporny.org/about#manu" },

 { "@id": "_:b0" }

]

 }

]

https://www.w3.org/TR/json-ld11/

188 of 215

node object into one or more triples. This can be expressed in Turtle as

follows:

The process of serializing RDF as JSON-LD can be thought of as the inverse

of this last step, creating an expanded JSON-LD document closely matching

the triples from RDF, using a single node object for all triples having a

common subject, and a single property for those triples also having a

common predicate. The result may then be framed by using the Framing

Algorithm described in [JSON-LD11-FRAMING] to create the desired object

embedding.

RDF provides for JSON content as a possible literal value. This allows markup

in literal values. Such content is indicated in a graph using a literal whose

datatype is set to rdf:JSON.

The rdf:JSON datatype is defined as follows:

The IRI denoting this datatype
is http://www.w3.org/1999/02/22-rdf-syntax-ns#JSON.

The lexical space
is the set of UNICODE [UNICODE] strings which conform to the JSON

Grammar as described in Section 2 JSON Grammar of [RFC8259].

The value space
is the union of the four primitive types (strings, numbers, booleans, and

null) and two structured types (objects and arrays) from [ECMASCRIPT].

Two JSON values and are considered equal if and only if the following

is true:

1. If and are both objects, both and have the same number of

EXAMPLE 153: Turtle representation of expanded/flattened document

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:b0 foaf:name "Dave Longley" .

<http://manu.sporny.org/about#manu> foaf:name "Manu Sporny" .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler" ;

 foaf:knows <http://manu.sporny.org/about#manu>, _:b0 .

10.2 The rdf:JSON Datatype§

A B

A B A B

https://www.w3.org/TR/json-ld11/

189 of 215

entries, and each entry in is equal to a corresponding entry in

where

the keys are equal (as defined in Section 7.2.12, step 5.a in

[ECMASCRIPT]), and

the values are considered equal through applying this comparison

recursively.

2. Otherwise, if and are both arrays, both and have the same

number of elements, and each element is considered equal to the

corresponding element through applying this comparison

recursively.

3. Otherwise, if and satisfy the Strict Equality Comparison defined

in Section 7.2.15 in [ECMASCRIPT].

4. Otherwise, and are not equal.

The lexical-to-value mapping
is the result of parsing the lexical representation into an internal

representation consistent with [ECMASCRIPT] representation created by

using the JSON.parse function as defined in Section 24.5 The JSON Object

of [ECMASCRIPT].

The canonical mapping
is non-normative, as a normative recommendation for JSON

canonicalization is not yet defined. Implementations SHOULD use the

following guidelines when creating the lexical representation of a JSON

literal:

Serialize JSON using no unnecessary whitespace,

Keys in objects SHOULD be ordered lexicographically,

Native Numeric values SHOULD be serialized according to Section

7.1.12.1 of [ECMASCRIPT],

Strings SHOULD be serialized with Unicode codepoints from U+0000

through U+001F using lower case hexadecimal Unicode notation

(\uhhhh) unless in the set of predefined JSON control characters

U+0008, U+0009, U+000A, U+000C or U+000D which SHOULD be serialized

as \b, \t, \n, \f and \r respectively. All other Unicode characters

SHOULD be serialized "as is", other than U+005C (\) and U+0022 (")

which SHOULD be serialized as \\ and \" respectively.

A B

A B A B

Ai

Bi

A B

A B

https://www.w3.org/TR/json-ld11/

190 of 215

ISSUE

The JSON Canonicalization Scheme [JCS] is an emerging standard for

JSON canonicalization not yet ready to be referenced. When a JSON

canonicalization standard becomes available, this specification will

likely be updated to require such a canonical representation. Users are

cautioned from depending on the JSON literal lexical representation as

an RDF literal, as the specifics of serialization may change in a future

revision of this document.

This section is non-normative.

The i18n namespace is used for describing combinations of language tag and

base direction in RDF literals. It is used as an alternative mechanism for

describing the [BCP47] language tag and base direction of RDF literals that

would otherwise use the xsd:string or rdf:langString datatypes.

Datatypes based on this namespace allow round-tripping of JSON-LD

documents using base direction, although the mechanism is not otherwise

standardized.

The Deserialize JSON-LD to RDF Algorithm can be used with the

rdfDirection option set to i18n-datatype to generate RDF literals using the

i18n base to create an IRI encoding the base direction along with optional

language tag from value objects containing @direction by appending to

https://www.w3.org/ns/i18n# the value of @language, if any, followed by an

underscore ("_") followed by the value of @direction.

(FEATURE AT RISK) ISSUE

This feature is experimental, as RDF does not have a standard way to

represent base direction in RDF literals. A future RDF Working Group may

support base direction differently. The JSON-LD Working Group solicits

feedback from the community on the usefulness of these transformations.

The following example shows two statements with literal values of i18n:ar-

EG_rtl, which encodes the language tag ar-EG and the base direction rtl.

10.3 The i18n Namespace§

https://www.w3.org/TR/json-ld11/

191 of 215

@prefix ex: <http://example.org/> .

@prefix i18n: <https://www.w3.org/ns/i18n#> .

Note that this version preserves the base direction using a non-standard datatype.

[

 ex:title "HTML و CSS: بيولا عقاوم ءاشنإ و ميمصت "^^i18n:ar-EG_rtl;

 ex:publisher " ةبتكم "^^i18n:ar-EG_rtl

] .

See § 4.2.4.1 Base Direction for more details on using base direction for

strings.

This section is non-normative.

This specification defines the rdf:CompoundLiteral class, which is in the

domain of rdf:language and rdf:direction to be used for describing RDF

literal values containing base direction and a possible language tag to be

associated with the string value of rdf:value on the same subject.

rdf:CompoundLiteral

A class representing a compound literal.

rdf:language

An RDF property. The range of the property is an rdfs:Literal, whose

value MUST be a well-formed [BCP47] language tag. The domain of the

property is rdf:CompoundLiteral.

rdf:direction

An RDF property. The range of the property is an rdfs:Literal, whose

value MUST be either "ltr" or "rtl". The domain of the property is

rdf:CompoundLiteral.

The Deserialize JSON-LD to RDF Algorithm can be used with the rdfDirection

option set to compound-literal to generate RDF literals using these properties

to describe the base direction and optional language tag from value objects

containing @direction and optionally @language.

10.4 The rdf:CompoundLiteral class and the rdf:language and
rdf:direction properties

§

https://www.w3.org/TR/json-ld11/

192 of 215

(FEATURE AT RISK) ISSUE

This feature is experimental, as RDF does not have a standard way to

represent base direction in RDF literals. A future RDF Working Group may

support base direction differently. The JSON-LD Working Group solicits

feedback from the community on the usefulness of these transformations.

The following example shows two statements with compoud literals

representing strings with the language tag ar-EG and base direction rtl.

@prefix ex: <http://example.org/> .

Note that this version preserves the base direction using a bnode structure.

[

 ex:title [

 rdf:value "HTML و CSS: بيولا عقاوم ءاشنإ و ميمصت ",

 rdf:language "ar-EG",

 rdf:direction "rtl"

];

 ex:publisher [

 rdf:value " ةبتكم ",

 rdf:language "ar-EG",

 rdf:direction "rtl"

]

] .

See § 4.2.4.1 Base Direction for more details on using base direction for

strings.

See, Security Considerations in § C. IANA Considerations.

NOTE

Future versions of this specification may incorporate subresource integrity

[SRI] as a means of ensuring that cached and retrieved content matches

data retrieved from remote servers; see issue 86.

11. Security Considerations§

12. Privacy Considerations§

https://www.w3.org/TR/json-ld11/

193 of 215

The retrieval of external contexts can expose the operation of a JSON-LD

processor, allow intermediate nodes to fingerprint the client application

through introspection of retrieved resources (see [fingerprinting-guidance]),

and provide an opportunity for a man-in-the-middle attack. To protect against

this, publishers should consider caching remote contexts for future use, or

use the documentLoader to maintain a local version of such contexts.

As JSON-LD uses the RDF data model, it is restricted by design in its ability

to properly record JSON-LD Values which are strings with left-to-right or

right-to-left direction indicators. Both JSON-LD and RDF provide a

mechanism for specifying the language associated with a string (language-

tagged string), but do not provide a means of indicating the base direction of

the string.

Unicode provides a mechanism for signaling direction within a string (see

Unicode Bidirectional Algorithm [UAX9]), however, when a string has an

overall base direction which cannot be determined by the beginning of the

string, an external indicator is required, such as the [HTML] dir attribute,

which currently has no counterpart for RDF literals.

The issue of properly representing base direction in RDF is not something

that this Working Group can handle, as it is a limitation or the core RDF data

model. This Working Group expects that a future RDF Working Group will

consider the matter and add the ability to specify the base direction of

language-tagged strings.

Until a more comprehensive solution can be addressed in a future version of

this specification, publishers should consider this issue when representing

strings where the base direction of the string cannot otherwise be correctly

inferred based on the content of the string. See [string-meta] for a discussion

best practices for identifying language and base direction for strings used on

the Web.

This section is non-normative.

13. Internationalization Considerations§

A. Image Descriptions§

A.1 Linked Data Dataset

https://www.w3.org/TR/json-ld11/

194 of 215

This section is non-normative.

This section describes the Linked Data Dataset figure in § 8. Data Model.

The image consists of three dashed boxes, each describing a different linked

data graph. Each box consists of shapes linked with arrows describing the

linked data relationships.

The first box is titled "default graph: <no name>" describes two resources:

http://example.com/people/alice and http://example.com/people/bob

(denoting "Alice" and "Bob" respectively), which are connected by an arrow

labeled schema:knows which describes the knows relationship between the two

resources. Additionally, the "Alice" resource is related to three different

literals:

Alice
an RDF literal with no datatype or language.

weiblich | de
an language-tagged string with the value "weiblich" and language tag

"de".

female | en
an language-tagged string with the value "female" and language tag "en".

The second and third boxes describe two named graphs, with the graph

names "http://example.com/graphs/1" and "http://example.com/graphs/1",

respectively.

The second box consists of two resources: http://example.com/people/alice

and http://example.com/people/bob related by the schema:parent relationship,

and names the http://example.com/people/bob "Bob".

The third box consists of two resources, one named http://example.com

/people/bob and the other unnamed. The two resources related to each other

using schema:sibling relationship with the second named "Mary".

This section is non-normative.

The JSON-LD examples below demonstrate how JSON-LD can be used to

express semantic data marked up in other linked data formats such as Turtle,

RDFa, and Microdata. These sections are merely provided as evidence that

JSON-LD is very flexible in what it can express across different Linked Data

B. Relationship to Other Linked Data Formats§

https://www.w3.org/TR/json-ld11/

195 of 215

approaches.

This section is non-normative.

The following are examples of transforming RDF expressed in [Turtle] into

JSON-LD.

The JSON-LD context has direct equivalents for the Turtle @prefix

declaration:

Both [Turtle] and JSON-LD allow embedding, although [Turtle] only allows

embedding of blank nodes.

B.1 Turtle§

B.1.1 Prefix definitions§

EXAMPLE 154: A set of statements serialized in Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu> a foaf:Person;

 foaf:name "Manu Sporny";

 foaf:homepage <http://manu.sporny.org/> .

EXAMPLE 155: The same set of statements serialized in JSON-LD

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/"

 },

"@id": "http://manu.sporny.org/about#manu",

"@type": "foaf:Person",

"foaf:name": "Manu Sporny",

"foaf:homepage": { "@id": "http://manu.sporny.org/" }

}

B.1.2 Embedding§

https://www.w3.org/TR/json-ld11/

196 of 215

In JSON-LD numbers and boolean values are native data types. While [Turtle]

has a shorthand syntax to express such values, RDF's abstract syntax

requires that numbers and boolean values are represented as typed literals.

Thus, to allow full round-tripping, the JSON-LD 1.1 Processing Algorithms

and API specification [JSON-LD11-API] defines conversion rules between

JSON-LD's native data types and RDF's counterparts. Numbers without

fractions are converted to xsd:integer-typed literals, numbers with fractions

to xsd:double-typed literals and the two boolean values true and false to a

xsd:boolean-typed literal. All typed literals are in canonical lexical form.

EXAMPLE 156: Embedding in Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu>

 a foaf:Person;

foaf:name "Manu Sporny";

foaf:knows [a foaf:Person; foaf:name "Gregg Kellogg"] .

EXAMPLE 157: Same embedding example in JSON-LD

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/"

 },

"@id": "http://manu.sporny.org/about#manu",

"@type": "foaf:Person",

"foaf:name": "Manu Sporny",

"foaf:knows": {

"@type": "foaf:Person",

"foaf:name": "Gregg Kellogg"

 }

}

B.1.3 Conversion of native data types§

https://www.w3.org/TR/json-ld11/

197 of 215

Both JSON-LD and [Turtle] can represent sequential lists of values.

EXAMPLE 158: JSON-LD using native data types for numbers and boolean

values

{

"@context": {

"ex": "http://example.com/vocab#"

 },

"@id": "http://example.com/",

"ex:numbers": [14, 2.78],

"ex:booleans": [true, false]

}

EXAMPLE 159: Same example in Turtle using typed literals

@prefix ex: <http://example.com/vocab#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/>

 ex:numbers "14"^^xsd:integer, "2.78E0"^^xsd:double ;

ex:booleans "true"^^xsd:boolean, "false"^^xsd:boolean .

B.1.4 Lists§

EXAMPLE 160: A list of values in Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> a foaf:Person;

 foaf:name "Joe Bob";

 foaf:nick ("joe" "bob" "jaybee") .

https://www.w3.org/TR/json-ld11/

198 of 215

This section is non-normative.

The following example describes three people with their respective names

and homepages in RDFa [RDFA-CORE].

EXAMPLE 161: Same example with a list of values in JSON-LD

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/"

 },

"@id": "http://example.org/people#joebob",

"@type": "foaf:Person",

"foaf:name": "Joe Bob",

"foaf:nick": {

"@list": ["joe", "bob", "jaybee"]

 }

}

B.2 RDFa§

EXAMPLE 162: RDFa fragment that describes three people

<div prefix="foaf: http://xmlns.com/foaf/0.1/">

 <li typeof="foaf:Person">

 Bob

 <li typeof="foaf:Person">

 Eve

 <li typeof="foaf:Person">

 Manu

</div>

https://www.w3.org/TR/json-ld11/

199 of 215

An example JSON-LD implementation using a single context is described

below.

This section is non-normative.

The HTML Microdata [MICRODATA] example below expresses book

information as a Microdata Work item.

EXAMPLE 163: Same description in JSON-LD (context shared among node

objects)

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/",

"foaf:homepage": {"@type": "@id"}

 },

"@graph": [

 {

"@type": "foaf:Person",

"foaf:homepage": "http://example.com/bob/",

"foaf:name": "Bob"

 }, {

"@type": "foaf:Person",

"foaf:homepage": "http://example.com/eve/",

"foaf:name": "Eve"

 }, {

"@type": "foaf:Person",

"foaf:homepage": "http://example.com/manu/",

"foaf:name": "Manu"

 }

]

}

B.3 Microdata§

https://www.w3.org/TR/json-ld11/

200 of 215

Note that the JSON-LD representation of the Microdata information stays

true to the desires of the Microdata community to avoid contexts and instead

refer to items by their full IRI.

EXAMPLE 164: HTML that describes a book using microdata

<dl itemscope

itemtype="http://purl.org/vocab/frbr/core#Work"

itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N">

<dt>Title</dt>

<dd><cite itemprop="http://purl.org/dc/elements/1.1/title">Just a Geek

<dt>By</dt>

<dd>Wil Wheaton

<dt>Format</dt>

<dd itemprop="http://purl.org/vocab/frbr/core#realization"

itemscope

itemtype="http://purl.org/vocab/frbr/core#Expression"

itemid="http://purl.oreilly.com/products/9780596007683.BOOK">

<link itemprop="http://purl.org/dc/elements/1.1/type" href="http://purl.oreilly.com/p

 Print

</dd>

<dd itemprop="http://purl.org/vocab/frbr/core#realization"

itemscope

itemtype="http://purl.org/vocab/frbr/core#Expression"

itemid="http://purl.oreilly.com/products/9780596802189.EBOOK">

<link itemprop="http://purl.org/dc/elements/1.1/type" href="http://purl.oreilly.com/p

 Ebook

</dd>

</dl>

https://www.w3.org/TR/json-ld11/

201 of 215

This section has been submitted to the Internet Engineering Steering Group

(IESG) for review, approval, and registration with IANA.

Type name:
application

Subtype name:
ld+json

Required parameters:
None

Optional parameters:
profile

A non-empty list of space-separated URIs identifying specific

EXAMPLE 165: Same book description in JSON-LD (avoiding contexts)

[

 {

"@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N",

"@type": "http://purl.org/vocab/frbr/core#Work",

"http://purl.org/dc/elements/1.1/title": "Just a Geek",

"http://purl.org/dc/elements/1.1/creator": "Wil Wheaton",

"http://purl.org/vocab/frbr/core#realization":

 [

 {"@id": "http://purl.oreilly.com/products/9780596007683.BOOK"},

 {"@id": "http://purl.oreilly.com/products/9780596802189.EBOOK"}

]

 }, {

"@id": "http://purl.oreilly.com/products/9780596007683.BOOK",

"@type": "http://purl.org/vocab/frbr/core#Expression",

"http://purl.org/dc/elements/1.1/type": {"@id": "http://purl.oreilly.com/product-ty

 }, {

"@id": "http://purl.oreilly.com/products/9780596802189.EBOOK",

"@type": "http://purl.org/vocab/frbr/core#Expression",

"http://purl.org/dc/elements/1.1/type": {"@id": "http://purl.oreilly.com/product-ty

 }

]

C. IANA Considerations§

application/ld+json§

https://www.w3.org/TR/json-ld11/

202 of 215

constraints or conventions that apply to a JSON-LD document

according to [RFC6906]. A profile does not change the semantics of

the resource representation when processed without profile

knowledge, so that clients both with and without knowledge of a

profiled resource can safely use the same representation. The profile

parameter MAY be used by clients to express their preferences in the

content negotiation process. If the profile parameter is given, a server

SHOULD return a document that honors the profiles in the list which

it recognizes, and MUST ignore the profiles in the list which it does

not recognize. It is RECOMMENDED that profile URIs are

dereferenceable and provide useful documentation at that URI. For

more information and background please refer to [RFC6906].

This specification defines six values for the profile parameter.

http://www.w3.org/ns/json-ld#expanded

To request or specify expanded JSON-LD document form.

http://www.w3.org/ns/json-ld#compacted

To request or specify compacted JSON-LD document form.

http://www.w3.org/ns/json-ld#context

To request or specify a JSON-LD context document.

http://www.w3.org/ns/json-ld#flattened

To request or specify flattened JSON-LD document form.

http://www.w3.org/ns/json-ld#frame

To request or specify a JSON-LD frame document.

http://www.w3.org/ns/json-ld#framed

To request or specify framed JSON-LD document form.

All other URIs starting with http://www.w3.org/ns/json-ld are

reserved for future use by JSON-LD specifications.

Other specifications MAY create further structured subtypes by using

+ld+json as a suffix for a new base subtype, as in

application/example+ld+json. Unless defined otherwise, such

subtypes use the same fragment identifier behavior as

application/ld+json.

Other specifications may publish additional profile parameter URIs

with their own defined semantics. This includes the ability to

associate a file extension with a profile parameter.

When used as a media type parameter [RFC4288] in an HTTP Accept

header [RFC7231], the value of the profile parameter MUST be

https://www.w3.org/TR/json-ld11/

203 of 215

enclosed in quotes (") if it contains special characters such as

whitespace, which is required when multiple profile URIs are

combined.

When processing the "profile" media type parameter, it is important

to note that its value contains one or more URIs and not IRIs. In some

cases it might therefore be necessary to convert between IRIs and

URIs as specified in section 3 Relationship between IRIs and URIs of

[RFC3987].

Encoding considerations:
See RFC 8259, section 11.

Security considerations:
See RFC 8259, section 12 [RFC8259]

Since JSON-LD is intended to be a pure data exchange format for

directed graphs, the serialization SHOULD NOT be passed through a

code execution mechanism such as JavaScript's eval() function to be

parsed. An (invalid) document may contain code that, when executed,

could lead to unexpected side effects compromising the security of a

system.

When processing JSON-LD documents, links to remote contexts and

frames are typically followed automatically, resulting in the transfer of

files without the explicit request of the user for each one. If remote

contexts are served by third parties, it may allow them to gather usage

patterns or similar information leading to privacy concerns. Specific

implementations, such as the API defined in the JSON-LD 1.1 Processing

Algorithms and API specification [JSON-LD11-API], may provide fine-

grained mechanisms to control this behavior.

JSON-LD contexts that are loaded from the Web over non-secure

connections, such as HTTP, run the risk of being altered by an attacker

such that they may modify the JSON-LD active context in a way that could

compromise security. It is advised that any application that depends on a

remote context for mission critical purposes vet and cache the remote

context before allowing the system to use it.

Given that JSON-LD allows the substitution of long IRIs with short terms,

JSON-LD documents may expand considerably when processed and, in

the worst case, the resulting data might consume all of the recipient's

resources. Applications should treat any data with due skepticism.

As JSON-LD places no limits on the IRI schemes that may be used, and

https://www.w3.org/TR/json-ld11/

204 of 215

vocabulary-relative IRIs use string concatenation rather than IRI

resolution, it is possible to construct IRIs that may be used maliciously, if

dereferenced.

Interoperability considerations:
Not Applicable

Published specification:
http://www.w3.org/TR/json-ld

Applications that use this media type:
Any programming environment that requires the exchange of directed

graphs. Implementations of JSON-LD have been created for JavaScript,

Python, Ruby, PHP, and C++.

Additional information:
Magic number(s):

Not Applicable

File extension(s):
.jsonld

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ivan Herman <ivan@w3.org>

Intended usage:
Common

Restrictions on usage:
None

Author(s):
Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Niklas

Lindström

Change controller:
W3C

Fragment identifiers used with application/ld+json are treated as in RDF

syntaxes, as per RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS].

This section is non-normative.

The following examples illustrate different ways in which the profile

parameter may be used to describe different acceptable responses.

C.1 Examples§

https://www.w3.org/TR/json-ld11/

205 of 215

Requests the server to return the requested resource as JSON-LD in

expanded document form.

Requests the server to return the requested resource as JSON-LD in

compacted document form. As no explicit context resource is specified, the

server compacts using an application-specific default context.

Requests the server to return the requested resource as JSON-LD in both

compacted document form and flattened document form. Note that as

whitespace is used to separate the two URIs, they are enclosed in double

quotes (").

This section is non-normative.

The following is a list of issues open at the time of publication.

EXAMPLE 166: HTTP Request with profile requesting an expanded

document

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#expanded

EXAMPLE 167: HTTP Request with profile requesting a compacted

document

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#compacted

EXAMPLE 168: HTTP Request with profile requesting a compacted

document with a reference to a compaction context

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json;profile="http://www.w3.org/ns/json-ld#flattened http://www.

D. Open Issues§

https://www.w3.org/TR/json-ld11/

206 of 215

ISSUE 108: Consider context by reference with metadata

Consider context by reference with metadata.

ISSUE 191: Compact IRI expansion support for non-trivial prefix term

definitions

Compact IRI expansion support for non-trivial prefix term definitions.

ISSUE 280: language-maps don't allow separate base direction

Language-maps don't allow separate base direction.

This section is non-normative.

A context may contain a @version entry which is used to set the

processing mode.

An expanded term definition can now have an @context property, which

defines a context used for values of a property identified with such a

term.

@container values within an expanded term definition may now include

@id, @graph and @type, corresponding to id maps and type maps.

An expanded term definition can now have an @nest property, which

identifies a term expanding to @nest which is used for containing

properties using the same @nest mapping. When expanding, the values of

a property expanding to @nest are treated as if they were contained

within the enclosing node object directly.

The JSON syntax has been abstracted into an internal representation to

allow for other serializations that are functionally equivalent to JSON.

Added § 4.6.3 Node Identifier Indexing and § 4.6.4 Node Type Indexing.

Both language maps and index maps may legitimately have an @none key,

defer-future-

version hr:privacy hr:security

defer-future-version spec:enhancement

defer-

future-version

E. Changes since 1.0 Recommendation of 16 January
2014

§

https://www.w3.org/TR/json-ld11/

207 of 215

but JSON-LD 1.0 only allowed string keys. This has been updated to allow

@none keys.

The value for @container in an expanded term definition can also be an

array containing any appropriate container keyword along with @set

(other than @list). This allows a way to ensure that such property values

will always be expressed in array form.

In JSON-LD 1.1, terms will be chosen as compact IRI prefixes when

compacting only if a simple term definition is used where the value ends

with a URI gen-delim character, or if their expanded term definition

contains a @prefix entry with the value true. The 1.0 algorithm has been

updated to only consider terms that map to a value that ends with a URI

gen-delim character.

Values of properties where the associated term definition has @container

set to @graph are interpreted as implicitly named graphs, where the

associated graph name is assigned from a new blank node identifier.

Other combinations include ["@container", "@id"], ["@container",

"@index"] each also may include "@set", which create maps from the

graph identifier or index value similar to index maps and id maps.

Additionally, see § F. Changes since JSON-LD Community Group Final Report.

This section is non-normative.

Lists may now have items which are themselves lists.

Values of @type, or an alias of @type, may now have their @container set to

@set to ensure that @type entries are always represented as an array. This

also allows a term to be defined for @type, where the value MUST be a

map with @container set to @set.

The use of blank node identifiers to label properties is obsolete, and may

be removed in a future version of JSON-LD, as is the support for

generalized RDF Datasets.

The vocabulary mapping can be a relative IRI reference, which is

evaluated either against an existing default vocabulary, or against the

document base. This allows vocabulary-relative IRIs, such as the keys of

node objects, are expanded or compacted relative to the document base.

(See Security Considerations in § C. IANA Considerations for a discussion

F. Changes since JSON-LD Community Group Final
Report

§

https://www.w3.org/TR/json-ld11/

208 of 215

on how string vocabulary-relative IRI resolution via concatenation.)

Added support for "@type": "@none" in a term definition to prevent value

compaction. Define the rdf:JSON datatype.

Term definitions with keys which are of the form of an IRI reference or a

compact IRI MUST NOT expand to an IRI other than the expansion of the

key itself.

A frame may also be located within an HTML document, identified using

type application/ld+json;profile=http://www.w3.org/ns/json-ld#frame.

Term definitions can now be protected, to limit the ability of other

contexts to override them.

A context defined in an expanded term definition may also be used for

values of @type, which defines a context to use for node objects including

the associated type.

By default, all contexts are propagated when traversing node objects,

other than type-scoped contexts. This can be controlled using the

@propagate entry in a local context.

A context may contain an @import entry used to reference a remote

context within a context, allowing JSON-LD 1.1 features to be added to

contexts originally authored for JSON-LD 1.0.

A node object may include an included block, which is used to contain a

set of node objects which are treated exactly as if they were node objects

defined in an array including the containing node object. This allows the

use of the object form of a JSON-LD document when there is more than

one node object being defined, and where those node objects are not

embedded as values of the containing node object.

The alternate link relation can be used to supply an alternate location for

retrieving a JSON-LD document when the returned document is not

JSON.

Value objects, and associated context and term definitions have been

updated to support @direction for setting the base direction of strings.

The processing mode is now implicitly json-ld-1.1, unless set explicitly to

json-ld-1.0.

Improve notation using IRI, IRI reference, and relative IRI reference.

Allow further structured subtypes of application/ld+json by using

+ld+json as a suffix for a new base type.

Warn about forward-compatibility issues for terms of the form

("@"1*ALPHA).

https://www.w3.org/TR/json-ld11/

209 of 215

This section is non-normative.

The editors would like to specially thank the following individuals for making

significant contributions to the authoring and editing of this specification:

Timothy Cole (University of Illinois at Urbana-Champaign)

Ivan Herman (W3C Staff)

Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

David Lehn (Digital Bazaar)

David Newbury (J. Paul Getty Trust)

Robert Sanderson (J. Paul Getty Trust, chair)

Harold Solbrig (Johns Hopkins Institute for Clinical and Translational

Research)

Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of

Economics and Business)

A Soroka (Apache Software Foundation)

Ruben Taelman (Imec vzw)

Benjamin Young (Wiley, chair)

Additionally, the following people were members of the Working Group at the

time of publication:

Steve Blackmon (Apache Software Foundation)

Dan Brickley (Google, Inc.)

Newton Calegari (NIC.br - Brazilian Network Information Center)

Victor Charpenay (Siemens AG)

Sebastian Käbisch (Siemens AG)

Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of

Economics and Business)

Leonard Rosenthol (Adobe)

Jean-Yves ROSSI (CANTON CONSULTING)

Antoine Roulin (CANTON CONSULTING)

Manu Sporny (Digital Bazaar)

Clément Warnier de Wailly (CANTON CONSULTING)

G. Acknowledgements§

https://www.w3.org/TR/json-ld11/

210 of 215

A large amount of thanks goes out to the JSON-LD Community Group

participants who worked through many of the technical issues on the mailing

list and the weekly telecons: Chris Webber, David Wood, Drummond Reed,

Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy,

Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob

Trainer, Ted Thibodeau Jr., and Victor Charpenay.

[BCP47]
Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September

2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47

[DOM]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://dom.spec.whatwg.org/

[ECMASCRIPT]
ECMAScript Language Specification. Ecma International. URL:

https://tc39.es/ecma262/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson;

Philip Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL:

https://html.spec.whatwg.org/multipage/

[IANA-URI-SCHEMES]
Uniform Resource Identifier (URI) Schemes. IANA. URL:

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON).

D. Crockford. IETF. July 2006. Informational. URL: https://tools.ietf.org

/html/rfc4627

[JSON-LD11-API]
JSON-LD 1.1 Processing Algorithms and API. Gregg Kellogg; Dave

Longley; Pierre-Antoine Champin. W3C. 18 October 2019. W3C Working

Draft. URL: https://www.w3.org/TR/json-ld11-api/

[JSON-LD11-FRAMING]
JSON-LD 1.1 Framing. Dave Longley; Gregg Kellogg; Pierre-Antoine

Champin. W3C. 18 October 2019. W3C Working Draft. URL:

https://www.w3.org/TR/json-ld11-framing/

H. References§

H.1 Normative references§

https://www.w3.org/TR/json-ld11/

211 of 215

[RDF-SCHEMA]
RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February

2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/

[RDF11-CONCEPTS]
RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood;

Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL:

https://www.w3.org/TR/rdf11-concepts/

[RDF11-MT]
RDF 1.1 Semantics. Patrick Hayes; Peter Patel-Schneider. W3C. 25

February 2014. W3C Recommendation. URL: https://www.w3.org

/TR/rdf11-mt/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner.

IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org

/html/rfc2119

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R.

Fielding; L. Masinter. IETF. January 2005. Internet Standard. URL:

https://tools.ietf.org/html/rfc3986

[RFC3987]
Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard.

IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org

/html/rfc3987

[RFC4288]
Media Type Specifications and Registration Procedures. N. Freed; J.

Klensin. IETF. December 2005. Best Current Practice. URL:

https://tools.ietf.org/html/rfc4288

[RFC5234]
Augmented BNF for Syntax Specifications: ABNF. D. Crocker, Ed.; P.

Overell. IETF. January 2008. Internet Standard. URL: https://tools.ietf.org

/html/rfc5234

[RFC6839]
Additional Media Type Structured Syntax Suffixes. T. Hansen; A.

Melnikov. IETF. January 2013. Informational. URL: https://tools.ietf.org

/html/rfc6839

[RFC6906]
The 'profile' Link Relation Type. E. Wilde. IETF. March 2013.

Informational. URL: https://tools.ietf.org/html/rfc6906

[RFC7231]
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. R.

https://www.w3.org/TR/json-ld11/

212 of 215

Fielding, Ed.; J. Reschke, Ed. June 2014. Proposed Standard. URL:

https://tools.ietf.org/html/rfc7231

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba.

IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org

/html/rfc8174

[RFC8259]
The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray,

Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org

/html/rfc8259

[RFC8288]
Web Linking. M. Nottingham. October 2017. Proposed Standard. URL:

https://tools.ietf.org/html/rfc8288

[UAX9]
Unicode Bidirectional Algorithm. Mark Davis; Aharon Lanin; Andrew

Glass. Unicode Consortium. 4 February 2019. Unicode Standard Annex

#9. URL: https://www.unicode.org/reports/tr9/tr9-41.html

[UNICODE]
The Unicode Standard. Unicode Consortium. URL:

https://www.unicode.org/versions/latest/

[fingerprinting-guidance]
Mitigating Browser Fingerprinting in Web Specifications. Nick Doty. W3C.

28 March 2019. W3C Note. URL: https://www.w3.org/TR/fingerprinting-

guidance/

[INFRA]
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living

Standard. URL: https://infra.spec.whatwg.org/

[JCS]
JSON Canonicalization Scheme (JCS). A. Rundgren; B. Jordan; S.

Erdtman. Network Working Group. February 16, 2019. Internet-Draft.

URL: https://tools.ietf.org/html/draft-rundgren-json-canonicalization-

scheme-05

[JSON-LD10]
JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Marcus Langhaler. W3C. 16

January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014

/REC-json-ld-20140116/

[JSON.API]

H.2 Informative references§

https://www.w3.org/TR/json-ld11/

213 of 215

JSON API. Steve Klabnik; Yehuda Katz; Dan Gebhardt; Tyler Kellen; Ethan

Resnick. 29 May 2015. unofficial. URL: https://jsonapi.org/format/

[ld-glossary]
Linked Data Glossary. Bernadette Hyland; Ghislain Auguste Atemezing;

Michael Pendleton; Biplav Srivastava. W3C. 27 June 2013. W3C Note.

URL: https://www.w3.org/TR/ld-glossary/

[LINKED-DATA]
Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-

Internal Document. URL: https://www.w3.org/DesignIssues

/LinkedData.html

[MICRODATA]
HTML Microdata. Charles 'chaals' (McCathie) Nevile; Dan Brickley; Ian

Hickson. W3C. 26 April 2018. W3C Working Draft. URL:

https://www.w3.org/TR/microdata/

[RDFA-CORE]
RDFa Core 1.1 - Third Edition. Ben Adida; Mark Birbeck; Shane

McCarron; Ivan Herman et al. W3C. 17 March 2015. W3C

Recommendation. URL: https://www.w3.org/TR/rdfa-core/

[rfc4122]
A Universally Unique IDentifier (UUID) URN Namespace. P. Leach; M.

Mealling; R. Salz. IETF. July 2005. Proposed Standard. URL:

https://tools.ietf.org/html/rfc4122

[RFC7049]
Concise Binary Object Representation (CBOR). C. Bormann; P. Hoffman.

IETF. October 2013. Proposed Standard. URL: https://tools.ietf.org

/html/rfc7049

[RFC7946]
The GeoJSON Format. H. Butler; M. Daly; A. Doyle; S. Gillies; S. Hagen; T.

Schaub. IETF. August 2016. Proposed Standard. URL:

https://tools.ietf.org/html/rfc7946

[SPARQL11-OVERVIEW]
SPARQL 1.1 Overview. The W3C SPARQL Working Group. W3C. 21 March

2013. W3C Recommendation. URL: https://www.w3.org/TR/sparql11-

overview/

[SRI]
Subresource Integrity. Devdatta Akhawe; Frederik Braun; Francois

Marier; Joel Weinberger. W3C. 23 June 2016. W3C Recommendation.

URL: https://www.w3.org/TR/SRI/

[string-meta]
Strings on the Web: Language and Direction Metadata. Addison Phillips;

https://www.w3.org/TR/json-ld11/

214 of 215

Richard Ishida. W3C. 11 June 2019. W3C Working Draft. URL:

https://www.w3.org/TR/string-meta/

[TriG]
RDF 1.1 TriG. Gavin Carothers; Andy Seaborne. W3C. 25 February 2014.

W3C Recommendation. URL: https://www.w3.org/TR/trig/

[Turtle]
RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February

2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/

[URN]
URN Syntax. R. Moats. IETF. May 1997. Proposed Standard. URL:

https://tools.ietf.org/html/rfc2141

[WEBIDL]
Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft.

URL: https://heycam.github.io/webidl/

[YAML]
YAML Ain’t Markup Language (YAML™) Version 1.2. Oren Ben-Kiki; Clark

Evans; Ingy döt Net. 1 October 2009. URL: http://yaml.org/spec/1.2

/spec.html

↑

https://www.w3.org/TR/json-ld11/

215 of 215

