
HAL Id: hal-02141614
https://hal.science/hal-02141614v1

Submitted on 28 May 2019 (v1), last revised 28 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JSON-LD 1.1 – A JSON-based Serialization for Linked
Data (W3C Working Draft)

Gregg Kellogg, Pierre-Antoine Champin, Dave Longley

To cite this version:
Gregg Kellogg, Pierre-Antoine Champin, Dave Longley. JSON-LD 1.1 – A JSON-based Serialization
for Linked Data (W3C Working Draft). [Technical Report] W3C. 2019. �hal-02141614v1�

https://hal.science/hal-02141614v1
https://hal.archives-ouvertes.fr

JSON-LD 1.1

This version:
https://www.w3.org/TR/2019/WD-json-ld11-20190510/

Latest published version:
https://www.w3.org/TR/json-ld11/

Latest editor's draft:
https://w3c.github.io/json-ld-syntax/

Previous version:
https://www.w3.org/TR/2018/WD-json-ld11-20181214/

Latest Recommendation:
https://www.w3.org/TR/2014/REC-json-ld-20140116/

Editors:
Gregg Kellogg (v1.0 and v1.1)

Pierre-Antoine Champin (LIRIS - Université de Lyon) (v1.1)

Former editors:
Manu Sporny (Digital Bazaar) (v1.0)

Markus Lanthaler (Graz University of Technology) (v1.0)

Authors:
Manu Sporny (Digital Bazaar) (v1.0)

Dave Longley (Digital Bazaar) (v1.0)

Gregg Kellogg (v1.0 and v1.1)

Markus Lanthaler (Graz University of Technology) (v1.0)

Niklas Lindström (v1.0)

Participate:
GitHub w3c/json-ld-syntax

File a bug

Commit history

Pull requests

Copyright © 2010-2019 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and

permissive document license rules apply.

A JSON-based Serialization for Linked Data

W3C Working Draft 10 May 2019

https://www.w3.org/TR/json-ld11/

1 of 189

JSON is a useful data serialization and messaging format. This specification

defines JSON-LD, a JSON-based format to serialize Linked Data. The syntax is

designed to easily integrate into deployed systems that already use JSON, and

provides a smooth upgrade path from JSON to JSON-LD. It is primarily

intended to be a way to use Linked Data in Web-based programming

environments, to build interoperable Web services, and to store Linked Data

in JSON-based storage engines.

This section describes the status of this document at the time of its

publication. Other documents may supersede this document. A list of current

W3C publications and the latest revision of this technical report can be found

in the W3C technical reports index at https://www.w3.org/TR/.

This document has been developed by the JSON-LD Working Group and was

derived from the JSON-LD Community Group's Final Report.

There is a live JSON-LD playground that is capable of demonstrating the

features described in this document.

This document was published by the JSON-LD Working Group as a Working

Draft. This document is intended to become a W3C Recommendation.

GitHub Issues are preferred for discussion of this specification. Alternatively,

you can send comments to our mailing list. Please send them to public-json-

ld-wg@w3.org (archives).

Publication as a Working Draft does not imply endorsement by the W3C

Membership. This is a draft document and may be updated, replaced or

obsoleted by other documents at any time. It is inappropriate to cite this

document as other than work in progress.

This document was produced by a group operating under the W3C Patent

Policy. W3C maintains a public list of any patent disclosures made in

connection with the deliverables of the group; that page also includes

instructions for disclosing a patent. An individual who has actual knowledge

of a patent which the individual believes contains Essential Claim(s) must

disclose the information in accordance with section 6 of the W3C Patent

Policy.

Abstract

Status of This Document

https://www.w3.org/TR/json-ld11/

2 of 189

1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.

2.1

2.1.1

3.

3.1

3.2

3.3

3.4

3.5

4.

4.1

4.1.1

4.1.2

4.1.2.1

4.1.3

This document is governed by the 1 March 2019 W3C Process Document.

This document is one of three JSON-LD 1.1 Recommendations produced by

the JSON-LD Working Group:

JSON-LD 1.1

JSON-LD 1.1 Processing Algorithms and API

JSON-LD 1.1 Framing

Introduction

How to Read this Document

Contributing

Typographical conventions

Terminology

Design Goals and Rationale

Data Model Overview

Syntax Tokens and Keywords

Conformance

Processor Levels

Additional Processor Levels

Basic Concepts

The Context

IRIs

Node Identifiers

Uses of JSON Objects

Specifying the Type

Advanced Concepts

Advanced Context Usage

JSON-LD 1.1 Processing Mode

Default Vocabulary

Using the Document Base for the Default Vocabulary

Base IRI

Set of Documents§

Table of Contents

https://www.w3.org/TR/json-ld11/

3 of 189

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.3

4.3.1

4.3.2

4.3.3

4.4

4.5

4.5.1

4.6

4.6.1

4.6.1.1

4.6.2

4.6.3

4.6.4

4.7

4.8

4.8.1

4.8.2

4.8.3

5.

5.1

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

Compact IRIs

Aliasing Keywords

IRI Expansion within a Context

Scoped Contexts

Protected Term Definitions

Describing Values

Typed Values

JSON Literals

Type Coercion

String Internationalization

Value Ordering

Lists

Sets

Using @set with @type

Nested Properties

Embedding

Identifying Blank Nodes

Indexed Values

Data Indexing

Property-based data indexing

Language Indexing

Node Identifier Indexing

Node Type Indexing

Reverse Properties

Named Graphs

Graph Containers

Named Graph Data Indexing

Named Graph Indexing

Forms of JSON-LD

Expanded Document Form

Compacted Document Form

Shortening IRIs

Representing Values as Strings

Representing Lists as Arrays

Reversing Node Relationships

Indexing Values

Normalizing Values as Objects

Representing Singular Values as Arrays

Term Selection

https://www.w3.org/TR/json-ld11/

4 of 189

5.3

5.4

6.

7.

7.1

7.2

7.3

7.4

8.

9.

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

10.

10.1

10.2

11.

12.

13.

A.

A.1

Flattened Document Form

Framed Document Form

Interpreting JSON as JSON-LD

Embedding JSON-LD in HTML Documents

Inheriting base IRI from HTML's base element

Restrictions for contents of JSON-LD script elements

Locating a Specific JSON-LD Script Element

Using an HTML document as a Context

Data Model

JSON-LD Grammar

Terms

Node Objects

Frame Objects

Graph Objects

Value Objects

Value Patterns

Lists and Sets

Language Maps

Index Maps

Property-based Index Maps

Id Maps

Type Maps

Property Nesting

Context Definitions

Keywords

Relationship to RDF

Serializing/Deserializing RDF

The rdf:JSON Datatype

Security Considerations

Privacy Considerations

Internationalization Considerations

Image Descriptions

Linked Data Dataset

https://www.w3.org/TR/json-ld11/

5 of 189

B.

B.1

B.1.1

B.1.2

B.1.3

B.1.4

B.2

B.3

C.

C.1

D.

E.

F.

G.

H.

H.1

H.2

Relationship to Other Linked Data Formats

Turtle

Prefix definitions

Embedding

Conversion of native data types

Lists

RDFa

Microdata

IANA Considerations

Examples

Open Issues

Changes since 1.0 Recommendation of 16 January 2014

Changes since JSON-LD Community Group Final Report

Acknowledgements

References

Normative references

Informative references

This section is non-normative.

Linked Data [LINKED-DATA] is a way to create a network of standards-based

machine interpretable data across different documents and Web sites. It

allows an application to start at one piece of Linked Data, and follow

embedded links to other pieces of Linked Data that are hosted on different

sites across the Web.

JSON-LD is a lightweight syntax to serialize Linked Data in JSON [RFC8259].

Its design allows existing JSON to be interpreted as Linked Data with minimal

changes. JSON-LD is primarily intended to be a way to use Linked Data in

Web-based programming environments, to build interoperable Web services,

and to store Linked Data in JSON-based storage engines. Since JSON-LD is

100% compatible with JSON, the large number of JSON parsers and libraries

available today can be reused. In addition to all the features JSON provides,

JSON-LD introduces:

1. Introduction§

https://www.w3.org/TR/json-ld11/

6 of 189

a universal identifier mechanism for JSON objects via the use of IRIs,

a way to disambiguate keys shared among different JSON documents by

mapping them to IRIs via a context,

a mechanism in which a value in a JSON object may refer to a resource

on a different site on the Web,

the ability to annotate strings with their language,

a way to associate datatypes with values such as dates and times,

and a facility to express one or more directed graphs, such as a social

network, in a single document.

JSON-LD is designed to be usable directly as JSON, with no knowledge of

RDF [RDF11-CONCEPTS]. It is also designed to be usable as RDF, if desired,

for use with other Linked Data technologies like SPARQL [SPARQL11-

OVERVIEW]. Developers who require any of the facilities listed above or need

to serialize an RDF Graph or Dataset in a JSON-based syntax will find JSON-

LD of interest. People intending to use JSON-LD with RDF tools will find it

can be used as another RDF syntax, as with [Turtle] and [TriG]. Complete

details of how JSON-LD relates to RDF are in section § 10. Relationship to

RDF.

The syntax is designed to not disturb already deployed systems running on

JSON, but provide a smooth upgrade path from JSON to JSON-LD. Since the

shape of such data varies wildly, JSON-LD features mechanisms to reshape

documents into a deterministic structure which simplifies their processing.

This section is non-normative.

This document is a detailed specification for a serialization of Linked Data in

JSON. The document is primarily intended for the following audiences:

Software developers who want to encode Linked Data in a variety of

programming languages that can use JSON

Software developers who want to convert existing JSON to JSON-LD

Software developers who want to understand the design decisions and

language syntax for JSON-LD

Software developers who want to implement processors and APIs for

JSON-LD

1.1 How to Read this Document§

https://www.w3.org/TR/json-ld11/

7 of 189

Software developers who want to generate or consume Linked Data, an

RDF graph, or an RDF Dataset in a JSON syntax

A companion document, the JSON-LD 1.1 Processing Algorithms and API

specification [JSON-LD11-API], specifies how to work with JSON-LD at a

higher level by providing a standard library interface for common JSON-LD

operations.

To understand the basics in this specification you must first be familiar with

JSON, which is detailed in [RFC8259].

This document almost exclusively uses the term IRI (Internationalized

Resource Indicator) when discussing hyperlinks. Many Web developers are

more familiar with the URL (Uniform Resource Locator) terminology. The

document also uses, albeit rarely, the URI (Uniform Resource Indicator)

terminology. While these terms are often used interchangeably among

technical communities, they do have important distinctions from one another

and the specification goes to great lengths to try and use the proper

terminology at all times.

This section is non-normative.

There are a number of ways that one may participate in the development of

this specification:

Technical discussion typically occurs on the working group mailing list:

public-json-ld-wg@w3.org

The working group uses #json-ld IRC channel is available for real-time

discussion on irc.w3.org.

The #json-ld IRC channel is also available for real-time discussion on

irc.freenode.net.

This section is non-normative.

The following typographic conventions are used in this specification:

markup

Markup (elements, attributes, properties), machine processable values

1.2 Contributing§

1.3 Typographical conventions§

https://www.w3.org/TR/json-ld11/

8 of 189

(string, characters, media types), property name, or a file name is in red-

orange monospace font.

A variable in pseudo-code or in an algorithm description is in italics.

definition
A definition of a term, to be used elsewhere in this or other specifications,

is in bold and italics.

definition reference
A reference to a definition in this document is underlined and is also an

active link to the definition itself.

markup definition reference

A references to a definition in this document, when the reference itself is

also a markup, is underlined, red-orange monospace font, and is also an

active link to the definition itself.

external definition reference
A reference to a definition in another document is underlined, in italics,

and is also an active link to the definition itself.

markup external definition reference

A reference to a definition in another document, when the reference itself

is also a markup, is underlined, in italics red-orange monospace font, and

is also an active link to the definition itself.

hyperlink
A hyperlink is underlined and in blue.

[reference]
A document reference (normative or informative) is enclosed in square

brackets and links to the references section.

Changes from Recommendation
Sections or phrases changed from the previous Recommendation are

highlighted.

NOTE

Notes are in light green boxes with a green left border and with a "Note"

header in green. Notes are always informative.

variable

https://www.w3.org/TR/json-ld11/

9 of 189

This document uses the following terms as defined in JSON [RFC8259]. Refer

to the JSON Grammar section in [RFC8259] for formal definitions.

array
In the JSON serialization, an array structure is represented as square

brackets surrounding zero or more values. Values are separated by

commas. In the internal representation, an array is an ordered collection

of zero or more values. While JSON-LD uses the same array

representation as JSON, the collection is unordered by default. While

order is preserved in regular JSON arrays, it is not in regular JSON-LD

arrays unless specifically defined (see Sets and Lists in the JSON-LD

Syntax specification [JSON-LD11]).

JSON object
In the JSON serialization, an object structure is represented as a pair of

curly brackets surrounding zero or more members composed of name-

value pairs. A name is a string. A single colon comes after each name,

separating the name from the value. A single comma separates a value

from a following name. In JSON-LD the names in an object MUST be

unique. In the internal representation a JSON object is equivalent to a

dictionary (see [WEBIDL]), composed of dictionary members with key-

value pairs.

JSON-LD internal representation
The JSON-LD internal representation is the result of transforming a JSON

syntactic structure into the core data structures suitable for direct

processing: arrays, dictionaries, strings, numbers, booleans, and null.

null
The use of the null value within JSON-LD is used to ignore or reset

values. A dictionary member in the @context where the value, or the @id

of the value, is null, explicitly decouples a term's association with an IRI.

EXAMPLE 1

 Examples are in light khaki boxes, with khaki left border,

 and with a numbered "Example" header in khaki.

 Examples are always informative. The content of the example is in monospace font and

 Examples may have tabbed navigation buttons

 to show the results of transforming an example into other representations.

1.4 Terminology§

https://www.w3.org/TR/json-ld11/

10 of 189

A dictionary member in the body of a JSON-LD document whose value is

null has the same meaning as if the dictionary member was not defined.

If @value, @list, or @set is set to null in expanded form, then the entire

JSON object is ignored.

number
In the JSON serialization, a number is similar to that used in most

programming languages, except that the octal and hexadecimal formats

are not used and that leading zeros are not allowed. In the internal

representation, a number is equivalent to either a long or double,

depending on if the number has a non-zero fractional part (see

[WEBIDL]).

string
A string is a sequence of zero or more Unicode (UTF-8) characters,

wrapped in double quotes, using backslash escapes (if necessary). A

character is represented as a single character string.

true and false
Values that are used to express one of two possible boolean states.

Furthermore, the following terminology is used throughout this document:

absolute IRI
An absolute IRI is defined in [RFC3987] containing a scheme along with a

path and optional query and fragment segments.

active context
A context that is used to resolve terms while the processing algorithm is

running.

base IRI
The base IRI is an absolute IRI established in the context, or is based on

the JSON-LD document location. The base IRI is used to turn relative IRIs

into absolute IRIs.

blank node
A node in a graph that is neither an IRI, nor a JSON-LD value, nor a list. A

blank node does not contain a de-referenceable identifier because it is

either ephemeral in nature or does not contain information that needs to

be linked to from outside of the linked data graph. A blank node is

assigned an identifier starting with the prefix _:.

blank node identifier
A blank node identifier is a string that can be used as an identifier for a

blank node within the scope of a JSON-LD document. Blank node

identifiers begin with _:.

compact IRI

https://www.w3.org/TR/json-ld11/

11 of 189

A compact IRI has the form of prefix:suffix and is used as a way of

expressing an IRI without needing to define separate term definitions for

each IRI contained within a common vocabulary identified by prefix.

context
A set of rules for interpreting a JSON-LD document as specified in the

The Context section of the JSON-LD Syntax specification [JSON-LD11].

default graph
The default graph is the only graph in a JSON-LD document which has no

graph name. When executing an algorithm, the graph where data should

be placed if a named graph is not specified.

default language
The default language is set in the context using the @language key whose

value MUST be a string representing a [BCP47] language code or null.

default object
A default object is a dictionary that has a @default key.

edge
Every edge has a direction associated with it and is labeled with an IRI or

a blank node identifier. Within the JSON-LD syntax these edge labels are

called properties. Whenever possible, an edge should be labeled with an

IRI.

(FEATURE AT RISK) ISSUE

The use of blank node identifiers to label properties is obsolete, and

may be removed in a future version of JSON-LD.

embedded context
An embedded context is a dictionary composed of a combintation of term

definitions, a vocabulary mapping, a base IRI and default language. An

embedded context may appear as part of a node object or value object

using the @context member.

expanded term definition
An expanded term definition is a term definition where the value is a

dictionary containing one or more keyword keys to define the associated

absolute IRI, if this is a reverse property, the type associated with string

values, and a container mapping.

frame
A JSON-LD document, which describes the form for transforming another

JSON-LD document using matching and embedding rules. A frame

document allows additional keywords and certain dictionary members to

describe the matching and transforming process.

frame object

https://www.w3.org/TR/json-ld11/

12 of 189

A frame object is a dictionary element within a frame which represents a

specific portion of the frame matching either a node object or a value

object in the input.

graph name
The IRI or blank node identifying a named graph.

graph object
A graph object represents a named graph as the value of a dictionary

member within a node object. When expanded, a graph object MUST

have an @graph member, and MAY also have @id, and @index members. A

simple graph object is a graph object which does not have an @id

member. Note that node objects may have a @graph member, but are not

considered graph objects if they include any other members. A top-level

object consisting of @graph is also not a graph object. Note that a node

object may also represent a named graph it it includes other properties.

id map
An id map is a dictionary value of a term defined with @container set to

@id. The values of the id map MUST be node objects, and its keys are

interpreted as IRIs representing the @id of the associated node object. If

a value in the id map contains a key expanding to @id, it's value MUST be

equivalent to the referencing key in the id map.

implicitly named graph
A named graph created from the value of a dictionary member having an

expanded term definition where @container is set to @graph.

index map
An index map is a dictionary value of a term defined with @container set

to @index, whose values MUST be any of the following types: string,

number, true, false, null, node object, value object, list object, set object,

or an array of zero or more of the above possibilities.

IRI
An Internationalized Resource Identifier as described in [RFC3987].

JSON literal
A JSON literal is a typed literal where the associated IRI is rdf:JSON. In

the value object representation, the value of @type is @json. JSON literals

represent values which are valid JSON [RFC8259]. See JSON datatype

in [JSON-LD11].

JSON-LD document
A JSON-LD document is a serialization of a collection of graphs and

comprises exactly one default graph and zero or more named graphs.

JSON-LD Processor
A JSON-LD Processor is a system which can perform the algorithms

https://www.w3.org/TR/json-ld11/

13 of 189

defined in [JSON-LD11-API].

JSON-LD value
A JSON-LD value is a string, a number, true or false, a typed value, or a

language-tagged string.

keyword
A string that is specific to JSON-LD, specified in the JSON-LD Syntax

specification [JSON-LD11] in the section titled Syntax Tokens and

Keywords.

language map
An language map is a dictionary value of a term defined with @container

set to @language, whose keys MUST be strings representing [BCP47]

language codes and the values MUST be any of the following types: null,

string, or an array of zero or more of the above possibilities.

language-tagged string
A language-tagged string consists of a string and a non-empty language

tag as defined by [BCP47]. The language tag MUST be well-formed

according to section 2.2.9 Classes of Conformance of [BCP47], and is

normalized to lowercase.

linked data graph
A labeled directed graph, i.e., a set of nodes connected by edges, as

specified in the Data Model section of the JSON-LD specification [JSON-

LD11]. A linked data graph is a generalized representation of an RDF

graph as defined in [RDF11-CONCEPTS].

list
A list is an ordered sequence of IRIs, blank nodes, and JSON-LD values.

See RDF collection in [RDF-SCHEMA].

list object
A list object is a dictionary that has a @list key. It may also have an

@index key, but no other members.

literal
An object expressed as a value such as a string, number or in expanded

form.

local context
A context that is specified with a dictionary, specified via the @context

keyword.

named graph
A named graph is a linked data graph that is identified by an IRI or blank

node.

nested property
A nested property is a key in a node object whose value is a dictionary

https://www.w3.org/TR/json-ld11/

14 of 189

containing members which are treated as if they were values of the node

object. The nested property itself is semantically meaningless and used

only to create a sub-structure within a node object.

node
Every node is an IRI, a blank node, a JSON-LD value, or a list. A piece of

information that is represented in a linked data graph.

node object
A node object represents zero or more properties of a node in the graph

serialized by the JSON-LD document. A dictionary is a node object if it

exists outside of the JSON-LD context and:

it does not contain the @value, @list, or @set keywords, or

it is not the top-most dictionary in the JSON-LD document consisting

of no other members than @graph and @context.

The members of a node object whose keys are not keywords are also

called properties of the node object.

object
An object is a node in a linked data graph with at least one incoming

edge. See RDF object in [RDF11-CONCEPTS].

prefix
A prefix is the first component of a compact IRI which comes from a term

that maps to a string that, when prepended to the suffix of the compact

IRI, results in an absolute IRI.

processing mode
The processing mode defines how a JSON-LD document is processed. By

default, all documents are assumed to be conformant with JSON-LD 1.0

[JSON-LD]. By defining a different version using the @version member in

a context, or via explicit API option, other processing modes can be

accessed. This specification defines extensions for the json-ld-1.1

processing mode.

property
The IRI label of an edge in a linked data graph. See RDF predicate in

[RDF11-CONCEPTS].

RDF dataset
A dataset as specified by [RDF11-CONCEPTS] representing a collection

of RDF graphs.

RDF resource
A resource as specified by [RDF11-CONCEPTS].

RDF triple
A triple as specified by [RDF11-CONCEPTS].

https://www.w3.org/TR/json-ld11/

15 of 189

relative IRI
A relative IRI is an IRI that is relative to some other absolute IRI,

typically the base IRI of the document. Note that properties, values of

@type, and values of terms defined to be vocabulary relative are resolved

relative to the vocabulary mapping, not the base IRI.

scoped context
A scoped context is part of an expanded term definition using the

@context member. It has the same form as an embedded context.

set object
A set object is a dictionary that has an @set member. It may also have an

@index key, but no other members.

subject
A subject is a node in a linked data graph with at least one outgoing edge,

related to an object node through a property. See RDF subject in

[RDF11-CONCEPTS].

term
A term is a short word defined in a context that MAY be expanded to an

IRI.

term definition
A term definition is an entry in a context, where the key defines a term

which may be used within a dictionary as a key, type, or elsewhere that a

string is interpreted as a vocabulary item. Its value is either a string

(simple term definition), expanding to an absolute IRI, or an expanded

term definition.

type map
An type map is a dictionary value of a term defined with @container set to

@type, whose keys are interpreted as IRIs representing the @type of the

associated node object; the value MUST be a node object, or array of

node objects. If the value contains a term expanding to @type, it's values

are merged with the map value when expanding.

typed literal
A typed literal is a literal with an associated IRI which indicates the

literal's datatype. See RDF literal in [RDF11-CONCEPTS].

typed value
A typed value consists of a value, which is a string, and a type, which is

an IRI.

value object
A value object is a dictionary that has an @value member.

vocabulary mapping
The vocabulary mapping is set in the context using the @vocab key whose

https://www.w3.org/TR/json-ld11/

16 of 189

value MUST be an IRI or null.

This section is non-normative.

JSON-LD satisfies the following design goals:

Simplicity
No extra processors or software libraries are necessary to use JSON-LD

in its most basic form. The language provides developers with a very easy

learning curve. Developers only need to know JSON and two keywords

(@context and @id) to use the basic functionality in JSON-LD.

Compatibility
A JSON-LD document is always a valid JSON document. This ensures that

all of the standard JSON libraries work seamlessly with JSON-LD

documents.

Expressiveness
The syntax serializes labeled directed graphs. This ensures that almost

every real world data model can be expressed.

Terseness
The JSON-LD syntax is very terse and human readable, requiring as little

effort as possible from the developer.

Zero Edits, most of the time
JSON-LD ensures a smooth and simple transition from existing JSON-

based systems. In many cases, zero edits to the JSON document and the

addition of one line to the HTTP response should suffice (see § 6.

Interpreting JSON as JSON-LD). This allows organizations that have

already deployed large JSON-based infrastructure to use JSON-LD's

features in a way that is not disruptive to their day-to-day operations and

is transparent to their current customers. However, there are times

where mapping JSON to a graph representation is a complex

undertaking. In these instances, rather than extending JSON-LD to

support esoteric use cases, we chose not to support the use case. While

Zero Edits is a design goal, it is not always possible without adding great

complexity to the language. JSON-LD focuses on simplicity when possible.

Usable as RDF
JSON-LD is usable by developers as idiomatic JSON, with no need to

understand RDF [RDF11-CONCEPTS]. JSON-LD is also usable as RDF, so

people intending to use JSON-LD with RDF tools will find it can be used

like any other RDF syntax. Complete details of how JSON-LD relates to

1.5 Design Goals and Rationale§

https://www.w3.org/TR/json-ld11/

17 of 189

RDF are in section § 10. Relationship to RDF.

This section is non-normative.

Generally speaking, the data model described by a JSON-LD document is a

labeled, directed graph. The graph contains nodes, which are connected by

edges. A node is typically data such as a string, number, typed values (like

dates and times) or an IRI.

Within a directed graph, nodes may be unnamed, i.e., not identified by an IRI

or representing data such as strings or numbers. Such nodes are called blank

nodes, and may be identified using a blank node identifier. These identifiers

may be required to represent a fully connected graph using a tree structure,

such as JSON, but otherwise have no intrinsic meaning.

This simple data model is incredibly flexible and powerful, capable of

modeling almost any kind of data. For a deeper explanation of the data

model, see section § 8. Data Model.

Developers who are familiar with Linked Data technologies will recognize the

data model as the RDF Data Model. To dive deeper into how JSON-LD and

RDF are related, see section § 10. Relationship to RDF.

At the surface level, a JSON-LD document is simply JSON, detailed in

[RFC8259]. For the purpose of describing the core data structures, this is

limited to arrays, dictionaries (the parsed version of a JSON Object), strings,

numbers, booleans, and null, called the JSON-LD internal representation.

This allows surface syntaxes other than JSON to be manipulated using the

same algorithms, when the syntax maps to equivalent core data structures.

NOTE

Although not discussed in this specification, parallel work using YAML

[YAML] and binary representations such as CBOR [RFC7049] could be

used to map into the internal representation, allowing the JSON-LD 1.1

API [JSON-LD11-API] to operate as if the source was a JSON document.

1.6 Data Model Overview§

1.7 Syntax Tokens and Keywords§

https://www.w3.org/TR/json-ld11/

18 of 189

JSON-LD specifies a number of syntax tokens and keywords that are a core

part of the language:

:

The separator for JSON keys and values that use compact IRIs.

@base

Used to set the base IRI against which to resolve those relative IRIs

interpreted relative to the document. This keyword is described in § 4.1.3

Base IRI.

@container

Used to set the default container type for a term. This keyword is

described in the following sections:

§ 4.3 Value Ordering,

§ 4.6.1 Data Indexing,

§ 4.6.2 Language Indexing,

§ 4.6.3 Node Identifier Indexing,

§ 4.6.4 Node Type Indexing

§ 4.8 Named Graphs,

§ 4.8.3 Named Graph Indexing, and

§ 4.8.2 Named Graph Data Indexing

@context

Used to define the short-hand names that are used throughout a JSON-LD

document. These short-hand names are called terms and help developers

to express specific identifiers in a compact manner. The @context keyword

is described in detail in § 3.1 The Context.

@graph

Used to express a graph. This keyword is described in § 4.8 Named

Graphs.

@id

Used to uniquely identify node objects that are being described in the

document with IRIs or blank node identifiers. This keyword is described

in § 3.3 Node Identifiers.

@index

Used to specify that a container is used to index information and that

processing should continue deeper into a JSON data structure. This

keyword is described in § 4.6.1 Data Indexing.

@json

Used as the @type value of a JSON literal. This keyword is described in

§ 4.2.2 JSON Literals.

https://www.w3.org/TR/json-ld11/

19 of 189

@language

Used to specify the language for a particular string value or the default

language of a JSON-LD document. This keyword is described in § 4.2.4

String Internationalization.

@list

Used to express an ordered set of data. This keyword is described in

§ 4.3.1 Lists.

@nest

Collects a set of nested properties within a node object.

@none

Used as an index value in an index map, id map, language map, type map,

or elsewhere where a dictionary is used to index into other values.

@prefix

With the value true, allows this term to be used to construct a compact

IRI when compacting.

@reverse

Used to express reverse properties. This keyword is described in § 4.7

Reverse Properties.

@set

Used to express an unordered set of data and to ensure that values are

always represented as arrays. This keyword is described in § 4.3.2 Sets.

@type

Used to set the type of a node or the datatype of a typed value. This

keyword is described further in § 3.5 Specifying the Type and § 4.2.1

Typed Values.

NOTE

The use of @type to define a type for both node objects and value

objects addresses the basic need to type data, be it a literal value or a

more complicated resource. Experts may find the overloaded use of

the @type keyword for both purposes concerning, but should note that

Web developer usage of this feature over multiple years has not

resulted in its misuse due to the far less frequent use of @type to

express typed literal values.

@value

Used to specify the data that is associated with a particular property in

the graph. This keyword is described in § 4.2.4 String Internationalization

and § 4.2.1 Typed Values.

@version

Used in a context definition to set the processing mode. New features

https://www.w3.org/TR/json-ld11/

20 of 189

since JSON-LD 1.0 [JSON-LD] described in this specification are only

available when processing mode has been explicitly set to json-ld-1.1.

@vocab

Used to expand properties and values in @type with a common prefix IRI.

This keyword is described in § 4.1.2 Default Vocabulary.

All keys, keywords, and values in JSON-LD are case-sensitive.

As well as sections marked as non-normative, all authoring guidelines,

diagrams, examples, and notes in this specification are non-normative.

Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, RECOMMENDED, SHOULD, and

SHOULD NOT are to be interpreted as described in [RFC2119].

A JSON-LD document complies with this specification if it follows the

normative statements in appendix § 9. JSON-LD Grammar. JSON documents

can be interpreted as JSON-LD by following the normative statements in § 6.

Interpreting JSON as JSON-LD. For convenience, normative statements for

documents are often phrased as statements on the properties of the

document.

This specification makes use of the following namespace prefixes:

Prefix IRI

dc11 http://purl.org/dc/elements/1.1/

dcterms http://purl.org/dc/terms/

cred https://w3id.org/credentials#

foaf http://xmlns.com/foaf/0.1/

geojson https://purl.org/geojson/vocab#

prov http://www.w3.org/ns/prov#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

schema http://schema.org/

skos http://www.w3.org/2004/02/skos/core#

xsd http://www.w3.org/2001/XMLSchema#

These are used within this document as part of a compact IRI as a shorthand

2. Conformance§

https://www.w3.org/TR/json-ld11/

21 of 189

for the resulting absolute IRI, such as dcterms:title used to represent

http://purl.org/dc/terms/title.

JSON-LD mostly uses the JSON syntax [RFC8259] along with various micro-

syntaxes based on XML Schema datatypes [XMLSCHEMA11-2]. However, it

has become increasingly common to include JSON within a script element

within an HTML document [HTML], as described in § 7. Embedding JSON-LD

in HTML Documents. As not all processors operate in an environment which

can include HTML, this specification describes various categories of JSON-LD

processors.

A pure JSON Processor only requires the use of a JSON processor and is

restricted to processing documents retrieved with a JSON content type (e.g.,

application/ld+json or other JSON type).

A full Processor is capable of processing JSON-LD embedded in HTML, in

addition to the capabilities of a pure JSON Processor.

This section is non-normative.

In addition to the normatively defined processor levels, an additional

processor level is defined for reference.

A event-based JSON Processor processes a stream of characters expecting

an event after each syntactic element is encountered. Such processors are

sensitive to the order of the members of JSON objects, which can have a

performance impact if the members of JSON objects are encountered in an

unexpected order. An event-based JSON Processor may process JSON-LD

embedded in HTML.

NOTE

An event-based JSON Processor may be sensitive to processing certain

keywords in order, including @context, @id, and @type.

2.1 Processor Levels§

2.1.1 Additional Processor Levels§

3. Basic Concepts

https://www.w3.org/TR/json-ld11/

22 of 189

This section is non-normative.

JSON [RFC8259] is a lightweight, language-independent data interchange

format. It is easy to parse and easy to generate. However, it is difficult to

integrate JSON from different sources as the data may contain keys that

conflict with other data sources. Furthermore, JSON has no built-in support

for hyperlinks, which are a fundamental building block on the Web. Let's start

by looking at an example that we will be using for the rest of this section:

It's obvious to humans that the data is about a person whose name is "Manu

Sporny" and that the homepage property contains the URL of that person's

homepage. A machine doesn't have such an intuitive understanding and

sometimes, even for humans, it is difficult to resolve ambiguities in such

representations. This problem can be solved by using unambiguous

identifiers to denote the different concepts instead of tokens such as "name",

"homepage", etc.

Linked Data, and the Web in general, uses IRIs (Internationalized Resource

Identifiers as described in [RFC3987]) for unambiguous identification. The

idea is to use IRIs to assign unambiguous identifiers to data that may be of

use to other developers. It is useful for terms, like name and homepage, to

expand to IRIs so that developers don't accidentally step on each other's

terms. Furthermore, developers and machines are able to use this IRI (by

using a web browser, for instance) to go to the term and get a definition of

what the term means. This process is known as IRI dereferencing.

Leveraging the popular schema.org vocabulary, the example above could be

unambiguously expressed as follows:

EXAMPLE 2: Sample JSON document

{

"name": "Manu Sporny",

"homepage": "http://manu.sporny.org/",

"image": "http://manu.sporny.org/images/manu.png"

}

https://www.w3.org/TR/json-ld11/

23 of 189

In the example above, every property is unambiguously identified by an IRI

and all values representing IRIs are explicitly marked as such by the @id

keyword. While this is a valid JSON-LD document that is very specific about

its data, the document is also overly verbose and difficult to work with for

human developers. To address this issue, JSON-LD introduces the notion of a

context as described in the next section.

This section only covers the most basic features of JSON-LD. More advanced

features, including typed values, indexed values, and named graphs, can be

found in § 4. Advanced Concepts.

This section is non-normative.

When two people communicate with one another, the conversation takes

place in a shared environment, typically called "the context of the

conversation". This shared context allows the individuals to use shortcut

terms, like the first name of a mutual friend, to communicate more quickly

but without losing accuracy. A context in JSON-LD works in the same way. It

allows two applications to use shortcut terms to communicate with one

another more efficiently, but without losing accuracy.

Simply speaking, a context is used to map terms to IRIs. Terms are case

sensitive and any valid string that is not a reserved JSON-LD keyword can be

used as a term.

For the sample document in the previous section, a context would look

EXAMPLE 3: Sample JSON-LD document using full IRIs instead of terms

Expanded Statements Turtle Open in playground

{

 "http://schema.org/name": "Manu Sporny",

 "http://schema.org/url": {

 "@id": "http://manu.sporny.org/"

↑ The '@id' keyword means 'This value is an identifier that is an IRI'

},

 "http://schema.org/image": {

 "@id": "http://manu.sporny.org/images/manu.png"

}

}

3.1 The Context§

https://www.w3.org/TR/json-ld11/

24 of 189

something like this:

As the context above shows, the value of a term definition can either be a

simple string, mapping the term to an IRI, or a dictionary.

A context is introduced using a member with the key @context and may

appear within a node object or a value object.

When a member with a term key has a dictionary value, the dictionary is

called an expanded term definition. The example above specifies that the

values of image and homepage, if they are strings, are to be interpreted as IRIs.

Expanded term definitions also allow terms to be used for index maps and to

specify whether array values are to be interpreted as sets or lists. Expanded

term definitions may be defined using absolute or compact IRIs as keys,

which is mainly used to associate type or language information with an

absolute or compact IRI.

Contexts can either be directly embedded into the document (an embedded

context) or be referenced using a URL. Assuming the context document in the

previous example can be retrieved at https://json-ld.org/contexts

/person.jsonld, it can be referenced by adding a single line and allows a

Context

EXAMPLE 4: Context for the sample document in the previous section

{

"@context": {

 "name": "http://schema.org/name",

↑ This means that 'name' is shorthand for 'http://schema.org/name'

"image": {

 "@id": "http://schema.org/image",

↑ This means that 'image' is shorthand for 'http://schema.org/image'

"@type": "@id"

↑ This means that a string value associated with 'image'

 should be interpreted as an identifier that is an IRI

},

 "homepage": {

 "@id": "http://schema.org/url",

↑ This means that 'homepage' is shorthand for 'http://schema.org/url'

"@type": "@id"

↑ This means that a string value associated with 'homepage'

 should be interpreted as an identifier that is an IRI

 }

 }

}

https://www.w3.org/TR/json-ld11/

25 of 189

JSON-LD document to be expressed much more concisely as shown in the

example below:

The referenced context not only specifies how the terms map to IRIs in the

Schema.org vocabulary but also specifies that string values associated with

the homepage and image property can be interpreted as an IRI ("@type": "@id",

see § 3.2 IRIs for more details). This information allows developers to re-use

each other's data without having to agree to how their data will interoperate

on a site-by-site basis. External JSON-LD context documents may contain

extra information located outside of the @context key, such as documentation

about the terms declared in the document. Information contained outside of

the @context value is ignored when the document is used as an external

JSON-LD context document.

JSON documents can be interpreted as JSON-LD without having to be

modified by referencing a context via an HTTP Link Header as described in

§ 6. Interpreting JSON as JSON-LD. It is also possible to apply a custom

context using the JSON-LD 1.1 API [JSON-LD11-API].

In JSON-LD documents, contexts may also be specified inline. This has the

advantage that documents can be processed even in the absence of a

connection to the Web. Ultimately, this is a modeling decision and different

use cases may require different handling.

EXAMPLE 5: Referencing a JSON-LD context

Original Expanded Statements Turtle Open in playground

{

"@context": "https://json-ld.org/contexts/person.jsonld",

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "image": "http://manu.sporny.org/images/manu.png"

}

https://www.w3.org/TR/json-ld11/

26 of 189

This section only covers the most basic features of the JSON-LD Context. The

Context can also be used to help interpret other more complex JSON data

structures, such as indexed values, ordered values, and nested properties.

More advanced features related to the JSON-LD Context are covered in § 4.

Advanced Concepts.

This section is non-normative.

IRIs (Internationalized Resource Identifiers [RFC3987]) are fundamental to

Linked Data as that is how most nodes and properties are identified. In JSON-

LD, IRIs may be represented as an absolute IRI or a relative IRI. An absolute

IRI is defined in [RFC3987] as containing a scheme along with path and

optional query and fragment segments. A relative IRI is an IRI that is relative

to some other absolute IRI. In JSON-LD, with exceptions that are as described

below, all relative IRIs are resolved relative to the base IRI.

EXAMPLE 6: In-line context definition

Original Expanded Statements Turtle Open in playground

{

"@context": {

 "name": "http://schema.org/name",

 "image": {

 "@id": "http://schema.org/image",

 "@type": "@id"

 },

 "homepage": {

 "@id": "http://schema.org/url",

 "@type": "@id"

 }

 },

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "image": "http://manu.sporny.org/images/manu.png"

}

3.2 IRIs§

https://www.w3.org/TR/json-ld11/

27 of 189

NOTE

As noted in § 1.1 How to Read this Document, IRIs can often be confused

with URLs (Uniform Resource Locators), the primary distinction is that a

URL locates a resource on the web, an IRI identifies a resource. While it is

a good practice for resource identifiers to be dereferenceable, sometimes

this is not practical. In particular, note the [URN] scheme for Uniform

Resource Names, such as UUID. An example UUID is urn:uuid:f81d4fae-

7dec-11d0-a765-00a0c91e6bf6.

NOTE

Properties, values of @type, and values of properties with a term definition

that defines them as being relative to the vocabulary mapping, may have

the form of a relative IRI, but are resolved using the vocabulary mapping,

and not the base IRI.

A string is interpreted as an IRI when it is the value of a dictionary member

with the key @id:

Values that are interpreted as IRIs, can also be expressed as relative IRIs. For

example, assuming that the following document is located at

http://example.com/about/, the relative IRI ../ would expand to

http://example.com/ (for more information on where relative IRIs can be

used, please refer to section § 9. JSON-LD Grammar).

EXAMPLE 7: Values of @id are interpreted as IRI

{

...

 "homepage": { "@id": "http://example.com/" }

...

}

https://www.w3.org/TR/json-ld11/

28 of 189

Absolute IRIs can be expressed directly in the key position like so:

In the example above, the key http://schema.org/name is interpreted as an

absolute IRI.

Term-to-IRI expansion occurs if the key matches a term defined within the

active context:

JSON keys that do not expand to an IRI, such as status in the example above,

are not Linked Data and thus ignored when processed.

If type coercion rules are specified in the @context for a particular term or

property IRI, an IRI is generated:

EXAMPLE 8: IRIs can be relative

{

...

 "homepage": { "@id": "../" }

...

}

EXAMPLE 9: IRI as a key

{

...

 "http://schema.org/name": "Manu Sporny",

 ...

}

EXAMPLE 10: Term expansion from context definition

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "name": "http://schema.org/name"

 },

 "name": "Manu Sporny",

 "status": "trollin'"

}

https://www.w3.org/TR/json-ld11/

29 of 189

In the example above, since the value http://manu.sporny.org/ is expressed

as a JSON string, the type coercion rules will transform the value into an IRI

when processing the data. See § 4.2.3 Type Coercion for more details about

this feature.

In summary, IRIs can be expressed in a variety of different ways in JSON-LD:

Dictionary members that have a key mapping to a term in the active

context expand to an IRI (only applies outside of the context definition).

1.

An IRI is generated for the string value specified using @id or @type.2.

An IRI is generated for the string value of any key for which there are

coercion rules that contain an @type key that is set to a value of @id or

@vocab.

3.

This section only covers the most basic features associated with IRIs in JSON-

LD. More advanced features related to IRIs are covered in section § 4.

Advanced Concepts.

This section is non-normative.

To be able to externally reference nodes in a graph, it is important that nodes

have an identifier. IRIs are a fundamental concept of Linked Data, for nodes

to be truly linked, dereferencing the identifier should result in a

EXAMPLE 11: Type coercion

Original Expanded Statements Turtle Open in playground

{

 "@context": {

...

 "homepage": {

 "@id": "http://schema.org/url",

 "@type": "@id"

 }

...

 },

...

 "homepage": "http://manu.sporny.org/"

...

}

3.3 Node Identifiers§

https://www.w3.org/TR/json-ld11/

30 of 189

representation of that node. This may allow an application to retrieve further

information about a node.

In JSON-LD, a node is identified using the @id keyword:

The example above contains a node object identified by the IRI

http://me.markus-lanthaler.com/.

This section only covers the most basic features associated with node

identifiers in JSON-LD. More advanced features related to node identifiers

are covered in section § 4. Advanced Concepts.

As a syntax, JSON has only a limited number of syntactic elements:

Numbers, which describe literal numeric values,

Strings, which may describe literal string values, or be used as the keys

in a JSON object.

Boolean true and false, which describe literal boolean values,

null, which describes the absense of a value,

Arrays, which describe an ordered set of values of any type, and

JSON objects, which provide a set of dictionary members, relating keys

with values.

The JSON-LD data model allows for a richer set of resources, based on the

RDF data model. The data model is described more fully in § 8. Data Model.

JSON-LD uses JSON objects to describe various resources, along with the

EXAMPLE 12: Identifying a node

Original Expanded Statements Turtle Open in playground

{

 "@context": {

...

 "name": "http://schema.org/name"

 },

"@id": "http://me.markus-lanthaler.com/",

 "name": "Markus Lanthaler",

 ...

}

3.4 Uses of JSON Objects§

https://www.w3.org/TR/json-ld11/

31 of 189

relationships between these resources:

Node objects
Node objects are used to define nodes in the linked data graph which may

have both incoming and outgoing edges. Node objects are principle

structure for defining resources having properties. See § 9.2 Node

Objects for the normative definition.

Value objects
Value objects are used for describing literal nodes in a linked data graph

which may have only incoming edges. In JSON, some literal nodes may be

described without the use of a JSON object (e.g., numbers, strings, and

boolean values), but in the expanded form, all literal nodes are described

using value objects. See § 4.2 Describing Values for more information,

and § 9.5 Value Objects for the normative definition.

List Objects and Set objects

Map Objects
JSON-LD uses various forms of dictionaries as ways to more easily access

values of a property.
Language Maps

Allows multiple values differing in their associated language to be

indexed by language tag. See § 4.6.2 Language Indexing for more

information, and § 9.8 Language Maps for the normative definition.

Index Maps
Allows multiple values (node objects or value objects) to be indexed

by an associated @index. See § 4.6.1 Data Indexing for more

information, and § 9.9 Index Maps for the normative definition.

Id Maps
Allows multiple node objects to be indexed by an associated @id. See

§ 4.6.3 Node Identifier Indexing for more information, and § 9.11 Id

Maps for the normative definition.

Type Maps
Allows multiple node objects to be indexed by an associated @type.

See § 4.6.4 Node Type Indexing for more information, and § 9.12

Type Maps for the normative definition.

Named Graph Indexing
Allows multiple named graphs to be indexed by an associated graph

name. See § 4.8.3 Named Graph Indexing for more information.

Graph objects
A graph object is much like a node object, except that it defines a named

graph. See § 4.8 Named Graphs for more information, and § 9.4 Graph

Objects for the normative definition. A node object may also describe a

https://www.w3.org/TR/json-ld11/

32 of 189

named graph, in addition to other properties defined on the node. The

notable difference is that a graph object only describes a named graph.

Context Definitions
A Context Definition uses the JSON object form, but is not itself data in a

linked data graph. A Context Definition also may contain expanded term

definitions, which are also represented using JSON objects. See § 3.1 The

Context, § 4.1 Advanced Context Usage for more information, and § 9.14

Context Definitions for the normative definition.

This section is non-normative.

In Linked Data, it is common to specify the type of a graph node; in many

cases, this can be inferred based on the properties used within a given node

object, or the property for which a node is a value. For example, in the

schema.org vocabulary, the givenName property is associated with a Person.

Therefore, one may reason that if a node object contains the property

givenName, that the type is a Person; making this explicit with @type helps to

clarify the association.

The type of a particular node can be specified using the @type keyword. In

Linked Data, types are uniquely identified with an IRI.

A node can be assigned more than one type by using an array:

3.5 Specifying the Type§

EXAMPLE 13: Specifying the type for a node

Original Expanded Statements Turtle Open in playground

{

 "@context": {

...

 "givenName": "http://schema.org/givenName",

 "familyName": "http://schema.org/familyName"

 },

 "@id": "http://me.markus-lanthaler.com/",

"@type": "http://schema.org/Person",

 "givenName": "Markus",

 "familyName": "Lanthaler",

 ...

}

https://www.w3.org/TR/json-ld11/

33 of 189

The value of a @type key may also be a term defined in the active context:

In addition to setting the type of nodes, @type can also be used to set the type

of a value to create a typed value. This use of @type is similar to that used to

define the type of a node object, but value objects are restricted to having

just a single type. The use of @type to create typed values is discussed more

fully in § 4.2.1 Typed Values.

Typed values can also be defined implicitly, by specifying @type in an

expanded term definition. This is covered more fully in § 4.2.3 Type Coercion.

JSON-LD has a number of features that provide functionality above and

beyond the core functionality described above. JSON can be used to express

data using such structures, and the features described in this section can be

EXAMPLE 14: Specifying multiple types for a node

Original Expanded Statements Turtle Open in playground

{

...

 "@id": "http://me.markus-lanthaler.com/",

 "@type": [

 "http://schema.org/Person",

"http://xmlns.com/foaf/0.1/Person"

],

 ...

}

EXAMPLE 15: Using a term to specify the type

Original Expanded Statements Turtle Open in playground

{

 "@context": {

...

"Person": "http://schema.org/Person"

 },

 "@id": "http://example.org/places#BrewEats",

"@type": "Person",

 ...

}

4. Advanced Concepts§

https://www.w3.org/TR/json-ld11/

34 of 189

used to interpret a variety of different JSON structures as Linked Data. A

JSON-LD processor will make use of provided and embedded contexts to

interpret property values in a number of different idiomatic ways.

Describing values
One pattern in JSON is for the value of a property to be a string. Often

times, this string actually represents some other typed value, for example

an IRI, a date, or a string in some specific language. See § 4.2 Describing

Values for details on how to describe such value typing.

Value ordering
In JSON, a property with an array value implies an implicit order; arrays

in JSON-LD do not convey any ordering of the contained elements by

default, unless defined using embedded structures or through a context

definition. See § 4.3 Value Ordering for a further discussion.

Property nesting
Another JSON idiom often found in APIs is to use an intermediate object

to represent the properties of an object; in JSON-LD these are referred to

as nested properties and are described in § 4.4 Nested Properties.

Referencing objects
Linked Data is all about describing the relationships between different

resources. Sometimes these relationships are between resources defined

in different documents described on the web, sometimes the resources

are described within the same document.

In this case, a document residing at http://manu.sporny.org/about may

contain the example above, and reference another document at

https://greggkellogg.net/foaf which could include a similar

EXAMPLE 16: Referencing Objects on the Web

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

"knows": {"@type": "@id"}

 },

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

"knows": "https://greggkellogg.net/foaf#me"

}

https://www.w3.org/TR/json-ld11/

35 of 189

representation.

A common idiom found in JSON usage is objects being specified as the

value of other objects, called object embedding in JSON-LD; for example,

a friend specified as an object value of a Person:

See § 4.5 Embedding details these relationships.

Indexed values
Another common idiom in JSON is to use an intermediate object to

represent property values via indexing. JSON-LD allows data to be

indexed in a number of different ways, as detailed in § 4.6 Indexed

Values.

Reverse Properties
JSON-LD serializes directed graphs. That means that every property

points from a node to another node or value. However, in some cases, it is

desirable to serialize in the reverse direction, as detailed in § 4.7 Reverse

Properties.

The following sections describe such advanced functionality in more detail.

This section is non-normative.

Section § 3.1 The Context introduced the basics of what makes JSON-LD

EXAMPLE 17: Embedding Objects

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

"knows": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

}

4.1 Advanced Context Usage§

https://www.w3.org/TR/json-ld11/

36 of 189

work. This section expands on the basic principles of the context and

demonstrates how more advanced use cases can be achieved using JSON-LD.

In general, contexts may be used any time a dictionary is defined. The only

time that one cannot express a context is as a direct child of another context

definition (other than as part of an expanded term definition). For example, a

JSON-LD document may have the form of an array composed of one or more

node objects, which use a context definition in each top-level node object:

The outer array is standard for a document in expanded document form and

flattened document form, and may be necessary when describing a

disconnected graph, where nodes may not reference each other. In such

cases, using a top-level dictionary with a @graph property can be useful for

saving the repetition of @context. See § 4.5 Embedding for more.

EXAMPLE 18: Using multiple contexts

Original Expanded Statements Turtle Open in playground

[

 {

"@context": "https://json-ld.org/contexts/person.jsonld",

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "depiction": "http://twitter.com/account/profile_image/manusporny"

 }, {

"@context": "https://json-ld.org/contexts/place.jsonld",

 "name": "The Empire State Building",

 "description": "The Empire State Building is a 102-story landmark in New York City."

 "geo": {

 "latitude": "40.75",

 "longitude": "73.98"

 }

 }

]

https://www.w3.org/TR/json-ld11/

37 of 189

Duplicate context terms are overridden using a most-recently-defined-wins

mechanism.

EXAMPLE 19: Describing disconnected nodes with @graph

Original Expanded Statements Turtle Open in playground

{

"@context": [

 "https://json-ld.org/contexts/person.jsonld",

 "https://json-ld.org/contexts/place.jsonld",

 {"title": "http://purl.org/dc/terms/title"}

],

"@graph": [{

 "http://xmlns.com/foaf/0.1/name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "depiction": "http://twitter.com/account/profile_image/manusporny"

 }, {

 "title": "The Empire State Building",

 "description": "The Empire State Building is a 102-story landmark in New York City."

 "geo": {

 "latitude": "40.75",

 "longitude": "73.98"

 }

 }]

}

EXAMPLE 20: Embedded contexts within node objects

Original Expanded Statements Turtle Open in playground

{

"@context": {

 "name": "http://example.com/person#name",

 "details": "http://example.com/person#details"

 },

 "name": "Markus Lanthaler",

...

 "details": {

"@context": {

 "name": "http://example.com/organization#name"

 },

 "name": "Graz University of Technology"

 }

}

https://www.w3.org/TR/json-ld11/

38 of 189

In the example above, the name term is overridden in the more deeply nested

details structure, which uses its own embedded context. Note that this is

rarely a good authoring practice and is typically used when working with

legacy applications that depend on a specific structure of the dictionary. If a

term is redefined within a context, all previous rules associated with the

previous definition are removed. If a term is redefined to null, the term is

effectively removed from the list of terms defined in the active context.

Multiple contexts may be combined using an array, which is processed in

order. The set of contexts defined within a specific dictionary are referred to

as local contexts. The active context refers to the accumulation of local

contexts that are in scope at a specific point within the document. Setting a

local context to null effectively resets the active context to an empty context,

without term definitions, default language, or other things defined within

previous contexts. The following example specifies an external context and

then layers an embedded context on top of the external context:

NOTE

When possible, the context definition should be put at the top of a JSON-

LD document. This makes the document easier to read and might make

streaming parsers more efficient. Documents that do not have the context

at the top are still conformant JSON-LD.

EXAMPLE 21: Combining external and local contexts

Original Expanded Statements Turtle Open in playground

{

"@context": [

 "https://json-ld.org/contexts/person.jsonld",

 {

 "pic": "http://xmlns.com/foaf/0.1/depiction"

 }

],

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

"pic": "http://twitter.com/account/profile_image/manusporny"

}

https://www.w3.org/TR/json-ld11/

39 of 189

NOTE

To avoid forward-compatibility issues, terms starting with an @ character

are to be avoided as they might be used as keyword in future versions of

JSON-LD. Terms starting with an @ character that are not JSON-LD 1.1

keywords are treated as any other term, i.e., they are ignored unless

mapped to an IRI. Furthermore, the use of empty terms ("") is not allowed

as not all programming languages are able to handle empty JSON keys.

This section is non-normative.

New features defined in JSON-LD 1.1 are available when the processing

mode is set to json-ld-1.1. This may be set using the @version member in a

context set to the value 1.1 as a number, or through an API option.

The first context encountered when processing a document which contains

@version determines the processing mode, unless it is defined explicitly

through an API option. This means that if "@version": 1.1 is encountered

after processing a context without @version, the former will be interpreted as

having had "@version": 1.1 defined within it.

NOTE

Setting the processing mode explicitly for JSON-LD 1.1 is necessary so

that a JSON-LD 1.0 processor does not attempt to process a JSON-LD 1.1

document and silently produce different results.

4.1.1 JSON-LD 1.1 Processing Mode§

EXAMPLE 22: Setting @version in context

{

 "@context": {

"@version": 1.1,

 ...

 },

 ...

}

https://www.w3.org/TR/json-ld11/

40 of 189

This section is non-normative.

At times, all properties and types may come from the same vocabulary. JSON-

LD's @vocab keyword allows an author to set a common prefix which is used

as the vocabulary mapping and is used for all properties and types that do

not match a term and are neither a compact IRI nor an absolute IRI (i.e., they

do not contain a colon).

If @vocab is used but certain keys in an dictionary should not be expanded

using the vocabulary IRI, a term can be explicitly set to null in the context.

For instance, in the example below the databaseId member would not expand

to an IRI causing the property to be dropped when expanding.

Since json-ld-1.1, the vocabulary mapping in a local context can be set to the

4.1.2 Default Vocabulary§

EXAMPLE 23: Using a default vocabulary

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@vocab": "http://example.com/vocab/"

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

"name": "Brew Eats"

...

}

EXAMPLE 24: Using the null keyword to ignore data

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://example.com/vocab/",

"databaseId": null

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

 "name": "Brew Eats",

"databaseId": "23987520"

}

https://www.w3.org/TR/json-ld11/

41 of 189

a relative IRI, which is concatenated to any vocabulary mapping in the active

context (see § 4.1.2.1 Using the Document Base for the Default Vocabulary

for how this applies if there is no vocabulary mapping in the active context).

In some cases, vocabulary terms are defined directly within the document

itself, rather than in an external vocabulary. Since json-ld-1.1, the

vocabulary mapping in a local context can be set to a relative IRI, which is, if

there is no vocabulary mapping in scope, resolved against the base IRI. This

causes terms which are expanded relative to the vocabulary, such as the keys

of node objects, to be based on the base IRI to create absolute IRIs.

EXAMPLE 25: Using a default vocabulary relative to a previous default

vocabulary

Original Expanded Statements Turtle Open in playground

{

 "@context": [{

 "@vocab": "http://example.com/"

 }, {

 "@version": 1.1,

 "@vocab": "vocab/"

 }],

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

 "name": "Brew Eats"

...

}

4.1.2.1 Using the Document Base for the Default Vocabulary§

https://www.w3.org/TR/json-ld11/

42 of 189

If this document were located at http://example/document, it would expand as

follows:

This section is non-normative.

JSON-LD allows IRIs to be specified in a relative form which is resolved

against the document base according section 5.1 Establishing a Base URI of

[RFC3986]. The base IRI may be explicitly set with a context using the @base

keyword.

For example, if a JSON-LD document was retrieved from http://example.com

/document.jsonld, relative IRIs would resolve against that IRI:

EXAMPLE 26: Using "#" as the vocabulary mapping

{

 "@context": {

"@version": 1.1,

"@base": "http://example/document",

 "@vocab": "#"

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

"name": "Brew Eats"

...

}

EXAMPLE 27: Using "" as the vocabulary mapping (expanded)

Expanded Statements Turtle Open in playground

[{

 "@id": "http://example.org/places#BrewEats",

 "@type": ["http://example/document#Restaurant"],

 "http://example/document#name": [{"@value": "Brew Eats"}]

}]

4.1.3 Base IRI§

https://www.w3.org/TR/json-ld11/

43 of 189

This document uses an empty @id, which resolves to the document base.

However, if the document is moved to a different location, the IRI would

change. To prevent this without having to use an absolute IRI, a context may

define an @base mapping, to overwrite the base IRI for the document.

Setting @base to null will prevent relative IRIs from being expanded to

absolute IRIs.

Please note that the @base will be ignored if used in external contexts.

This section is non-normative.

A compact IRI is a way of expressing an IRI using a prefix and suffix

separated by a colon (:). The prefix is a term taken from the active context

and is a short string identifying a particular IRI in a JSON-LD document. For

example, the prefix foaf may be used as a shorthand for the Friend-of-

a-Friend vocabulary, which is identified using the IRI http://xmlns.com

/foaf/0.1/. A developer may append any of the FOAF vocabulary terms to the

EXAMPLE 28: Use a relative IRI as node identifier

{

 "@context": {

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 },

"@id": "",

 "label": "Just a simple document"

}

EXAMPLE 29: Setting the document base in a document

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@base": "http://example.com/document.jsonld",

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 },

 "@id": "",

 "label": "Just a simple document"

}

4.1.4 Compact IRIs§

https://www.w3.org/TR/json-ld11/

44 of 189

end of the prefix to specify a short-hand version of the absolute IRI for the

vocabulary term. For example, foaf:name would be expanded to the IRI

http://xmlns.com/foaf/0.1/name.

In the example above, foaf:name expands to the IRI http://xmlns.com

/foaf/0.1/name and foaf:Person expands to http://xmlns.com/foaf/0.1

/Person.

Prefixes are expanded when the form of the value is a compact IRI

represented as a prefix:suffix combination, the prefix matches a term

defined within the active context, and the suffix does not begin with two

slashes (//). The compact IRI is expanded by concatenating the IRI mapped

to the prefix to the (possibly empty) suffix. If the prefix is not defined in the

active context, or the suffix begins with two slashes (such as in

http://example.com), the value is interpreted as absolute IRI instead. If the

prefix is an underscore (_), the value is interpreted as blank node identifier

instead.

It's also possible to use compact IRIs within the context as shown in the

following example:

EXAMPLE 30: Prefix expansion

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "foaf": "http://xmlns.com/foaf/0.1/"

...

 },

 "@type": "foaf:Person",

 "foaf:name": "Dave Longley",

 ...

}

https://www.w3.org/TR/json-ld11/

45 of 189

When operating with the default processing mode for JSON-LD 1.0

compatibility, terms may be chosen as compact IRI prefixes when compacting

only if a simple term definition is used where the value ends with a URI gen-

delim character (e.g, /, # and others, see [RFC3986]).

In JSON-LD 1.1, terms may be chosen as compact IRI prefixes when

compacting only if a simple term definition is used where the value ends with

a URI gen-delim character, or if their expanded term definition contains a

@prefix member with the value true.

NOTE

The term selection behavior for 1.0 processors was changed as a result of

an errata against JSON-LD 1.0 reported here. This does not affect the

behavior of processing existing JSON-LD documents, but creates a slight

change when compacting documents using Compact IRIs.

The behavior when compacting can be illustrated by considering the

following input document in expanded form:

EXAMPLE 31: Using vocabularies

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "xsd": "http://www.w3.org/2001/XMLSchema#",

"foaf": "http://xmlns.com/foaf/0.1/",

"foaf:homepage": { "@type": "@id" },

 "picture": { "@id": "foaf:depiction", "@type": "@id" }

 },

 "@id": "http://me.markus-lanthaler.com/",

 "@type": "foaf:Person",

 "foaf:name": "Markus Lanthaler",

 "foaf:homepage": "http://www.markus-lanthaler.com/",

 "picture": "http://twitter.com/account/profile_image/markuslanthaler"

}

https://www.w3.org/TR/json-ld11/

46 of 189

Using the following context in the default 1.0 processing mode will now

select the term vocab rather than property, even though the IRI associated

with property captures more of the original IRI.

In the original [JSON-LD], the term selection algorithm would have selected

property, creating the Compact IRI property:One. If the processing mode is

json-ld-1.1, the original behavior can be made explicit using @prefix:

EXAMPLE 32: Expanded document used to illustrate compact IRI creation

[{

 "http://example.com/vocab/property": [{"@value": "property"}],

 "http://example.com/vocab/propertyOne": [{"@value": "propertyOne"}]

}]

Context

EXAMPLE 33: Compact IRI generation context (1.0)

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "property": "http://example.com/vocab/property"

 }

}

EXAMPLE 34: Compact IRI generation term selection (1.0)

Compacted Statements Turtle Open in playground

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "property": "http://example.com/vocab/property"

 },

 "property": "property",

"vocab:propertyOne": "propertyOne"

}

https://www.w3.org/TR/json-ld11/

47 of 189

In this case, the property term would not normally be usable as a prefix, both

because it is defined with an expanded term definition, and because it's @id

does not end in a gen-delim character. Adding "@prefix": true allows it to be

used as the prefix portion of the compact IRI property:One.

This section is non-normative.

Each of the JSON-LD keywords, except for @context, may be aliased to

application-specific keywords. This feature allows legacy JSON content to be

utilized by JSON-LD by re-using JSON keys that already exist in legacy

Context

EXAMPLE 35: Compact IRI generation context (1.1)

{

 "@context": {

"@version": 1.1,

 "vocab": "http://example.com/vocab/",

 "property": {

 "@id": "http://example.com/vocab/property",

"@prefix": true

 }

 }

}

EXAMPLE 36: Compact IRI generation term selection (1.1)

Compacted Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "vocab": "http://example.com/vocab/",

 "property": {

 "@id": "http://example.com/vocab/property",

"@prefix": true

 }

 },

 "property": "property",

"property:One": "propertyOne"

}

4.1.5 Aliasing Keywords§

https://www.w3.org/TR/json-ld11/

48 of 189

documents. This feature also allows developers to design domain-specific

implementations using only the JSON-LD context.

In the example above, the @id and @type keywords have been given the

aliases url and a, respectively.

Other than for @type, properties of expanded term definitions where the term

is a keyword are ignored. When processing mode is set to json-ld-1.1, there

is an exception for @type; see § 4.3.3 Using @set with @type for further details.

Since keywords cannot be redefined, they can also not be aliased to other

keywords.

NOTE

Aliased keywords MUST NOT be used within a context, itself.

This section is non-normative.

In general, normal IRI expansion rules apply anywhere an IRI is expected

(see § 3.2 IRIs). Within a context definition, this can mean that terms defined

within the context may also be used within that context as long as there are

no circular dependencies. For example, it is common to use the xsd

namespace when defining typed values:

EXAMPLE 37: Aliasing keywords

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"url": "@id",

"a": "@type",

 "name": "http://xmlns.com/foaf/0.1/name"

 },

 "url": "http://example.com/about#gregg",

 "a": "http://xmlns.com/foaf/0.1/Person",

 "name": "Gregg Kellogg"

}

4.1.6 IRI Expansion within a Context§

https://www.w3.org/TR/json-ld11/

49 of 189

In this example, the xsd term is defined and used as a prefix for the @type

coercion of the age property.

Terms may also be used when defining the IRI of another term:

Compact IRIs and IRIs may be used on the left-hand side of a term definition.

EXAMPLE 38: IRI expansion within a context

{

 "@context": {

"xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "http://xmlns.com/foaf/0.1/name",

 "age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 ...

}

EXAMPLE 39: Using a term to define the IRI of another term within a

context

{

 "@context": {

"foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "age": {

 "@id": "foaf:age",

 "@type": "xsd:integer"

 },

 "homepage": {

 "@id": "foaf:homepage",

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

50 of 189

⚠

In this example, the compact IRI form is used in two different ways. In the

first approach, foaf:age declares both the IRI for the term (using short-form)

as well as the @type associated with the term. In the second approach, only

the @type associated with the term is specified. The full IRI for foaf:homepage

is determined by looking up the foaf prefix in the context.

Warning

If a compact IRI is used as a term, it must expand to the value that

compact IRI would have on its own when expanded. This represents a

change to the original 1.0 algorithm to prevent terms from expanding to a

different absolute IRI, which could lead to undesired results.

EXAMPLE 40: Using a compact IRI as a term

{

 "@context": {

"foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "foaf:age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "foaf:homepage": {

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

51 of 189

Absolute IRIs may also be used in the key position in a context:

In order for the absolute IRI to match above, the absolute IRI needs to be

used in the JSON-LD document. Also note that foaf:homepage will not use the

{ "@type": "@id" } declaration because foaf:homepage is not the same as

http://xmlns.com/foaf/0.1/homepage. That is, terms are looked up in a context

using direct string comparison before the prefix lookup mechanism is

EXAMPLE 41: Illegal Aliasing of a compact IRI to a different absolute IRI

{

 "@context": {

 "foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "foaf:age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "foaf:homepage": {

"@id": "http://schema.org/url",

 "@type": "@id"

 }

 },

 ...

}

EXAMPLE 42: Associating context definitions with absolute IRIs

{

 "@context": {

 "foaf": "http://xmlns.com/foaf/0.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "foaf:name",

 "foaf:age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "http://xmlns.com/foaf/0.1/homepage": {

 "@type": "@id"

 }

 },

 ...

}

https://www.w3.org/TR/json-ld11/

52 of 189

⚠
applied.

Warning

Neither a compact IRI nor an absolute IRI may expand to some

other unrelated IRI. This represents a change to the original 1.0 algorithm

which allowed this behavior but discouraged it.

The only other exception for using terms in the context is that circular

definitions are not allowed. That is, a definition of term1 cannot depend on

the definition of term2 if term2 also depends on term1. For example, the

following context definition is illegal:

This section is non-normative.

An expanded term definition can include a @context property, which defines a

context (a scoped context) for values of properties defined using that term.

This allows values to use term definitions, base IRI, vocabulary mapping or

default language which is different from the node object they are contained

in, as if the context was specified within the value itself.

EXAMPLE 43: Illegal circular definition of terms within a context

{

 "@context": {

"term1": "term2:foo",

 "term2": "term1:bar"

 },

 ...

}

4.1.7 Scoped Contexts§

https://www.w3.org/TR/json-ld11/

53 of 189

In this case, the social profile is defined using the schema.org vocabulary, but

interest is imported from FOAF, and is used to define a node describing one

of Manu's interests where those properties now come from the FOAF

vocabulary.

Expanding this document, uses a combination of terms defined in the outer

context, and those defined specifically for that term in a scoped context.

Scoping can also be performed using a term used as a value of @type:

EXAMPLE 44: Defining an @context within a term definition

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "name": "http://schema.org/name",

 "interest": {

 "@id": "http://xmlns.com/foaf/0.1/interest",

"@context": {"@vocab": "http://xmlns.com/foaf/0.1/"}

 }

 },

 "name": "Manu Sporny",

 "interest": {

 "@id": "https://www.w3.org/TR/json-ld11/",

 "name": "JSON-LD",

 "topic": "Linking Data"

 }

}

https://www.w3.org/TR/json-ld11/

54 of 189

Scoping on @type is useful when common properties are used to relate things

of different types, where the vocabularies in use within different entities calls

for different context scoping. For example, hasPart/partOf may be common

terms used in a document, but mean different things depending on the

context.

When expanding, each value of @type is considered (ordering them

lexicographically) where that value is also a term in the active context having

its own scoped context. If so, that scoped context is applied to the active

context.

NOTE

The values of @type are unordered, so if multiple types are listed, the order

that scoped contexts are applied is based on lexicographical ordering.

For example, consider the following semantically equivalent examples:

EXAMPLE 45: Defining an @context within a term definition used on

@type

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "name": "http://schema.org/name",

 "interest": "http://xmlns.com/foaf/0.1/interest",

 "Person": "http://schema.org/Person",

"Document": {

 "@id": "http://xmlns.com/foaf/0.1/Document",

"@context": {"@vocab": "http://xmlns.com/foaf/0.1/"}

 }

 },

 "@type": "Person",

 "name": "Manu Sporny",

 "interest": {

 "@id": "https://www.w3.org/TR/json-ld11/",

"@type": "Document",

 "name": "JSON-LD",

 "topic": "Linking Data"

 }

}

https://www.w3.org/TR/json-ld11/

55 of 189

EXAMPLE 46: Expansion using embedded and scoped contexts

This example, shows how properties and types can define their own

scoped contexts, which are included when expanding.

{

"@context": {

"@vocab": "http://example.com/vocab/"

"property": {

"@id": "http://example.com/vocab/property",

"@context": {

"term1": "http://example.com/vocab/term1"

 ↑ Scoped context for "property" defines term1

 },

 },

"Type1": {

"@id": "http://example.com/vocab/Type1",

"@context": {

"term3": "http://example.com/vocab/term3"

 ↑ Scoped context for "Type1" defines term3

 },

 },

"Type2": {

"@id": "http://example.com/vocab/Type2",

"@context": {

"term4": "http://example.com/vocab/term4"

 ↑ Scoped context for "Type2" defines term4

 },

 },

 },

"property": {

"@context": {

"term2": "http://example.com/vocab/term2"

 ↑ Embedded context defines term2

 },

"@type": ["Type2", "Type1"],

"term1": "a",

"term2": "b",

"term3": "c",

"term4": "d",

 }

}

Contexts are processed depending on how they are defined. A scoped

context for a property is processed first, followed by any embedded

https://www.w3.org/TR/json-ld11/

56 of 189

NOTE

If a term defines a scoped context, and then that term is later re-defined,

the association of the context defined in the earlier expanded term

definition is lost within the scope of that re-definition. This is consistent

with term definitions of a term overriding previous term definitions from

earlier less deeply nested definitions, as discussed in § 4.1 Advanced

Context Usage.

context, followed lastly by the scoped contexts for any types, in the

appropriate order. The previous example is logically equivalent to the

following:

{

"@context": {

"@vocab": "http://example.com/vocab/"

"property": "http://example.com/vocab/property",

"Type1": "http://example.com/vocab/Type1",

"Type2": "http://example.com/vocab/Type2",

 },

"property": {

"@context": [{

"term1": "http://example.com/vocab/term1"

 ↑ Scoped context for "property" defines term1

 }, {

"term2": "http://example.com/vocab/term2"

 ↑ Embedded context defines term2

 }, {

"term3": "http://example.com/vocab/term3"

 ↑ Scoped context for "Type1" defines term3

 }, {

"term4": "http://example.com/vocab/term4"

 ↑ Scoped context for "Type2" defines term4

 }],

"@type": ["Type2", "Type1"],

"term1": "a",

"term2": "b",

"term3": "c",

"term4": "d",

 }

}

https://www.w3.org/TR/json-ld11/

57 of 189

NOTE

Scoped Contexts are a new feature in JSON-LD 1.1, requiring processing

mode set to json-ld-1.1.

This section is non-normative.

JSON-LD is used in many specifications as the specified data format.

However, there is also a desire to allow some JSON-LD contents to be

processed as plain JSON, without using any of the JSON-LD algorithms.

Because JSON-LD is very flexible, some terms from the original format may

be locally overridden through the use of embedded contexts, and take a

different meaning for JSON-LD based implementations. On the other hand,

"plain JSON" implementations may not be able to interpret these embedded

contexts, and hence will still interpret those terms with their original

meaning. To prevent this divergence of interpretation, JSON-LD 1.1 allows

term definitions to be protected.

A protected term definition is a term definition with a member @protected

set to true. It generally prevents further contexts from overriding this term

definition, either through a new definition of the same term, or through

clearing the context with "@context": null. Such attempts will raise an error

and abort the processing (except in some specific situations described

below).

4.1.8 Protected Term Definitions§

https://www.w3.org/TR/json-ld11/

58 of 189

When all or most term definitions of a context need to be protected, it is

possible to add a member @protected set to true to the context itself. It has

the same effect as protecting each of its term definitions individually.

Exceptions can be made by adding a member @protected set to false in some

term definitions.

EXAMPLE 47: A protected term definition can generally not be overridden

{

 "@context": [

 {

"@version": 1.1,

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "knows": "http://xmlns.com/foaf/0.1/knows",

 "name": {

 "@id": "http://xmlns.com/foaf/0.1/name",

"@protected": true

 }

 },

 {

– this attempt will fail with an error

"name": "http://schema.org/name"

 }

],

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": {

 "@context": [

– this attempt would also fail with an error

null,

 "http://schema.org/"

],

 "name": "Gregg Kellogg"

 }

}

https://www.w3.org/TR/json-ld11/

59 of 189

While protected terms can in general not be overridden, there is an exception

to this rule: a property-scoped context is not affected by protection, and can

therefore override protected terms, either with a new term definition, or by

clearing the context with "@context": null.

The rationale is that "plain JSON" implementations, relying on a given

specification, will only traverse properties defined by that specification.

Scoped contexts belonging to the specified properties are part of the

specification, so the "plain JSON" implementations are expected to be aware

of the change of semantics they induce. Scoped contexts belonging to other

properties apply to parts of the document that "plain JSON" implementations

will ignore. In both cases, there is therefore no risk of diverging

interpretations between JSON-LD-aware implementations and "plain JSON"

implementations, so overriding is permitted.

EXAMPLE 48: A protected @context with an exception

Original Expanded Statements Turtle Open in playground

{

 "@context": [

 {

"@version": 1.1,

"@protected": true,

 "name": "http://schema.org/name",

 "member": "http://schema.org/member",

 "Person": {

 "@id": "http://schema.org/Person",

"@protected": false

 }

 }

],

 "name": "Digital Bazaar",

 "member": {

 "@context": {

– name *is* protected, so the following would fail with an error

 – "name": "http://xmlns.com/foaf/0.1/Person",

 – Person is *not* protected, and can be overridden

 "Person": "http://xmlns.com/foaf/0.1/Person"

 },

 "@type": "Person",

 "name": "Manu Sporny"

 }

}

https://www.w3.org/TR/json-ld11/

60 of 189

EXAMPLE 49: overriding permitted in property scoped context

Original Expanded Statements Turtle Open in playground

{

 "@context": [

 {

– This context reflects the specification used by "plain JSON" implementations

"@version": 1.1,

"@protected": true,

 "Organization": "http://schema.org/Organization",

 "name": "http://schema.org/name",

 "employee": {

 "@id": "http://schema.org/employee",

"@context": {

 "@protected": true,

 "name": "http://schema.org/familyName"

 }

↑ overrides the definition of "name"

 }

 },

 {

– This context extends the previous one,

 – only JSON-LD-aware implementations are expected to use it

 "location": {

 "@id": "http://xmlns.com/foaf/0.1/based_near",

 "@context": [

null,

↑ clears the context entirely, including all protected terms

 { "@vocab": "http://xmlns.com/foaf/0.1/" }

]

 }

 }

],

 "@type": "Organization",

 "name": "Digital Bazaar",

 "employee" : {

 "name": "Sporny"

 },

 "location": {

 "name": "Blacksburg, Virginia"

 }

}

https://www.w3.org/TR/json-ld11/

61 of 189

NOTE

By preventing terms from being overridden, protection also prevents any

adaptation of a term (e.g., defining a more precise datatype, restricting

the term's use to lists, etc.). This kind of adaptation is frequent with some

general purpose contexts, for which protection would therefore hinder

their usability. As a consequence, context publishers should use this

feature with care.

NOTE

Protected term definitions are a new feature in JSON-LD 1.1, requiring

processing mode set to json-ld-1.1.

This section is non-normative.

Values are leaf nodes in a graph associated with scalar values such as strings,

dates, times, and other such atomic values.

This section is non-normative.

A value with an associated type, also known as a typed value, is indicated by

associating a value with an IRI which indicates the value's type. Typed values

may be expressed in JSON-LD in three ways:

By utilizing the @type keyword when defining a term within an @context

section.

1.

By utilizing a value object.2.

By using a native JSON type such as number, true, or false.3.

The first example uses the @type keyword to associate a type with a particular

term in the @context:

4.2 Describing Values§

4.2.1 Typed Values§

https://www.w3.org/TR/json-ld11/

62 of 189

The modified key's value above is automatically interpreted as a dateTime

value because of the information specified in the @context. The example tabs

show how a JSON-LD processor will interpret the data.

The second example uses the expanded form of setting the type information

in the body of a JSON-LD document:

Both examples above would generate the value 2010-05-29T14:17:39+02:00

with the type http://www.w3.org/2001/XMLSchema#dateTime. Note that it is also

possible to use a term or a compact IRI to express the value of a type.

EXAMPLE 50: Expanded term definition with type coercion

Original Expanded Statements Turtle Open in playground

{

"@context": {

 "modified": {

 "@id": "http://purl.org/dc/terms/modified",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 }

 },

...

 "@id": "http://example.com/docs/1",

 "modified": "2010-05-29T14:17:39+02:00",

 ...

}

EXAMPLE 51: Expanded value with type

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "modified": {

 "@id": "http://purl.org/dc/terms/modified"

 }

 },

...

 "modified": {

 "@value": "2010-05-29T14:17:39+02:00",

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"

 }

...

}

https://www.w3.org/TR/json-ld11/

63 of 189

NOTE

The @type keyword is also used to associate a type with a node. The

concept of a node type and a value type are different. For more on adding

types to nodes, see § 3.5 Specifying the Type.

A node type specifies the type of thing that is being described, like a person,

place, event, or web page. A value type specifies the data type of a particular

value, such as an integer, a floating point number, or a date.

The first use of @type associates a node type (http://schema.org/BlogPosting)

with the node, which is expressed using the @id keyword. The second use of

@type associates a value type (http://www.w3.org/2001/XMLSchema#dateTime)

with the value expressed using the @value keyword. As a general rule, when

@value and @type are used in the same dictionary, the @type keyword is

expressing a value type. Otherwise, the @type keyword is expressing a node

type. The example above expresses the following data:

EXAMPLE 52: Example demonstrating the context-sensitivity for @type

{

...

 "@id": "http://example.org/posts#TripToWestVirginia",

"@type": "http://schema.org/BlogPosting", ← This is a node type

 "http://purl.org/dc/terms/modified": {

 "@value": "2010-05-29T14:17:39+02:00",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime" ← This is a value type

 }

...

}

EXAMPLE 53: Example demonstrating the context-sensitivity for @type

(statements)

Original Turtle Open in playground

Subject Property Value

http://example.org

/posts#TripToWestVirginia
rdf:type schema:BlogPosting

http://example.org

/posts#TripToWestVirginia
dcterms:modified 2010-05-29T14:17:39+02:00

https://www.w3.org/TR/json-ld11/

64 of 189

⚠

This section is non-normative.

At times, it is useful to include JSON within JSON-LD that is not interpreted

as JSON-LD. Generally, a JSON-LD processor will ignore properties which

don't map to IRIs, but this causes them to be excluded when performing

various algorithmic transformations. But, when the data that is being

described is, itself, JSON, it's important that it survive algorithmic

transformations.

Warning

JSON-LD is intended to allow native JSON to be interpreted

through the use of a context. The use of JSON literals creates blobs of data

which are not available for interpretation. It is for use only in the rare

cases that JSON cannot be represented as JSON-LD.

When a term is defined with @type set to @json, a JSON-LD processor will

treat the value as a JSON literal, rather than interpreting it further as JSON-

LD. In the expanded document form, such JSON will become the value of

@value within a value object having "@type": "@json".

When transformed into RDF, the JSON literal will have a lexical form based

on a specific serialization of the JSON, as described in Compaction algorithm

of [JSON-LD11-API] and the JSON datatype.

The following example shows an example of a JSON Literal contained as the

value of a property. Note that the RDF results use a canonicalized form of the

JSON to ensure interoperability between different processors. JSON

canonicalization is described in Data Round Tripping in [JSON-LD11-API].

4.2.2 JSON Literals§

https://www.w3.org/TR/json-ld11/

65 of 189

This section is non-normative.

JSON-LD supports the coercion of string values to particular data types. Type

coercion allows someone deploying JSON-LD to use string property values

and have those values be interpreted as typed values by associating an IRI

with the value in the expanded value object representation. Using type

coercion, string value representation can be used without requiring the data

type to be specified explicitly with each piece of data.

Type coercion is specified within an expanded term definition using the @type

key. The value of this key expands to an IRI. Alternatively, the keyword @id or

@vocab may be used as value to indicate that within the body of a JSON-LD

document, a string value of a term coerced to @id or @vocab is to be

interpreted as an IRI. The difference between @id and @vocab is how values

are expanded to absolute IRIs. @vocab first tries to expand the value by

interpreting it as term. If no matching term is found in the active context, it

tries to expand it as compact IRI or absolute IRI if there's a colon in the

value; otherwise, it will expand the value using the active context's

vocabulary mapping, if present. Values coerced to @id in contrast are

expanded as compact IRI or absolute IRI if a colon is present; otherwise, they

are interpreted as relative IRI.

EXAMPLE 54: JSON Literal

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "e": {"@id": "http://example.com/vocab/json", "@type": "@json"}

 },

 "e": [

 56.0,

 {

 "d": true,

 "10": null,

 "1": []

 }

]

}

4.2.3 Type Coercion§

https://www.w3.org/TR/json-ld11/

66 of 189

NOTE

The ability to coerce a value using a term definition is distinct from setting

one or more types on a node object, as the former does not result in new

data being added to the graph, while the later manages node types

through adding additional relationships to the graph.

Terms or compact IRIs used as the value of a @type key may be defined within

the same context. This means that one may specify a term like xsd and then

use xsd:integer within the same context definition.

The example below demonstrates how a JSON-LD author can coerce values to

typed values and IRIs.

It is important to note that terms are only used in expansion for vocabulary-

relative positions, such as for keys and values of dictionary members. Values

of @id are considered to be document-relative, and do not use term definitions

for expansion. For example, consider the following:

EXAMPLE 55: Expanded term definition with types

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "name": "http://xmlns.com/foaf/0.1/name",

 "age": {

 "@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 "@id": "http://example.com/people#john",

 "name": "John Smith",

 "age": "41",

 "homepage": [

 "http://personal.example.org/",

 "http://work.example.com/jsmith/"

]

}

https://www.w3.org/TR/json-ld11/

67 of 189

The unexpected result is that "barney" expands to both http://example1.com

/barney and http://example2.com/barney, depending where it is encountered.

String values interpreted as IRIs because of the associated term definitions

are typically considered to be document-relative. In some cases, it makes

sense to interpret these relative to the vocabulary, prescribed using "@type":

"@vocab" in the term definition, though this can lead to unexpected

consequences such as these.

In the previous example, "barney" appears twice, once as the value of @id,

which is always interpreted as a document-relative IRI, and once as the value

of "fred", which is defined to be vocabulary-relative, thus the different

expanded values.

For more on this see § 4.1.2 Default Vocabulary

A variation on the previous example using "@type": "@id" instead of @vocab

illustrates the behavior of interpreting "barney" relative to the document:

EXAMPLE 56: Term expansion for values, not identifiers

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@base": "http://example1.com/",

 "@vocab": "http://example2.com/",

 "fred": {"@type": "@vocab"}

 },

 "fred": [

 {"@id": "barney", "mnemonic": "the sidekick"},

 "barney"

]

}

https://www.w3.org/TR/json-ld11/

68 of 189

NOTE

The triple [] ex2:fred ex1:barney . is emitted twice, but exists only once

in an output dataset, as it is a duplicate triple.

Terms may also be defined using absolute IRIs or compact IRIs. This allows

coercion rules to be applied to keys which are not represented as a simple

term. For example:

EXAMPLE 57: Terms not expanded when document-relative

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@base": "http://example1.com/",

 "@vocab": "http://example2.com/",

 "fred": {"@type": "@id"}

 },

 "fred": [

 {"@id": "barney", "mnemonic": "the sidekick"},

 "barney"

]

}

https://www.w3.org/TR/json-ld11/

69 of 189

In this case the @id definition in the term definition is optional. If it does exist,

the compact IRI or IRI representing the term will always be expanded to IRI

defined by the @id key—regardless of whether a prefix is defined or not.

Type coercion is always performed using the unexpanded value of the key. In

the example above, that means that type coercion is done looking for

foaf:age in the active context and not for the corresponding, expanded IRI

http://xmlns.com/foaf/0.1/age.

EXAMPLE 58: Term definitions using compact and absolute IRIs

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "foaf:age": {

"@id": "http://xmlns.com/foaf/0.1/age",

 "@type": "xsd:integer"

 },

 "http://xmlns.com/foaf/0.1/homepage": {

 "@type": "@id"

 }

 },

 "foaf:name": "John Smith",

 "foaf:age": "41",

 "http://xmlns.com/foaf/0.1/homepage": [

 "http://personal.example.org/",

 "http://work.example.com/jsmith/"

]

}

https://www.w3.org/TR/json-ld11/

70 of 189

NOTE

Keys in the context are treated as terms for the purpose of expansion and

value coercion. At times, this may result in multiple representations for

the same expanded IRI. For example, one could specify that dog and cat

both expanded to http://example.com/vocab#animal. Doing this could be

useful for establishing different type coercion or language specification

rules. It also allows a compact IRI (or even an absolute IRI) to be defined

as something else entirely. For example, one could specify that the term

http://example.org/zoo should expand to http://example.org/river, but

this usage is discouraged because it would lead to a great deal of

confusion among developers attempting to understand the JSON-LD

document.

This section is non-normative.

At times, it is important to annotate a string with its language. In JSON-LD

this is possible in a variety of ways. First, it is possible to define a default

language for a JSON-LD document by setting the @language key in the

context:

The example above would associate the ja language code with the two

strings 花澄 and 科学者. Languages codes are defined in [BCP47]. The default

language applies to all string values that are not type coerced.

4.2.4 String Internationalization§

EXAMPLE 59: Setting the default language of a JSON-LD document

Original Expanded Statements Turtle Open in playground

{

"@context": {

 "name": "http://example.org/name",

 "occupation": "http://example.org/occupation",

...

 "@language": "ja"

 },

 "name": "花澄",
 "occupation": "科学者"
}

https://www.w3.org/TR/json-ld11/

71 of 189

To clear the default language for a subtree, @language can be set to null in a

local context as follows:

Second, it is possible to associate a language with a specific term using an

expanded term definition:

The example above would associate 忍者 with the specified default language

code ja, Ninja with the language code en, and Nindža with the language code

cs. The value of name, Yagyū Muneyoshi wouldn't be associated with any

EXAMPLE 60: Clearing default language

{

 "@context": {

...

 "@language": "ja"

 },

 "name": "花澄",
 "details": {

"@context": {

 "@language": null

 },

 "occupation": "Ninja"

 }

}

EXAMPLE 61: Expanded term definition with language

{

 "@context": {

...

 "ex": "http://example.com/vocab/",

 "@language": "ja",

 "name": { "@id": "ex:name", "@language": null },

 "occupation": { "@id": "ex:occupation" },

 "occupation_en": { "@id": "ex:occupation", "@language": "en" },

 "occupation_cs": { "@id": "ex:occupation", "@language": "cs" }

 },

"name": "Yagyū Muneyoshi",

 "occupation": "忍者",
 "occupation_en": "Ninja",

 "occupation_cs": "Nindža",

 ...

}

https://www.w3.org/TR/json-ld11/

72 of 189

language code since @language was reset to null in the expanded term

definition.

NOTE

Language associations are only applied to plain strings. Typed values or

values that are subject to type coercion are not language tagged.

Just as in the example above, systems often need to express the value of a

property in multiple languages. Typically, such systems also try to ensure that

developers have a programmatically easy way to navigate the data structures

for the language-specific data. In this case, language maps may be utilized.

The example above expresses exactly the same information as the previous

example but consolidates all values in a single property. To access the value

in a specific language in a programming language supporting dot-notation

accessors for object properties, a developer may use the property.language

pattern. For example, to access the occupation in English, a developer would

use the following code snippet: obj.occupation.en.

Third, it is possible to override the default language by using a value object:

EXAMPLE 62: Language map expressing a property in three languages

{

 "@context": {

...

 "occupation": { "@id": "ex:occupation", "@container": "@language" }

 },

 "name": "Yagyū Muneyoshi",

 "occupation": {

 "ja": "忍者",
 "en": "Ninja",

 "cs": "Nindža"

 }

...

}

https://www.w3.org/TR/json-ld11/

73 of 189

This makes it possible to specify a plain string by omitting the @language tag

or setting it to null when expressing it using a value object:

See § 9.8 Language Maps for a description of using language maps to set the

language of mapped values.

This section is non-normative.

A JSON-LD author can express multiple values in a compact way by using

arrays. Since graphs do not describe ordering for links between nodes, arrays

EXAMPLE 63: Overriding default language using an expanded value

{

 "@context": {

...

 "@language": "ja"

 },

 "name": "花澄",
 "occupation": {

 "@value": "Scientist",

 "@language": "en"

 }

}

EXAMPLE 64: Removing language information using an expanded value

{

 "@context": {

...

 "@language": "ja"

 },

 "name": {

 "@value": "Frank"

 },

 "occupation": {

 "@value": "Ninja",

 "@language": "en"

 },

 "speciality": "⼿裏剣"
}

4.3 Value Ordering§

https://www.w3.org/TR/json-ld11/

74 of 189

in JSON-LD do not convey any ordering of the contained elements by default.

This is exactly the opposite from regular JSON arrays, which are ordered by

default. For example, consider the following simple document:

Multiple values may also be expressed using the expanded form:

NOTE

The example shown above would generates statement, again with no

inherent order.

Although multiple values of a property are typically of the same type, JSON-

LD places no restriction on this, and a property may have values of different

EXAMPLE 65: Multiple values with no inherent order

Original Expanded Statements Turtle Open in playground

{

 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},

...

 "@id": "http://example.org/people#joebob",

 "foaf:nick": ["joe", "bob", "JB"],

 ...

}

EXAMPLE 66: Using an expanded form to set multiple values

Original Expanded Statements Turtle Open in playground

{

 "@context": {"dcterms": "http://purl.org/dc/terms/"},

 "@id": "http://example.org/articles/8",

 "dcterms:title": [

 {

 "@value": "Das Kapital",

 "@language": "de"

 },

 {

 "@value": "Capital",

 "@language": "en"

 }

]

}

https://www.w3.org/TR/json-ld11/

75 of 189

types:

NOTE

When viewed as statements, the values have no inherent order.

This section is non-normative.

As the notion of ordered collections is rather important in data modeling, it is

useful to have specific language support. In JSON-LD, a list may be

represented using the @list keyword as follows:

EXAMPLE 67: Multiple array values of different types

Original Expanded Statements Turtle Open in playground

{

 "@context": {"schema": "http://schema.org/"},

 "@id": "http://example.org/people#michael",

 "schema:name": [

 "Michael",

 {"@value": "Mike"},

 {"@value": "Miguel", "@language": "es"},

 { "@id": "https://www.wikidata.org/wiki/Q4927524" },

 42

]

}

4.3.1 Lists§

EXAMPLE 68: An ordered collection of values in JSON-LD

Original Expanded Statements Turtle Open in playground

{

 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},

...

 "@id": "http://example.org/people#joebob",

 "foaf:nick": {

 "@list": ["joe", "bob", "jaybee"]

 },

 ...

}

https://www.w3.org/TR/json-ld11/

76 of 189

This describes the use of this array as being ordered, and order is maintained

when processing a document. If every use of a given multi-valued property is

a list, this may be abbreviated by setting @container to @list in the context:

The implementation of lists in RDF depends on linking anonymous nodes

together using the properties rdf:first and rdf:rest, with the end of the list

defined as the resource rdf:nil, as the "statements" tab illustrates. This

allows order to be represented within an unordered set of statements.

Both JSON-LD and Turtle provide shortcuts for representing ordered lists.

In JSON-LD 1.1, lists of lists, where the value of a list object, may itself be a

list object, are fully supported.

Note that the "@container": "@list" definition recursively describes array

values of lists as being, themselves, lists. For example, in GeoJSON (see

[RFC7946]), coordinates are an ordered list of positions, which are

represented as an array of two or more numbers:

EXAMPLE 69: Specifying that a collection is ordered in the context

Original Expanded Statements Turtle Open in playground

{

"@context": {

...

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

 "@container": "@list"

 }

 },

...

 "@id": "http://example.org/people#joebob",

 "nick": ["joe", "bob", "jaybee"],

 ...

}

https://www.w3.org/TR/json-ld11/

77 of 189

For these examples, it's important that values expressed within bbox and

coordinates maintain their order, which requires the use of embedded list

structures. In JSON-LD 1.1, we can express this using recursive lists, by

simply adding the appropriate context definition:

EXAMPLE 70: Coordinates expressed in GeoJSON

{

 "type": "Feature",

 "bbox": [-10.0, -10.0, 10.0, 10.0],

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [-10.0, -10.0],

 [10.0, -10.0],

 [10.0, 10.0],

 [-10.0, -10.0]

]

]

 }

//...

}

https://www.w3.org/TR/json-ld11/

78 of 189

Note that coordinates includes three levels of lists.

Values of terms associated with an @list container are always represented in

the form of an array, even if there is just a single value or no value at all.

This section is non-normative.

While @list is used to describe ordered lists, the @set keyword is used to

describe unordered sets. The use of @set in the body of a JSON-LD document

is optimized away when processing the document, as it is just syntactic sugar.

However, @set is helpful when used within the context of a document. Values

of terms associated with an @set container are always represented in the

form of an array, even if there is just a single value that would otherwise be

optimized to a non-array form in compact form (see § 5.2 Compacted

EXAMPLE 71: Coordinates expressed in JSON-LD

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "https://purl.org/geojson/vocab#",

 "type": "@type",

 "bbox": {"@container": "@list"},

 "coordinates": {"@container": "@list"}

 },

 "type": "Feature",

 "bbox": [-10.0, -10.0, 10.0, 10.0],

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [-10.0, -10.0],

 [10.0, -10.0],

 [10.0, 10.0],

 [-10.0, -10.0]

]

]

 }

//...

}

4.3.2 Sets§

https://www.w3.org/TR/json-ld11/

79 of 189

Document Form). This makes post-processing of JSON-LD documents easier

as the data is always in array form, even if the array only contains a single

value.

This describes the use of this array as being unordered, and order may

change when processing a document. By default, arrays of values are

unordered, but this may be made explicit by setting @container to @set in the

context:

Since JSON-LD 1.1, the @set keyword may be combined with other container

specifications within an expanded term definition to similarly cause

compacted values of indexes to be consistently represented using arrays. See

§ 4.6 Indexed Values for a further discussion.

EXAMPLE 72: An unordered collection of values in JSON-LD

Original Expanded Statements Turtle Open in playground

{

 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},

...

 "@id": "http://example.org/people#joebob",

 "foaf:nick": {

 "@set": ["joe", "bob", "jaybee"]

 },

 ...

}

EXAMPLE 73: Specifying that a collection is unordered in the context

Original Expanded Statements Turtle Open in playground

{

"@context": {

...

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

 "@container": "@set"

 }

 },

...

 "@id": "http://example.org/people#joebob",

 "nick": ["joe", "bob", "jaybee"],

 ...

}

https://www.w3.org/TR/json-ld11/

80 of 189

This section is non-normative.

When processing mode is set to json-ld-1.1, @type may be used with an

expanded term definition with @container set to @set; no other members may

be set within such an expanded term definition. This is used by the

Compaction algorithm to ensure that the values of @type (or an alias) are

always represented in an array.

This section is non-normative.

Many JSON APIs separate properties from their entities using an

intermediate object; in JSON-LD these are called nested properties. For

example, a set of possible labels may be grouped under a common property:

4.3.3 Using @set with @type§

EXAMPLE 74: Setting @container: @set on @type

{

"@context": {

"@version": 1.1,

"@type": {"@container": "@set"}

 },

"@type": ["http:/example.org/type"]

}

4.4 Nested Properties§

https://www.w3.org/TR/json-ld11/

81 of 189

By defining labels using the keyword @nest, a JSON-LD processor will ignore

the nesting created by using the labels property and process the contents as

if it were declared directly within containing object. In this case, the labels

property is semantically meaningless. Defining it as equivalent to @nest

causes it to be ignored when expanding, making it equivalent to the

following:

EXAMPLE 75: Nested properties

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "skos": "http://www.w3.org/2004/02/skos/core#",

"labels": "@nest",

 "main_label": {"@id": "skos:prefLabel"},

 "other_label": {"@id": "skos:altLabel"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 },

 "@id": "http://example.org/myresource",

 "homepage": "http://example.org",

 "labels": {

 "main_label": "This is the main label for my resource",

 "other_label": "This is the other label"

 }

}

EXAMPLE 76: Nested properties folded into containing object

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "skos": "http://www.w3.org/2004/02/skos/core#",

 "main_label": {"@id": "skos:prefLabel"},

 "other_label": {"@id": "skos:altLabel"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 },

 "@id": "http://example.org/myresource",

 "homepage": "http://example.org",

"main_label": "This is the main label for my resource",

 "other_label": "This is the other label"

}

https://www.w3.org/TR/json-ld11/

82 of 189

Similarly, term definitions may contain a @nest property referencing a term

aliased to @nest which will cause such properties to be nested under that

aliased term when compacting. In the example below, both main_label and

other_label are defined with "@nest": "labels", which will cause them to be

serialized under labels when compacting.

NOTE

Nested properties are a new feature in JSON-LD 1.1, requiring processing

mode set to json-ld-1.1.

This section is non-normative.

Embedding is a JSON-LD feature that allows an author to use node objects

as property values. This is a commonly used mechanism for creating a parent-

child relationship between two nodes.

Without embedding, node objects can be linked by referencing the identifier

of another node object. For example:

EXAMPLE 77: Defining property nesting

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "skos": "http://www.w3.org/2004/02/skos/core#",

"labels": "@nest",

 "main_label": {"@id": "skos:prefLabel", "@nest": "labels"},

 "other_label": {"@id": "skos:altLabel", "@nest": "labels"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}

 },

 "@id": "http://example.org/myresource",

 "homepage": "http://example.org",

"labels": {

 "main_label": "This is the main label for my resource",

 "other_label": "This is the other label"

 }

}

4.5 Embedding§

https://www.w3.org/TR/json-ld11/

83 of 189

The previous example describes two node objects, for Manu and Gregg, with

the knows property defined to treat string values as identifiers. Embedding

allows the node object for Gregg to be embedded as a value of the knows

property:

A node object, like the one used above, may be used in any value position in

the body of a JSON-LD document. Note that type coercion of the knows

EXAMPLE 78: Referencing node objects

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

"knows": {"@type": "@id"}

 },

 "@graph": [{

 "name": "Manu Sporny",

 "@type": "Person",

"knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

 }]

}

EXAMPLE 79: Embedding a node object as property value of another node

object

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

 "@type": "Person",

 "name": "Manu Sporny",

"knows": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

}

https://www.w3.org/TR/json-ld11/

84 of 189

property is not required, as the value is not a string.

While it is considered a best practice to identify nodes in a graph, at times

this is impractical. In the data model, nodes without an explicit identifier are

called blank nodes, which can be represented in a serialization such as JSON-

LD using a blank node identifier. In the previous example, the top-level node

for Manu does not have an identifier, and does not need one to describe it

within the data model. However, if we were to want to describe a knows

relationship from Gregg to Manu, we would need to introduce a blank node

identifier (here _:b0).

Blank node identifiers may be automatically introduced by algorithms such as

flattening, but they are also useful for authors to describe such relationships

directly.

This section is non-normative.

At times, it becomes necessary to be able to express information without

being able to uniquely identify the node with an IRI. This type of node is

called a blank node. JSON-LD does not require all nodes to be identified using

@id. However, some graph topologies may require identifiers to be

serializable. Graphs containing loops, e.g., cannot be serialized using

EXAMPLE 80: Referencing an unidentified node

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/"

 },

"@id": "_:b0",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

"knows": {"@id": "_:b0"}

 }

}

4.5.1 Identifying Blank Nodes§

https://www.w3.org/TR/json-ld11/

85 of 189

embedding alone, @id must be used to connect the nodes. In these situations,

one can use blank node identifiers, which look like IRIs using an underscore

(_) as scheme. This allows one to reference the node locally within the

document, but makes it impossible to reference the node from an external

document. The blank node identifier is scoped to the document in which it is

used.

The example above contains information about two secret agents that cannot

be identified with an IRI. While expressing that agent 1 knows agent 2 is

possible without using blank node identifiers, it is necessary to assign agent 1

an identifier so that it can be referenced from agent 2.

It is worth noting that blank node identifiers may be relabeled during

processing. If a developer finds that they refer to the blank node more than

once, they should consider naming the node using a dereferenceable IRI so

that it can also be referenced from other documents.

This section is non-normative.

Sometimes multiple property values need to be accessed in a more direct

fashion than iterating though multiple array values. JSON-LD provides an

indexing mechanism to allow the use of an intermediate dictionary to

associate specific indexes with associated values.

Data Indexing
As described in § 4.6.1 Data Indexing, data indexing allows an arbitrary

key to reference a node or value.

EXAMPLE 81: Specifying a local blank node identifier

Original Expanded Statements Turtle Open in playground

{

 "@context": "http://schema.org/",

...

 "@id": "_:n1",

 "name": "Secret Agent 1",

 "knows": {

 "name": "Secret Agent 2",

 "knows": { "@id": "_:n1" }

 }

}

4.6 Indexed Values§

https://www.w3.org/TR/json-ld11/

86 of 189

Language Indexing
As described in § 4.6.2 Language Indexing, language indexing allows a

language to reference a string and be interpreted as the language

associated with that string.

Node Identifier Indexing
As described in § 4.6.3 Node Identifier Indexing, node identifier indexing

allows an IRI to reference a node and be interpreted as the identifier of

that node.

Node Type Indexing
As described in § 4.6.4 Node Type Indexing, node type indexing allows an

IRI to reference a node and be interpreted as a type of that node.

See § 4.8 Named Graphs for other uses of indexing in JSON-LD.

This section is non-normative.

Databases are typically used to make access to data more efficient.

Developers often extend this sort of functionality into their application data to

deliver similar performance gains. This data may have no meaning from a

Linked Data standpoint, but is still useful for an application.

JSON-LD introduces the notion of index maps that can be used to structure

data into a form that is more efficient to access. The data indexing feature

allows an author to structure data using a simple key-value map where the

keys do not map to IRIs. This enables direct access to data instead of having

to scan an array in search of a specific item. In JSON-LD such data can be

specified by associating the @index keyword with a @container declaration in

the context:

4.6.1 Data Indexing§

https://www.w3.org/TR/json-ld11/

87 of 189

In the example above, the post term has been marked as an index map. The

en and de keys will be ignored semantically, but preserved syntactically, by

the JSON-LD Processor. If used in JavaScript, this can allow a developer to

access the German version of the post using the following code snippet:

obj.post.de.

The interpretation of the data is expressed in the statements table. Note how

the index keys do not appear in the statements, but would continue to exist if

the document were compacted or expanded (see § 5.2 Compacted Document

Form and § 5.1 Expanded Document Form) using a JSON-LD processor.

The value of @container can also be an array containing both @index and @set.

When compacting, this ensures that a JSON-LD Processor will use the array

EXAMPLE 82: Indexing data in JSON-LD

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

"@container": "@index"

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

"post": {

 "en": {

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "de": {

 "@id": "http://example.com/posts/1/de",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 }

 }

}

https://www.w3.org/TR/json-ld11/

88 of 189

form for all values of indexes.

If the processing mode is set to json-ld-1.1, the special index @none is used

for indexing data which does not have an associated index, which is useful to

maintain a normalized representation.

EXAMPLE 83: Indexing data using @none

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

"@container": "@index"

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "en": {

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "de": {

 "@id": "http://example.com/posts/1/de",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 },

"@none": {

 "@id": "http://example.com/posts/1/no-language",

 "body": "Unindexed description",

 "words": 20

 }

 }

}

4.6.1.1 Property-based data indexing

https://www.w3.org/TR/json-ld11/

89 of 189

This section is non-normative.

In its simplest form (as in the examples above), data indexing assigns no

semantics to the keys of an index map. However, in some situations, the keys

used to index objects are semantically linked to these objects, and should be

preserved not only syntactically, but also semantically.

If the processing mode is set to json-ld-1.1, "@container": "@index" in a term

description can be accompanied with an "@index" key. The value of that key

must map to an IRI, which identifies the semantic property linking each

object to its key.

https://www.w3.org/TR/json-ld11/

90 of 189

NOTE

When using property-based data indexing, index maps can only be used on

node objects, not value objects or graph objects. Value objects are

restricted to have only certain keys and do not support arbitrary

properties.

EXAMPLE 84: Property-based data indexing

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "dc11": "http://purl.org/dc/elements/1.1/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

"@container": "@index",

 "@index": "dc11:language"

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "en": {

↑ "en" will add `"dc11:language": "en"` when expanded

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "de": {

 "@id": "http://example.com/posts/1/de",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 }

 }

}

https://www.w3.org/TR/json-ld11/

91 of 189

This section is non-normative.

JSON which includes string values in multiple languages may be represented

using a language map to allow for easily indexing property values by

language tag. This enables direct access to language values instead of having

to scan an array in search of a specific item. In JSON-LD such data can be

specified by associating the @language keyword with a @container declaration

in the context:

In the example above, the label term has been marked as a language map.

The en and de keys are implicitly associated with their respective values by

the JSON-LD Processor. This allows a developer to access the German version

of the label using the following code snippet: obj.label.de.

The value of @container can also be an array containing both @language and

@set. When compacting, this ensures that a JSON-LD Processor will use the

array form for all values of language tags.

4.6.2 Language Indexing§

EXAMPLE 85: Indexing languaged-tagged strings in JSON-LD

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

 "@container": "@language"

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": "The Queen",

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

92 of 189

If the processing mode is set to json-ld-1.1, the special index @none is used

for indexing strings which do not have a language; this is useful to maintain a

normalized representation for string values not having a datatype.

EXAMPLE 86: Indexing languaged-tagged strings in JSON-LD with @set

representation

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

 "@container": ["@language", "@set"]

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": ["The Queen"],

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

EXAMPLE 87: Indexing languaged-tagged strings using @none for no

language

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

 "@container": "@language"

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": "The Queen",

 "de": ["Die Königin", "Ihre Majestät"],

"@none": "The Queen"

 }

}

https://www.w3.org/TR/json-ld11/

93 of 189

This section is non-normative.

In addition to index maps, JSON-LD introduces the notion of id maps for

structuring data. The id indexing feature allows an author to structure data

using a simple key-value map where the keys map to IRIs. This enables direct

access to associated node objects instead of having to scan an array in search

of a specific item. In JSON-LD such data can be specified by associating the

@id keyword with a @container declaration in the context:

In the example above, the post term has been marked as an id map. The

http://example.com/posts/1/en and http://example.com/posts/1/de keys will

be interpreted as the @id property of the node object value.

4.6.3 Node Identifier Indexing§

EXAMPLE 88: Indexing data in JSON-LD by node identifiers

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

"@container": "@id"

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

"http://example.com/posts/1/en": {

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

"http://example.com/posts/1/de": {

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 }

 }

}

https://www.w3.org/TR/json-ld11/

94 of 189

The interpretation of the data above is exactly the same as that in § 4.6.1

Data Indexing using a JSON-LD processor.

The value of @container can also be an array containing both @id and @set.

When compacting, this ensures that a JSON-LD processor will use the array

form for all values of node identifiers.

The special index @none is used for indexing node objects which do not have

an @id, which is useful to maintain a normalized representation. The @none

index may also be a term which expands to @none, such as the term none used

in the example below.

EXAMPLE 89: Indexing data in JSON-LD by node identifiers with @set

representation

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": ["@id", "@set"]

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "http://example.com/posts/1/en": [{

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 }],

 "http://example.com/posts/1/de": [{

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 }]

 }

}

https://www.w3.org/TR/json-ld11/

95 of 189

NOTE

Id maps are a new feature in JSON-LD 1.1, requiring processing mode set

to json-ld-1.1.

EXAMPLE 90: Indexing data in JSON-LD by node identifiers using @none

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": "@id"

 },

"none": "@none"

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "http://example.com/posts/1/en": {

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "http://example.com/posts/1/de": {

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..

 "words": 1204

 },

"none": {

 "body": "Description for object without an @id",

 "words": 20

 }

 }

}

4.6.4 Node Type Indexing§

https://www.w3.org/TR/json-ld11/

96 of 189

This section is non-normative.

In addition to id and index maps, JSON-LD introduces the notion of type maps

for structuring data. The type indexing feature allows an author to structure

data using a simple key-value map where the keys map to IRIs. This enables

data to be structured based on the @type of specific node objects. In JSON-LD

such data can be specified by associating the @type keyword with a

@container declaration in the context:

In the example above, the affiliation term has been marked as a type map.

The schema:Corporation and schema:ProfessionalService keys will be

interpreted as the @type property of the node object value.

The value of @container can also be an array containing both @type and @set.

When compacting, this ensures that a JSON-LD processor will use the array

form for all values of types.

EXAMPLE 91: Indexing data in JSON-LD by type

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "affiliation": {

 "@id": "schema:affiliation",

"@container": "@type"

 }

 },

 "name": "Manu Sporny",

 "affiliation": {

"schema:Corporation": {

 "@id": "https://digitalbazaar.com/",

 "name": "Digital Bazaar"

 },

"schema:ProfessionalService": {

 "@id": "https://spec-ops.io",

 "name": "Spec-Ops"

 }

 }

}

https://www.w3.org/TR/json-ld11/

97 of 189

The special index @none is used for indexing node objects which do not have

an @type, which is useful to maintain a normalized representation. The @none

index may also be a term which expands to @none, such as the term none used

in the example below.

EXAMPLE 92: Indexing data in JSON-LD by type with @set representation

Original Expanded Statements Turtle Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "affiliation": {

 "@id": "schema:affiliation",

 "@container": ["@type", "@set"]

 }

 },

 "name": "Manu Sporny",

 "affiliation": {

 "schema:Corporation": [{

 "@id": "https://digitalbazaar.com/",

 "name": "Digital Bazaar"

 }],

 "schema:ProfessionalService": [{

 "@id": "https://spec-ops.io",

 "name": "Spec-Ops"

 }]

 }

}

https://www.w3.org/TR/json-ld11/

98 of 189

As with id maps, when used with @type, a container may also include @set to

ensure that key values are always contained in an array.

NOTE

Type maps are a new feature in JSON-LD 1.1, requiring processing mode

set to json-ld-1.1.

This section is non-normative.

EXAMPLE 93: Indexing data in JSON-LD by type using @none

Original Expanded Statements Turtle Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "affiliation": {

 "@id": "schema:affiliation",

 "@container": "@type"

 },

"none": "@none"

 },

 "name": "Manu Sporny",

 "affiliation": {

 "schema:Corporation": {

 "@id": "https://digitalbazaar.com/",

 "name": "Digital Bazaar"

 },

 "schema:ProfessionalService": {

 "@id": "https://spec-ops.io",

 "name": "Spec-Ops"

 },

"none": {

 "@id": "https://greggkellogg.net/",

 "name": "Gregg Kellogg"

 }

 }

}

4.7 Reverse Properties§

https://www.w3.org/TR/json-ld11/

99 of 189

JSON-LD serializes directed graphs. That means that every property points

from a node to another node or value. However, in some cases, it is desirable

to serialize in the reverse direction. Consider for example the case where a

person and its children should be described in a document. If the used

vocabulary does not provide a children property but just a parent property,

every node representing a child would have to be expressed with a property

pointing to the parent as in the following example.

Expressing such data is much simpler by using JSON-LD's @reverse keyword:

EXAMPLE 94: A document with children linking to their parent

Original Expanded Statements Turtle Open in playground

[

 {

"@id": "#homer",

 "http://example.com/vocab#name": "Homer"

 }, {

 "@id": "#bart",

 "http://example.com/vocab#name": "Bart",

"http://example.com/vocab#parent": { "@id": "#homer" }

 }, {

 "@id": "#lisa",

 "http://example.com/vocab#name": "Lisa",

"http://example.com/vocab#parent": { "@id": "#homer" }

 }

]

https://www.w3.org/TR/json-ld11/

100 of 189

The @reverse keyword can also be used in expanded term definitions to create

reverse properties as shown in the following example:

EXAMPLE 95: A person and its children using a reverse property

Original Expanded Flattened Statements Turtle Open in playground

{

 "@id": "#homer",

 "http://example.com/vocab#name": "Homer",

"@reverse": {

"http://example.com/vocab#parent": [

 {

 "@id": "#bart",

 "http://example.com/vocab#name": "Bart"

 }, {

 "@id": "#lisa",

 "http://example.com/vocab#name": "Lisa"

 }

]

 }

}

EXAMPLE 96: Using @reverse to define reverse properties

Original Expanded Flattened Statements Turtle Open in playground

{

 "@context": { "name": "http://example.com/vocab#name",

"children": { "@reverse": "http://example.com/vocab#parent" }

 },

 "@id": "#homer",

 "name": "Homer",

"children": [

 {

 "@id": "#bart",

 "name": "Bart"

 }, {

 "@id": "#lisa",

 "name": "Lisa"

 }

]

}

https://www.w3.org/TR/json-ld11/

101 of 189

This section is non-normative.

At times, it is necessary to make statements about a graph itself, rather than

just a single node. This can be done by grouping a set of nodes using the

@graph keyword. A developer may also name data expressed using the @graph

keyword by pairing it with an @id keyword as shown in the following example:

The example above expresses a named graph that is identified by the IRI

http://example.org/foaf-graph. That graph is composed of the statements

about Manu and Gregg. Metadata about the graph itself is expressed via the

generatedAt property, which specifies when the graph was generated.

When a JSON-LD document's top-level structure is an dictionary that contains

4.8 Named Graphs§

EXAMPLE 97: Identifying and making statements about a graph

Original Expanded Statements TriG Open in playground

{

 "@context": {

 "generatedAt": {

 "@id": "http://www.w3.org/ns/prov#generatedAtTime",

 "@type": "http://www.w3.org/2001/XMLSchema#date"

 },

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"}

 },

"@id": "http://example.org/foaf-graph",

 "generatedAt": "2012-04-09",

 "@graph": [

 {

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

]

}

https://www.w3.org/TR/json-ld11/

102 of 189

no other keys than @graph and optionally @context (properties that are not

mapped to an IRI or a keyword are ignored), @graph is considered to express

the otherwise implicit default graph. This mechanism can be useful when a

number of nodes exist at the document's top level that share the same

context, which is, e.g., the case when a document is flattened. The @graph

keyword collects such nodes in an array and allows the use of a shared

context.

In this case, embedding doesn't work as each node object references the

other. This is equivalent to using multiple node objects in array and defining

the @context within each node object:

EXAMPLE 98: Using @graph to explicitly express the default graph

Original Expanded Statements TriG Open in playground

{

 "@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

 "knows": {"@type": "@id"}

 },

 "@graph": [

 {

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

]

}

https://www.w3.org/TR/json-ld11/

103 of 189

This section is non-normative.

In some cases, it is useful to logically partition data into separate graphs,

without making this explicit within the JSON expression. For example, a JSON

document may contain data against which other metadata is asserted and it

is useful to separate this data in the data model using the notion of named

graphs, without the syntactic overhead associated with the @graph keyword.

An expanded term definition can use @graph as the value of @container. This

indicates that values of this term should be considered to be named graphs,

where the graph name is an automatically assigned blank node identifier

creating an implicitly named graph. When expanded, these become simple

graph objects.

A different example uses an anonymously named graph as follows:

EXAMPLE 99: Context needs to be duplicated if @graph is not used

Original Expanded Statements TriG Open in playground

[

 {

"@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

 "knows": {"@type": "@id"}

 },

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 },

 {

"@context": {

 "@vocab": "http://xmlns.com/foaf/0.1/",

 "knows": {"@type": "@id"}

 },

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

]

4.8.1 Graph Containers§

https://www.w3.org/TR/json-ld11/

104 of 189

The example above expresses an anonymously named graph making a

statement. The default graph includes a statement saying that the subject

wrote that statement. This is an example of separating statements into a

named graph, and then making assertions about the statements contained

within that named graph.

NOTE

Strictly speaking, the value of such a term is not a named graph, rather it

is the graph name associated with the named graph, which exists

separately within the dataset.

NOTE

Graph Containers are a new feature in JSON-LD 1.1, requiring processing

mode set to json-ld-1.1.

This section is non-normative.

In addition to indexing node objects by index, graph objects may also be

indexed by an index. By using the @graph container type, introduced in § 4.8.1

EXAMPLE 100: Implicitly named graph

Original Expanded Statements TriG Open in playground

{

 "@context": {

 "@version": 1.1,

 "@base": "http://dbpedia.org/resource/",

 "said": "http://example.com/said",

"wrote": {"@id": "http://example.com/wrote", "@container": "@graph"}

 },

 "@id": "William_Shakespeare",

"wrote": {

 "@id": "Richard_III_of_England",

 "said": "My kingdom for a horse"

 }

}

4.8.2 Named Graph Data Indexing§

https://www.w3.org/TR/json-ld11/

105 of 189

Graph Containers in addition to @index, an object value of such a property is

treated as a key-value map where the keys do not map to IRIs, but are taken

from an @index property associated with named graphs which are their

values. When expanded, these must be simple graph objects

The following example describes a default graph referencing multiple named

graphs using an index map.

As with index maps, when used with @graph, a container may also include @set

to ensure that key values are always contained in an array.

If the processing mode is set to json-ld-1.1, the special index @none is used

for indexing graphs which does not have an @index key, which is useful to

EXAMPLE 101: Indexing graph data in JSON-LD

Original Expanded Statements TriG Open in playground

{

 "@context": {

"@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": ["@graph", "@index"]

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

"post": {

 "en": {

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "de": {

 "@id": "http://example.com/posts/1/de",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl.

 "words": 1204

 }

 }

}

https://www.w3.org/TR/json-ld11/

106 of 189

maintain a normalized representation. Note, however, that compacting a

document where multiple unidentified named graphs are compacted using

the @none index will result in the content of those graphs being merged. To

prevent this, give each graph a distinct @index key.

This section is non-normative.

In addition to indexing node objects by identifier, graph objects may also be

indexed by their graph name. By using the @graph container type, introduced

EXAMPLE 102: Indexing graphs using @none for no index

Original Expanded Statements TriG Open in playground

{

 "@context": {

 "@version": 1.1,

 "schema": "http://schema.org/",

 "name": "schema:name",

 "body": "schema:articleBody",

 "words": "schema:wordCount",

 "post": {

 "@id": "schema:blogPost",

 "@container": ["@graph", "@index"]

 }

 },

 "@id": "http://example.com/",

 "@type": "schema:Blog",

 "name": "World Financial News",

 "post": {

 "en": {

 "@id": "http://example.com/posts/1/en",

 "body": "World commodities were up today with heavy trading of crude oil...",

 "words": 1539

 },

 "@none": {

 "@id": "http://example.com/posts/1/no-language",

 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl.

 "words": 1204

 }

 }

}

4.8.3 Named Graph Indexing§

https://www.w3.org/TR/json-ld11/

107 of 189

in § 4.8.1 Graph Containers in addition to @id, an object value of such a

property is treated as a key-value map where the keys represent the

identifiers of named graphs which are their values.

The following example describes a default graph referencing multiple named

graphs using an id map.

EXAMPLE 103: Referencing named graphs using an id map

Original Expanded Statements TriG Open in playground

{

 "@context": {

"@version": 1.1,

 "generatedAt": {

 "@id": "http://www.w3.org/ns/prov#generatedAtTime",

 "@type": "http://www.w3.org/2001/XMLSchema#date"

 },

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {

 "@id": "http://xmlns.com/foaf/0.1/knows",

 "@type": "@id"

 },

"graphMap": {

 "@id": "http://example.org/graphMap",

 "@container": ["@graph", "@id"]

 }

 },

 "@id": "http://example.org/foaf-graph",

 "generatedAt": "2012-04-09",

"graphMap": {

 "http://manu.sporny.org/about#manu": {

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 },

"https://greggkellogg.net/foaf#me": {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }

 }

}

https://www.w3.org/TR/json-ld11/

108 of 189

As with id maps, when used with @graph, a container may also include @set to

ensure that key values are always contained in an array.

As with id maps, the special index @none is used for indexing named graphs

which do not have an @id, which is useful to maintain a normalized

representation. The @none index may also be a term which expands to @none.

Note, however, that if multiple graphs are represented without an @id,

they will be merged on expansion. To prevent this, use @none judiciously,

and consider giving graphs their own distinct identifier.

EXAMPLE 104: Referencing named graphs using an id map with @none

Original Expanded Statements TriG Open in playground

{

 "@context": {

 "@version": 1.1,

 "generatedAt": {

 "@id": "http://www.w3.org/ns/prov#generatedAtTime",

 "@type": "http://www.w3.org/2001/XMLSchema#date"

 },

 "Person": "http://xmlns.com/foaf/0.1/Person",

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"},

 "graphMap": {

 "@id": "http://example.org/graphMap",

 "@container": ["@graph", "@id"]

 }

 },

 "@id": "http://example.org/foaf-graph",

 "generatedAt": "2012-04-09",

 "graphMap": {

"@none": [{

 "@id": "http://manu.sporny.org/about#manu",

 "@type": "Person",

 "name": "Manu Sporny",

 "knows": "https://greggkellogg.net/foaf#me"

 }, {

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg",

 "knows": "http://manu.sporny.org/about#manu"

 }]

 }

}

https://www.w3.org/TR/json-ld11/

109 of 189

NOTE

Graph Containers are a new feature in JSON-LD 1.1, requiring processing

mode set to json-ld-1.1.

This section is non-normative.

As with many data formats, there is no single correct way to describe data in

JSON-LD. However, as JSON-LD is used for describing graphs, certain

transformations can be used to change the shape of the data, without

changing its meaning as Linked Data.

Expanded Document Form
Expansion is the process of taking a JSON-LD document and applying a

context so that the @context is no longer necessary. This process is

described further in § 5.1 Expanded Document Form.

Compacted Document Form
Compaction is the process of applying a provided context to an existing

JSON-LD document. This process is described further in § 5.2 Compacted

Document Form.

Flattened Document Form
Flattening is the process of extracting embedded nodes to the top level of

the JSON tree, and replacing the embedded node with a reference,

creating blank node identifiers as necessary. This process is described

further in § 5.3 Flattened Document Form.

Framed Document Form
Framing is used to shape the data in a JSON-LD document, using an

example frame document which is used to both match the flattened data

and show an example of how the resulting data should be shaped. This

process is described further in § 5.4 Framed Document Form.

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines a method for expanding a JSON-LD document. Expansion is the

process of taking a JSON-LD document and applying a context such that all

5. Forms of JSON-LD§

5.1 Expanded Document Form§

https://www.w3.org/TR/json-ld11/

110 of 189

IRIs, types, and values are expanded so that the @context is no longer

necessary.

For example, assume the following JSON-LD input document:

Running the JSON-LD Expansion algorithm against the JSON-LD input

document provided above would result in the following output:

JSON-LD's media type defines a profile parameter which can be used to

signal or request expanded document form. The profile URI identifying

expanded document form is http://www.w3.org/ns/json-ld#expanded.

Input

EXAMPLE 105: Sample JSON-LD document to be expanded

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/"

}

EXAMPLE 106: Expanded form for the previous example

Expanded Statements Turtle Open in playground

[

 {

 "http://xmlns.com/foaf/0.1/name": [

 { "@value": "Manu Sporny" }

],

 "http://xmlns.com/foaf/0.1/homepage": [

 { "@id": "http://manu.sporny.org/" }

]

 }

]

5.2 Compacted Document Form§

https://www.w3.org/TR/json-ld11/

111 of 189

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines a method for compacting a JSON-LD document. Compaction is

the process of applying a developer-supplied context to shorten IRIs to terms

or compact IRIs and JSON-LD values expressed in expanded form to simple

values such as strings or numbers. Often this makes it simpler to work with

document as the data is expressed in application-specific terms. Compacted

documents are also typically easier to read for humans.

For example, assume the following JSON-LD input document:

Additionally, assume the following developer-supplied JSON-LD context:

Running the JSON-LD Compaction algorithm given the context supplied

above against the JSON-LD input document provided above would result in

the following output:

Input

EXAMPLE 107: Sample expanded JSON-LD document

[

 {

 "http://xmlns.com/foaf/0.1/name": ["Manu Sporny"],

 "http://xmlns.com/foaf/0.1/homepage": [

 {

 "@id": "http://manu.sporny.org/"

 }

]

 }

]

Context

EXAMPLE 108: Sample context

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 }

}

https://www.w3.org/TR/json-ld11/

112 of 189

JSON-LD's media type defines a profile parameter which can be used to

signal or request compacted document form. The profile URI identifying

compacted document form is http://www.w3.org/ns/json-ld#compacted.

The details of Compaction are described in the Compaction algorithm in

[JSON-LD11-API]. This section provides a short description of how the

algorithm operates as a guide to authors creating contexts to be used for

compacting JSON-LD documents.

The purpose of compaction is to apply the term definitions, vocabulary

mapping, default language, and base IRI to an existing JSON-LD document to

cause it to be represented in a form that is tailored to the use of the JSON-LD

document directly as JSON. This includes representing values as strings,

rather than value objects, where possible, shortening the use of list objects

into simple arrays, reversing the relationship between nodes, and using data

maps to index into multiple values instead of representing them as an array

of values.

This section is non-normative.

In an expanded JSON-LD document, IRIs are always represented as absolute

IRIs. In many cases, it is preferable to use a shorter version, either a relative

IRI, compact IRI, or term. Compaction uses a combination of elements in a

context to create a shorter form of these IRIs. See § 4.1.2 Default Vocabulary,

EXAMPLE 109: Compact form of the sample document once sample

context has been applied

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "homepage": {

 "@id": "http://xmlns.com/foaf/0.1/homepage",

 "@type": "@id"

 }

 },

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/"

}

5.2.1 Shortening IRIs§

https://www.w3.org/TR/json-ld11/

113 of 189

§ 4.1.3 Base IRI, and § 4.1.4 Compact IRIs for more details.

The vocabulary mapping can be used to shorten IRIs that may be vocabulary

relative by removing the IRI prefix that matches the vocabulary mapping.

This is done whenever an IRI is determined to be vocabulary relative, i.e.,

used as a property, or a value of @type, or as the value of a term described as

"@type": "@vocab".

Input

Context

EXAMPLE 110: Compacting using a default vocabulary

Given the following expanded document:

[{

 "@id": "http://example.org/places#BrewEats",

 "@type": ["http://xmlns.com/foaf/0.1/Restaurant"],

 "http://xmlns.com/foaf/0.1/name": [{"@value": "Brew Eats"}]

}]

And the following context:

{

 "@context": {

"@vocab": "http://xmlns.com/foaf/0.1/"

 }

}

The compaction algorithm will shorten all vocabulary-relative IRIs that

begin with http://xmlns.com/foaf/0.1/:

{

 "@context": {

"@vocab": "http://xmlns.com/foaf/0.1/"

 },

 "@id": "http://example.org/places#BrewEats",

 "@type": "Restaurant",

"name": "Brew Eats"

}

Note that two IRIs were shortened, unnecessary arrays are removed, and

simple string values are replaced with the string.

See Security Considerations in § C. IANA Considerations for a discussion

on how string vocabulary-relative IRI resolution via concatenation.

https://www.w3.org/TR/json-ld11/

114 of 189

This section is non-normative.

To be unambiguous, the expanded document form always represents nodes

and values using node objects and value objects. Moreover, property values

are always contained within an array, even when there is only one value.

Sometimes this is useful to maintain a uniformity of access, but most JSON

data use the simplest possible representation, meaning that properties have

single values, which are represented as strings or as structured values such

as node objects. By default, compaction will represent values which are

simple strings as strings, but sometimes a value is an IRI, a date, or some

other typed value for which a simple string representation would loose

Input

Context

EXAMPLE 111: Compacting using a base IRI

Given the following expanded document:

[{

 "@id": "http://example.com/document.jsonld",

 "http://www.w3.org/2000/01/rdf-schema#label": [{"@value": "Just a simple docume

}]

And the following context:

{

 "@context": {

"@base": "http://example.com/",

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 }

}

The compaction algorithm will shorten all document-relative IRIs that

begin with http://example.com/:

{

 "@context": {

"@base": "http://example.com/",

 "label": "http://www.w3.org/2000/01/rdf-schema#label"

 },

 "@id": "document.jsonld",

 "label": "Just a simple document"

}

5.2.2 Representing Values as Strings§

https://www.w3.org/TR/json-ld11/

115 of 189

information. By specifying this within a term definition, the semantics of a

string value can be inferred from the definition of the term used as a

property. See § 4.2 Describing Values for more details.

https://www.w3.org/TR/json-ld11/

116 of 189

Input

Context

EXAMPLE 112: Coercing Values to Strings

Given the following expanded document:

[{

 "http://example.com/plain": [

 {"@value": "string"},

 {"@value": true},

 {"@value": 1}

],

 "http://example.com/date": [

 {

 "@value": "2018-02-16",

 "@type": "http://www.w3.org/2001/XMLSchema#date"

 }

],

 "http://example.com/en": [

 {"@value": "English", "@language": "en"}

],

 "http://example.com/iri": [

 {"@id": "http://example.com/some-location"}

]

}]

And the following context:

{

 "@context": {

 "@vocab": "http://example.com/",

 "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"},

 "en": {"@language": "en"},

 "iri": {"@type": "@id"}

 }

}

The compacted version will use string values for the defined terms when

the values match the term definition. Note that there is no term defined

for "plain", that is created automatically using the vocabulary mapping.

Also, the other native values, 1 and true, can be represented without

defining a specific type mapping.

https://www.w3.org/TR/json-ld11/

117 of 189

This section is non-normative.

As described in § 4.3.1 Lists, JSON-LD has an expanded syntax for

representing ordered values, using the @list keyword. To simplify the

representation in JSON-LD, a term can be defined with "@container": "@list"

which causes all values of a property using such a term to be considered

ordered.

{

 "@context": {

 "@vocab": "http://example.com/",

 "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"},

 "en": {"@language": "en"},

 "iri": {"@type": "@id"}

 },

 "plain": ["string", true, 1],

 "date": "2018-02-16",

 "en": "English",

 "iri": "http://example.com/some-location"

}

5.2.3 Representing Lists as Arrays§

https://www.w3.org/TR/json-ld11/

118 of 189

This section is non-normative.

In some cases, the property used to relate two nodes may be better expressed

if the nodes have a reverse direction, for example, when describing a

Input

Context

EXAMPLE 113: Using Arrays for Lists

Given the following expanded document:

[{

 "http://xmlns.com/foaf/0.1/nick": [{

 "@list": [

 {"@value": "joe"},

 {"@value": "bob"},

 {"@value": "jaybee"}

]

 }]

}]

And the following context:

{

 "@context": {

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

"@container": "@list"

 }

 }

}

The compacted version eliminates the explicit list object.

{

 "@context": {

 "nick": {

 "@id": "http://xmlns.com/foaf/0.1/nick",

"@container": "@list"

 }

 },

 "nick": ["joe", "bob", "jaybee"]

}

5.2.4 Reversing Node Relationships§

https://www.w3.org/TR/json-ld11/

119 of 189

relationship between two people and a common parent. See § 4.7 Reverse

Properties for more details.

https://www.w3.org/TR/json-ld11/

120 of 189

Reverse properties can be even more useful when combined with framing,

Input

Context

EXAMPLE 114: Reversing Node Relationships

Given the following expanded document:

[{

 "@id": "http://example.org/#homer",

 "http://example.com/vocab#name": [{"@value": "Homer"}],

 "@reverse": {

 "http://example.com/vocab#parent": [{

 "@id": "http://example.org/#bart",

 "http://example.com/vocab#name": [{"@value": "Bart"}]

 }, {

 "@id": "http://example.org/#lisa",

 "http://example.com/vocab#name": [{"@value": "Lisa"}]

 }]

 }

}]

And the following context:

{

 "@context": {

 "name": "http://example.com/vocab#name",

 "children": { "@reverse": "http://example.com/vocab#parent"

 }

}

The compacted version eliminates the @reverse property by describing

"children" as the reverse of "parent".

{

 "@context": {

 "name": "http://example.com/vocab#name",

 "children": { "@reverse": "http://example.com/vocab#parent" }

 },

 "@id": "#homer",

 "name": "Homer",

 "children": [

 { "@id": "#bart", "name": "Bart"},

 { "@id": "#lisa", "name": "Lisa"}

]

}

https://www.w3.org/TR/json-ld11/

121 of 189

which can actually make node objects defined at the top-level of a document

to become embedded nodes. JSON-LD provides a means to index such values,

by defining an appropriate @container definition within a term definition.

This section is non-normative.

Properties with multiple values are typically represented using an unordered

array. This means that an application working on an internalized

representation of that JSON would need to iterrate through the values of the

array to find a value matching a particular pattern, such as a language-

tagged string using the language en.

5.2.5 Indexing Values§

https://www.w3.org/TR/json-ld11/

122 of 189

Input

Context

EXAMPLE 115: Indexing language-tagged strings

Given the following expanded document:

[{

 "@id": "http://example.com/queen",

 "http://example.com/vocab/label": [

 {"@value": "The Queen", "@language": "en"},

 {"@value": "Die Königin", "@language": "de"},

 {"@value": "Ihre Majestät", "@language": "de"}

]

}]

And the following context:

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

"@container": "@language"

 }

 }

}

The compacted version uses a dictionary value for "label", with the keys

representing the language tag and the values are the strings associated

with the relevant language tag.

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "label": {

 "@id": "vocab:label",

"@container": "@language"

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": "The Queen",

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

123 of 189

Data can be indexed on a number of different keys, including @id, @type,

@language, @index and more. See § 4.6 Indexed Values and § 4.8 Named

Graphs for more details.

This section is non-normative.

Sometimes it's useful to compact a document, but keep the node object and

value object representations. For this, a term definition can set "@type":

"@none". This causes the Value Compaction algorithm to always use the object

form of values, although components of that value may be compacted.

5.2.6 Normalizing Values as Objects§

https://www.w3.org/TR/json-ld11/

124 of 189

Input

Context

EXAMPLE 116: Forcing Object Values

Given the following expanded document:

[{

 "http://example.com/notype": [

 {"@value": "string"},

 {"@value": true},

 {"@value": false},

 {"@value": 1},

 {"@value": 10.0},

 {"@value": "plain"},

 {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"},

 {"@value": "english", "@language": "en"},

 {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"},

 {"@id": "http://example.com/iri"}

]

}]

And the following context:

{

 "@context": {

 "@version": 1.1,

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "notype": {"@id": "http://example.com/notype", "@type": "@none"}

 }

}

The compacted version will use string values for the defined terms when

the values match the term definition. Also, the other native values, 1 and

true, can be represented without defining a specific type mapping.

https://www.w3.org/TR/json-ld11/

125 of 189

This section is non-normative.

Generally, when compacting, properties having only one value are

represented as strings or dictionaries, while properties having multiple

values are represented as an array of strings or dictionaries. This means that

applications accessing such properties need to be prepared to accept either

representation. To force all values to be represented using an array, a term

definition can set "@container": "@set". Moreover, @set can be used in

combination with other container settings, for example looking at our

language-map example from § 5.2.5 Indexing Values:

{

 "@context": {

 "@version": 1.1,

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "notype": {"@id": "http://example.com/notype", "@type": "@none"}

 },

 "notype": [

 {"@value": "string"},

 {"@value": true},

 {"@value": false},

 {"@value": 1},

 {"@value": 10.0},

 {"@value": "plain"},

 {"@value": "false", "@type": "xsd:boolean"},

 {"@value": "english", "@language": "en"},

 {"@value": "2018-02-17", "@type": "xsd:date"},

 {"@id": "http://example.com/iri"}

]

}

5.2.7 Representing Singular Values as Arrays§

https://www.w3.org/TR/json-ld11/

126 of 189

Input

Context

EXAMPLE 117: Indexing language-tagged strings and @set

Given the following expanded document:

[{

 "@id": "http://example.com/queen",

 "http://example.com/vocab/label": [

 {"@value": "The Queen", "@language": "en"},

 {"@value": "Die Königin", "@language": "de"},

 {"@value": "Ihre Majestät", "@language": "de"}

]

}]

And the following context:

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.com/vocab/",

 "label": {

 "@container": ["@language", "@set"]

 }

 }

}

The compacted version uses a dictionary value for "label" as before. and

the values are the relevant strings but always represented using an array.

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.com/vocab/",

 "label": {

 "@container": ["@language", "@set"]

 }

 },

 "@id": "http://example.com/queen",

 "label": {

 "en": ["The Queen"],

 "de": ["Die Königin", "Ihre Majestät"]

 }

}

https://www.w3.org/TR/json-ld11/

127 of 189

This section is non-normative.

When compacting, the Compaction algorithm will compact using a term for a

property only when the values of that property match the @container, @type,

and @language specifications for that term definition. This can actually split

values between different properties, all of which have the same IRI. In case

there is no matching term definition, the compaction algorithm will compact

using the absolute IRI of the property.

5.2.8 Term Selection§

https://www.w3.org/TR/json-ld11/

128 of 189

Input

Context

EXAMPLE 118: Term Selection

Given the following expanded document:

[{

 "http://example.com/vocab/property": [

 {"@value": "string"},

 {"@value": true},

 {"@value": 1},

 {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"},

 {"@value": "10", "@type": "http://www.w3.org/2001/XMLSchema#integer"},

 {"@value": "english", "@language": "en"},

 {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"},

 {"@id": "http://example.com/some-location"}

]

}]

And the following context:

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "integer": {"@id": "vocab:property", "@type": "xsd:integer"},

 "date": {"@id": "vocab:property", "@type": "xsd:date"},

 "english": {"@id": "vocab:property", "@language": "en"},

 "list": {"@id": "vocab:property", "@container": "@list"},

 "iri": {"@id": "vocab:property", "@type": "@id"}

 }

}

Note that the values that match the "integer", "english", "date", and "iri"

terms are properly matched, and that everything that does not explicitly

match is added to a property created using a compact IRI.

https://www.w3.org/TR/json-ld11/

129 of 189

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] defines a method for flattening a JSON-LD document. Flattening

collects all properties of a node in a single dictionary and labels all blank

nodes with blank node identifiers. This ensures a shape of the data and

consequently may drastically simplify the code required to process JSON-LD

in certain applications.

For example, assume the following JSON-LD input document:

{

 "@context": {

 "vocab": "http://example.com/vocab/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "integer": {"@id": "vocab:property", "@type": "xsd:integer"},

 "date": {"@id": "vocab:property", "@type": "xsd:date"},

 "english": {"@id": "vocab:property", "@language": "en"},

 "list": {"@id": "vocab:property", "@container": "@list"},

 "iri": {"@id": "vocab:property", "@type": "@id"}

 },

 "vocab:property": [

 "string", true, 1,

 {"@value": "false", "@type": "xsd:boolean"}

],

 "integer": "10",

 "english": "english",

 "date": "2018-02-17",

 "iri": "http://example.com/some-location"

}

5.3 Flattened Document Form§

https://www.w3.org/TR/json-ld11/

130 of 189

Running the JSON-LD Flattening algorithm against the JSON-LD input

document in the example above and using the same context would result in

the following output:

Input

EXAMPLE 119: Sample JSON-LD document to be flattened

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": "http://xmlns.com/foaf/0.1/knows"

 },

 "@id": "http://me.markus-lanthaler.com/",

 "name": "Markus Lanthaler",

 "knows": [

 {

 "@id": "http://manu.sporny.org/about#manu",

 "name": "Manu Sporny"

 }, {

 "name": "Dave Longley"

 }

]

}

https://www.w3.org/TR/json-ld11/

131 of 189

JSON-LD's media type defines a profile parameter which can be used to

signal or request flattened document form. The profile URI identifying

flattened document form is http://www.w3.org/ns/json-ld#flattened. It can be

combined with the profile URI identifying expanded document form or

compacted document form.

This section is non-normative.

The JSON-LD 1.1 Framing specification [JSON-LD11-FRAMING] defines a

method for framing a JSON-LD document. Framing is used to shape the data

in a JSON-LD document, using an example frame document which is used to

both match the flattened data and show an example of how the resulting data

should be shaped.

For example, assume the following JSON-LD frame:

EXAMPLE 120: Flattened and compacted form for the previous example

Open in playground

{

 "@context": {

 "name": "http://xmlns.com/foaf/0.1/name",

 "knows": "http://xmlns.com/foaf/0.1/knows"

 },

 "@graph": [{

 "@id": "http://me.markus-lanthaler.com/",

 "name": "Markus Lanthaler",

 "knows": [

 { "@id": "http://manu.sporny.org/about#manu" },

 { "@id": "_:b0" }

]

 }, {

 "@id": "http://manu.sporny.org/about#manu",

 "name": "Manu Sporny"

 }, {

 "@id": "_:b0",

 "name": "Dave Longley"

 }]

}

5.4 Framed Document Form§

https://www.w3.org/TR/json-ld11/

132 of 189

This frame document describes an embedding structure that would place

objects with type Library at the top, with objects of type Book that were

linked to the library object using the contains property embedded as property

values. It also places objects of type Chapter within the referencing Book

object as embedded values of the Book object.

When using a flattened set of objects that match the frame components:

Frame

EXAMPLE 121: Sample library frame

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.org/"

 },

 "@type": "Library",

 "contains": {

 "@type": "Book",

 "contains": {

 "@type": "Chapter"

 }

 }

}

https://www.w3.org/TR/json-ld11/

133 of 189

The Frame Algorithm can create a new document which follows the structure

of the frame:

Input

EXAMPLE 122: Flattened library objects

{

 "@context": {

 "@vocab": "http://example.org/",

 "contains": {"@type": "@id"}

 },

 "@graph": [{

 "@id": "http://example.org/library",

 "@type": "Library",

 "contains": "http://example.org/library/the-republic"

 }, {

 "@id": "http://example.org/library/the-republic",

 "@type": "Book",

 "creator": "Plato",

 "title": "The Republic",

 "contains": "http://example.org/library/the-republic#introduction"

 }, {

 "@id": "http://example.org/library/the-republic#introduction",

 "@type": "Chapter",

 "description": "An introductory chapter on The Republic.",

 "title": "The Introduction"

 }]

}

https://www.w3.org/TR/json-ld11/

134 of 189

JSON-LD's media type defines a profile parameter which can be used to

signal or request framed document form. The profile URI identifying

framed document form is http://www.w3.org/ns/json-ld#framed.

JSON-LD's media type also defines a profile parameter which can be used to

identify a script element in an HTML document containing a frame. The first

script element of type application/ld+json;profile=http://www.w3.org

/ns/json-ld#frame will be used to find a frame. This is similar to the

mechanism described for retrieving contexts from HTML documents as

described in § 7.4 Using an HTML document as a Context.

Ordinary JSON documents can be interpreted as JSON-LD by providing an

explicit JSON-LD context document. One way to provide this is by using

referencing a JSON-LD context document in an HTTP Link Header. Doing so

allows JSON to be unambiguously machine-readable without requiring

developers to drastically change their documents and provides an upgrade

EXAMPLE 123: Framed library objects

Open in playground

{

 "@context": {

 "@version": 1.1,

 "@vocab": "http://example.org/"

 },

 "@id": "http://example.org/library",

 "@type": "Library",

 "contains": {

 "@id": "http://example.org/library/the-republic",

 "@type": "Book",

 "contains": {

 "@id": "http://example.org/library/the-republic#introduction",

 "@type": "Chapter",

 "description": "An introductory chapter on The Republic.",

 "title": "The Introduction"

 },

 "creator": "Plato",

 "title": "The Republic"

 }

}

6. Interpreting JSON as JSON-LD§

https://www.w3.org/TR/json-ld11/

135 of 189

path for existing infrastructure without breaking existing clients that rely on

the application/json media type or a media type with a +json suffix as

defined in [RFC6839].

In order to use an external context with an ordinary JSON document, when

retrieving an ordinary JSON document via HTTP, processors MUST attempt

to retrieve any JSON-LD document referenced by a Link Header with:

rel="http://www.w3.org/ns/json-ld#context", and

type="application/ld+json".

The referenced document MUST have a top-level JSON object. The @context

member within that object is added to the top-level JSON object of the

referencing document. If an array is at the top-level of the referencing

document and its items are JSON objects, the @context subtree is added to all

array items. All extra information located outside of the @context subtree in

the referenced document MUST be discarded. Effectively this means that the

active context is initialized with the referenced external context. A response

MUST NOT contain more than one HTTP Link Header [RFC8288] using the

http://www.w3.org/ns/json-ld#context link relation.

Other mechanisms for providing a JSON-LD Context MAY be described for

other URI schemes.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-

API] provides for an expandContext option for specifying a context to use

when expanding JSON documents programatically.

The following example demonstrates the use of an external context with an

ordinary JSON document over HTTP:

https://www.w3.org/TR/json-ld11/

136 of 189

Please note that JSON-LD documents served with the application/ld+json

media type MUST have all context information, including references to

external contexts, within the body of the document. Contexts linked via a

http://www.w3.org/ns/json-ld#context HTTP Link Header MUST be ignored

for such documents.

NOTE

This section describes features available to a full Processor.

JSON-LD content can be easily embedded in HTML [HTML] by placing it in a

script element with the type attribute set to application/ld+json. Doing so

creates a data block.

EXAMPLE 124: Referencing a JSON-LD context from a JSON document via

an HTTP Link Header

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json,application/json,*/*;q=0.1

====================================

HTTP/1.1 200 OK

...

Content-Type: application/json

Link: <https://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#co

{

 "name": "Markus Lanthaler",

 "homepage": "http://www.markus-lanthaler.com/",

 "image": "http://twitter.com/account/profile_image/markuslanthaler"

}

7. Embedding JSON-LD in HTML Documents§

https://www.w3.org/TR/json-ld11/

137 of 189

Defining how such data may be used is beyond the scope of this specification.

The embedded JSON-LD document might be extracted as is or, e.g., be

interpreted as RDF.

If JSON-LD content is extracted as RDF [RDF11-CONCEPTS], it MUST be

expanded into an RDF Dataset using the Deserialize JSON-LD to RDF

Algorithm [JSON-LD11-API]. Unless a specific script is targeted (see § 7.3

Locating a Specific JSON-LD Script Element), all script elements with type

application/ld+json MUST be processed and merged into a single dataset

with equivalent blank node identifiers contained in separate script elements

treated as if they were in a single document (i.e., blank nodes are shared

between different JSON-LD script elements).

EXAMPLE 125: Embedding JSON-LD in HTML

Original Expanded Statements Turtle

<script type="application/ld+json">

{

 "@context": "https://json-ld.org/contexts/person.jsonld",

 "@id": "http://dbpedia.org/resource/John_Lennon",

 "name": "John Lennon",

 "born": "1940-10-09",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}

</script>

https://www.w3.org/TR/json-ld11/

138 of 189

When processing a JSON-LD script element, the Document Base URL of the

containing HTML document, as defined in [HTML], is used to establish the

default base IRI of the enclosed JSON-LD content.

EXAMPLE 126: Combining multiple JSON-LD script elements into a single

dataset

Original Statements Turtle

<p>Data describing Dave</p>

<script type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://digitalbazaar.com/author/dlongley/",

 "@type": "Person",

 "name": "Dave Longley"

}

</script>

<p>Data describing Gregg</p>

<script type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

</script>

7.1 Inheriting base IRI from HTML's base element§

https://www.w3.org/TR/json-ld11/

139 of 189

HTML allows for Dynamic changes to base URLs. This specification does not

require any specific behavior, and to ensure that all systems process the base

IRI equivalently, authors SHOULD either use absolute IRIs, or explicitly as

defined in § 4.1.3 Base IRI. Implementations (particularly those natively

operating in the [DOM]) MAY take into consideration Dynamic changes to

base URLs.

This section is non-normative.

Due to the HTML Restrictions for contents of <script> elements additional

encoding restrictions are placed on JSON-LD data contained in script

elements.

Authors should avoid using character sequences in scripts embedded in

HTML which may be confused with a comment-open, script-open, comment-

close, or script-close.

EXAMPLE 127: Using the document base URL to establish the default

base IRI

Original Expanded Statements Turtle

<html>

 <head>

 <base href="http://dbpedia.org/resource/"/>

 <script type="application/ld+json">

 {

 "@context": "https://json-ld.org/contexts/person.jsonld",

 "@id": "John_Lennon",

 "name": "John Lennon",

 "born": "1940-10-09",

 "spouse": "Cynthia_Lennon"

 }

 </script>

</head>

</html>

7.2 Restrictions for contents of JSON-LD script elements§

https://www.w3.org/TR/json-ld11/

140 of 189

NOTE

Such content should be escaped as indicated below, however the content

will remain escaped after processing through the JSON-LD API [JSON-

LD11-API].

& → & (ampersand, U+0026)

< → < (less-than sign, U+003C)

> → > (greater-than sign, U+003E)

" → " (quotation mark, U+0022)

' → ' (apostrophe, U+0027)

A specific script element within an HTML document may be located using a

fragment identifier matching the unique identifier of the script element

within the HTML document located by a URL (see [DOM]). A JSON-LD

processor MUST extract only the specified data block's contents parsing it as

a standalone JSON-LD document and MUST NOT merge the result with any

other markup from the same HTML document.

For example, given an HTML document located at http://example.com

/document, a script element identified by "name" can be targeted using the

URL http://example.com/document#name.

EXAMPLE 128: Embedding JSON-LD containing HTML in HTML

Original Expanded Turtle

<script type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@type": "WebPageElement",

 "name": "Encoding Issues",

 "description": "Issues list such as unescaped </script> or -->"

}

</script>

7.3 Locating a Specific JSON-LD Script Element§

https://www.w3.org/TR/json-ld11/

141 of 189

A JSON-LD document, whether embedded in HTML or otherwise, may

reference a context document by using a string value to @context. This string

is interpreted as a URL to an external document from which the context is

loaded. In JSON-LD 1.1, this external document may also be HTML

containing a script element with the type attribute set to

application/ld+json;profile=http://www.w3.org/ns/json-ld#context.

A processor processing a remote context which results in an HTML document

MUST locate the first script element with the type attribute set to

application/ld+json;profile=http://www.w3.org/ns/json-ld#context, or a

specific script element targeted using a fragment identifier, or the first script

element of type application/ld+json if no other is found.

Including a context definition within an HTML document provides a means of

documenting the context content, along with other information such as the

EXAMPLE 129: Targeting a specific script element by id

Original Statements Turtle

Targeting a script element with id "gregg"

<p>Data describing Dave</p>

<script id="dave" type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://digitalbazaar.com/author/dlongley/",

 "@type": "Person",

 "name": "Dave Longley"

}

</script>

<p>Data describing Gregg</p>

<script id="gregg" type="application/ld+json">

{

 "@context": "http://schema.org/",

 "@id": "https://greggkellogg.net/foaf#me",

 "@type": "Person",

 "name": "Gregg Kellogg"

}

</script>

7.4 Using an HTML document as a Context§

https://www.w3.org/TR/json-ld11/

142 of 189

vocabulary definition.

For example, a context may be defined within an HTML file as follows (a

subset of the Person context published at https://json-ld.org/contexts

/person.html):

Using a previous example, we can reference https://json-ld.org/contexts

Context

EXAMPLE 130: Context defined in an HTML document

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

 <title>Context definition of a person</title>

 <script type="application/ld+json;profile=http://www.w3.org/ns/json-ld#co

 {

 "@context":

 {

 "foaf": "http://xmlns.com/foaf/0.1/",

 "schema": "http://schema.org/",

 "vcard": "http://www.w3.org/2006/vcard/ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "Address": "vcard:Address",

 ...

 }

 }

 </script>

 </head>

 <body>

 <h1>The Person context</h1>

 <p>The Person context is based on a combination of <a href="http://xmlns.

 schema.org ,

 and vcard vocabularies.

 <dl>

 <dt>foaf</dt><dd><code>http://xmlns.com/foaf/0.1/</code></dd>

 <dt>schema</dt><dd><code>http://schema.org/</code></dd>

 <dt>vcard</dt><dd><code>http://www.w3.org/2006/vcard/ns#</code></dd>

 <dt>xsd</dt><dd><code>http://www.w3.org/2001/XMLSchema#</code></dd>

 <dt>Address</dt><dd><code>vcard:Address</code></dd>

...

 </dl>

 </body>

</html>

https://www.w3.org/TR/json-ld11/

143 of 189

/person.html instead of https://json-ld.org/contexts/person.jsonld and a

JSON-LD processor will look for the context within the referenced HTML file.

In addition to using the type profile above, a context may be referenced using

a fragment identifier, as described in § 7.3 Locating a Specific JSON-LD

Script Element. Otherwise, the first script element of type

application/ld+json will be used to find a context.

JSON-LD is a serialization format for Linked Data based on JSON. It is

therefore important to distinguish between the syntax, which is defined by

JSON in [RFC8259], and the data model which is an extension of the RDF

data model [RDF11-CONCEPTS]. The precise details of how JSON-LD relates

to the RDF data model are given in § 10. Relationship to RDF.

To ease understanding for developers unfamiliar with the RDF model, the

following summary is provided:

A JSON-LD document serializes a RDF Dataset [RDF11-CONCEPTS],

which is a collection of graphs that comprises exactly one default graph

and zero or more named graphs.

The default graph does not have a name and MAY be empty.

Each named graph is a pair consisting of an IRI or blank node identifier

(the graph name) and a graph. Whenever practical, the graph name

SHOULD be an IRI.

A graph is a labeled directed graph, i.e., a set of nodes connected by

edges.

Every edge has a direction associated with it and is labeled with an IRI or

EXAMPLE 131: Referencing a Context in an HTML document

Original Expanded Statements Turtle Open in playground

{

 "@context": "https://json-ld.org/contexts/person.html",

 "@id": "http://dbpedia.org/resource/John_Lennon",

 "name": "John Lennon",

 "born": "1940-10-09",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}

8. Data Model§

https://www.w3.org/TR/json-ld11/

144 of 189

a blank node identifier. Within the JSON-LD syntax these edge labels are

called properties. Whenever practical, an edge SHOULD be labeled with

an IRI.

(FEATURE AT RISK) ISSUE

The use of blank node identifiers to label properties is obsolete, and

may be removed in a future version of JSON-LD.

Every node is an IRI, a blank node, or a literal, although syntactically lists

and native JSON values may be represented directly.

A node having an outgoing edge MUST be an IRI or a blank node.

A graph MUST NOT contain unconnected nodes, i.e., nodes which are not

connected by an edge to any other node.

NOTE

This effectively just prohibits unnested, empty node objects and

unnested node objects that contain only an @id. A document may have

nodes which are unrelated, as long as one or more properties are

defined, or the node is referenced from another node object.

An IRI (Internationalized Resource Identifier) is a string that conforms to

the syntax defined in [RFC3987]. IRIs used within a graph SHOULD

return a Linked Data document describing the resource denoted by that

IRI when being dereferenced.

A blank node is a node which is neither an IRI, nor a JSON-LD value, nor

a list. A blank node is identified using a blank node identifier.

A blank node identifier is a string that can be used as an identifier for a

blank node within the scope of a JSON-LD document. Blank node

identifiers begin with _:.

A JSON-LD value is a typed value, a string (which is interpreted as a

typed value with type xsd:string), a number (numbers with a non-zero

fractional part, i.e., the result of a modulo‑1 operation, or which are too

large to represent as integers (see Data Round Tripping) in [JSON-LD11-

EXAMPLE 132: Illegal Unconnected Node

{

"@id": "http://example.org/1"

}

https://www.w3.org/TR/json-ld11/

145 of 189

API]), are interpreted as typed values with type xsd:double, all other

numbers are interpreted as typed values with type xsd:integer), true or

false (which are interpreted as typed values with type xsd:boolean), or a

language-tagged string.

A typed value consists of a value, which is a string, and a type, which is

an IRI.

A language-tagged string consists of a string and a non-empty language

tag as defined by [BCP47]. The language tag MUST be well-formed

according to section 2.2.9 Classes of Conformance of [BCP47].

A list is a sequence of zero or more IRIs, blank nodes, and JSON-LD

values. Lists are interpreted as RDF list structures [RDF11-MT].

JSON-LD documents MAY contain data that cannot be represented by the

data model defined above. Unless otherwise specified, such data is ignored

when a JSON-LD document is being processed. One result of this rule is that

properties which are not mapped to an IRI, a blank node, or keyword will be

ignored.

Additionally, the JSON serialization format is internally represented using the

JSON-LD internal representation, which uses the generic concepts of arrays,

dictionaries, strings, numbers, booleans, and null to describe the data

represented by a JSON document.

Figure 1 An illustration of a linked data dataset.

A description of the linked data dataset diagram is available in the Appendix. Image

available in SVG and PNG formats.

The dataset described in this figure can be represented as follows:

https://www.w3.org/TR/json-ld11/

146 of 189

NOTE

Note the use of @graph at the outer-most level to describe three top-level

resources (two of them named graphs). The named graphs use @graph in

addition to @id to provide the name for each graph.

EXAMPLE 133: Linked Data Dataset

Compacted Expanded Statements TriG

{

 "@context": [

 "http://schema.org/",

 {"@base": "http://example.com/"}

],

 "@graph": [{

 "@id": "people/alice",

 "gender": [

 {"@value": "weiblich", "@language": "de"},

 {"@value": "female", "@language": "en"}

],

 "knows": {"@id": "people/bob"},

 "name": "Alice"

 }, {

 "@id": "graphs/1",

 "@graph": {

 "@id": "people/alice",

 "parent": {

 "@id": "people/bob",

 "name": "Bob"

 }

 }

 }, {

 "@id": "graphs/2",

 "@graph": {

 "@id": "people/bob",

 "sibling": {

 "name": "Mary",

 "sibling": {"@id": "people/bob"}

 }

 }

 }]

}

https://www.w3.org/TR/json-ld11/

147 of 189

This section restates the syntactic conventions described in the previous

sections more formally.

A JSON-LD document MUST be valid JSON text as described in [RFC8259],

or some format that can be represented in the JSON-LD internal

representation that is equivalent to valid JSON text.

A JSON-LD document MUST be a single node object, a dictionary consisting

of only the members @context and/or @graph, or an array of zero or more node

objects.

In contrast to JSON, in JSON-LD the keys in objects MUST be unique.

Whenever a keyword is discussed in this grammar, the statements also apply

to an alias for that keyword.

NOTE

JSON-LD allows keywords to be aliased (see § 4.1.5 Aliasing Keywords for

details). For example, if the active context defines the term id as an alias

for @id, that alias may be legitimately used as a substitution for @id. Note

that keyword aliases are not expanded during context processing.

A term is a short-hand string that expands to an IRI or a blank node

identifier.

A term MUST NOT equal any of the JSON-LD keywords.

When used as the prefix in a Compact IRI, to avoid the potential ambiguity of

a prefix being confused with an IRI scheme, terms MUST NOT come from the

list of URI schemes as defined in [IANA-URI-SCHEMES]. Similarly, to avoid

confusion between a Compact IRI and a term, terms SHOULD NOT include a

colon (:) and SHOULD be restricted to the form of isegment-nz-nc as defined

in [RFC3987].

To avoid forward-compatibility issues, a term SHOULD NOT start with an @

character as future versions of JSON-LD may introduce additional keywords.

Furthermore, the term MUST NOT be an empty string ("") as not all

programming languages are able to handle empty JSON keys.

9. JSON-LD Grammar§

9.1 Terms§

https://www.w3.org/TR/json-ld11/

148 of 189

See § 3.1 The Context and § 3.2 IRIs for further discussion on mapping terms

to IRIs.

A node object represents zero or more properties of a node in the graph

serialized by the JSON-LD document. A dictionary is a node object if it exists

outside of a JSON-LD context and:

it is not the top-most dictionary in the JSON-LD document consisting of

no other members than @graph and @context,

it does not contain the @value, @list, or @set keywords, and

it is not a graph object.

The properties of a node in a graph may be spread among different node

objects within a document. When that happens, the keys of the different node

objects need to be merged to create the properties of the resulting node.

A node object MUST be a dictionary. All keys which are not IRIs, compact

IRIs, terms valid in the active context, or one of the following keywords (or

alias of such a keyword) MUST be ignored when processed:

@context,

@id,

@graph,

@nest,

@type,

@reverse, or

@index

If the node object contains the @context key, its value MUST be null, an

absolute IRI, a relative IRI, a context definition, or an array composed of any

of these.

If the node object contains the @id key, its value MUST be an absolute IRI, a

relative IRI, or a compact IRI (including blank node identifiers). See § 3.3

Node Identifiers, § 4.1.4 Compact IRIs, and § 4.5.1 Identifying Blank Nodes

for further discussion on @id values.

If the node object contains the @graph key, its value MUST be a node object or

9.2 Node Objects§

https://www.w3.org/TR/json-ld11/

149 of 189

an array of zero or more node objects. If the node object also contains an @id

keyword, its value is used as the graph name of a named graph. See § 4.8

Named Graphs for further discussion on @graph values. As a special case, if a

dictionary contains no keys other than @graph and @context, and the

dictionary is the root of the JSON-LD document, the dictionary is not treated

as a node object; this is used as a way of defining node objects that may not

form a connected graph. This allows a context to be defined which is shared

by all of the constituent node objects.

If the node object contains the @type key, its value MUST be either an

absolute IRI, a relative IRI, a compact IRI (including blank node identifiers), a

term defined in the active context expanding into an absolute IRI, or an array

of any of these. See § 3.5 Specifying the Type for further discussion on @type

values.

If the node object contains the @reverse key, its value MUST be a dictionary

containing members representing reverse properties. Each value of such a

reverse property MUST be an absolute IRI, a relative IRI, a compact IRI, a

blank node identifier, a node object or an array containing a combination of

these.

If the node object contains the @index key, its value MUST be a string. See

§ 4.6.1 Data Indexing for further discussion on @index values.

If the node object contains the @nest key, its value MUST be a dictionary or

an array of dictionaries which MUST NOT include a value object. See § 9.13

Property Nesting for further discussion on @nest values.

Keys in a node object that are not keywords MAY expand to an absolute IRI

using the active context. The values associated with keys that expand to an

absolute IRI MUST be one of the following:

string,

number,

true,

false,

null,

node object,

graph object,

value object,

list object,

https://www.w3.org/TR/json-ld11/

150 of 189

set object,

an array of zero or more of any of the possibilities above,

a language map,

an index map,

an id map, or

a type map

When framing, a frame object extends a node object to allow members used

specifically for framing.

A frame object MAY include a default object as the value of any key which

is not a keyword. Values of @default MAY include the value @null, or an

array containing only @null, in addition to other values allowed in the

grammar for values of member keys expanding to absolute IRIs.

The values of @id and @type MAY additionally be an empty dictionary

(wildcard), an array containing only an empty dictionary, an empty array

(match none) an array of IRIs.

A frame object MAY include a member with the key @embed with any value

from @always, @list, and @never.

A frame object MAY include members with the boolean valued keys

@explicit, @omitDefault, or @requireAll

In addition to other property values, a property of a frame object MAY

include a value pattern (See § 9.6 Value Patterns).

See [JSON-LD11-FRAMING] for a description of how frame objects are used.

A graph object represents a named graph, which MAY include an explicit

graph name. A dictionary is a graph object if it exists outside of a JSON-LD

context, it contains an @graph member (or an alias of that keyword), it is not

the top-most dictionary in the JSON-LD document, and it consists of no

members other than @graph, @index, @id and @context, or an alias of one of

these keywords.

If the graph object contains the @context key, its value MUST be null, an

9.3 Frame Objects§

9.4 Graph Objects§

https://www.w3.org/TR/json-ld11/

151 of 189

absolute IRI, a relative IRI, a context definition, or an array composed of any

of these.

If the graph object contains the @id key, its value is used as the identifier

(graph name) of a named graph, and MUST be an absolute IRI, a relative IRI,

or a compact IRI (including blank node identifiers). See § 3.3 Node

Identifiers, § 4.1.4 Compact IRIs, and § 4.5.1 Identifying Blank Nodes for

further discussion on @id values.

A graph object without an @id member is also a simple graph object and

represents a named graph without an explicit identifier, although in the data

model it still has a graph name, which is an implicitly allocated blank node

identifier.

The value of the @graph key MUST be a node object or an array of zero or

more node objects. See § 4.8 Named Graphs for further discussion on @graph

values..

A value object is used to explicitly associate a type or a language with a value

to create a typed value or a language-tagged string.

A value object MUST be a dictionary containing the @value key. It MAY also

contain an @type, an @language, an @index, or an @context key but MUST NOT

contain both an @type and an @language key at the same time. A value object

MUST NOT contain any other keys that expand to an absolute IRI or

keyword.

The value associated with the @value key MUST be either a string, a number,

true, false or null. If the value associated with the @type key is @json, the

value MAY be either an array or an object.

The value associated with the @type key MUST be a term, a compact IRI, an

absolute IRI, a string which can be turned into an absolute IRI using the

vocabulary mapping, @json, or null.

The value associated with the @language key MUST have the lexical form

described in [BCP47], or be null.

The value associated with the @index key MUST be a string.

See § 4.2.1 Typed Values and § 4.2.4 String Internationalization for more

information on value objects.

9.5 Value Objects§

https://www.w3.org/TR/json-ld11/

152 of 189

When framing, a value pattern extends a value object to allow members used

specifically for framing.

The values of @value, @language and @type MAY additionally be an empty

dictionary (wildcard), an array containing only an empty dictionary, an

empty array (match none) an array of strings.

A list represents an ordered set of values. A set represents an unordered set

of values. Unless otherwise specified, arrays are unordered in JSON-LD. As

such, the @set keyword, when used in the body of a JSON-LD document,

represents just syntactic sugar which is optimized away when processing the

document. However, it is very helpful when used within the context of a

document. Values of terms associated with an @set or @list container will

always be represented in the form of an array when a document is

processed—even if there is just a single value that would otherwise be

optimized to a non-array form in compacted document form. This simplifies

post-processing of the data as the data is always in a deterministic form.

A list object MUST be a dictionary that contains no keys that expand to an

absolute IRI or keyword other than @list and @index.

A set object MUST be a dictionary that contains no keys that expand to an

absolute IRI or keyword other than @set and @index. Please note that the

@index key will be ignored when being processed.

In both cases, the value associated with the keys @list and @set MUST be one

of the following types:

string,

number,

true,

false,

null,

node object,

value object, or

an array of zero or more of the above possibilities

9.6 Value Patterns§

9.7 Lists and Sets§

https://www.w3.org/TR/json-ld11/

153 of 189

See § 4.3 Value Ordering for further discussion on sets and lists.

A language map is used to associate a language with a value in a way that

allows easy programmatic access. A language map may be used as a term

value within a node object if the term is defined with @container set to

@language, or an array containing both @language and @set . The keys of a

language map MUST be strings representing [BCP47] language codes, the

keyword @none, or a term which expands to @none, and the values MUST be

any of the following types:

null,

string, or

an array of zero or more of the strings

See § 4.2.4 String Internationalization for further discussion on language

maps.

An index map allows keys that have no semantic meaning, but should be

preserved regardless, to be used in JSON-LD documents. An index map may

be used as a term value within a node object if the term is defined with

@container set to @index, or an array containing both @index and @set . The

values of the members of an index map MUST be one of the following types:

string,

number,

true,

false,

null,

node object,

value object,

list object,

set object,

an array of zero or more of the above possibilities

9.8 Language Maps§

9.9 Index Maps§

https://www.w3.org/TR/json-ld11/

154 of 189

See § 4.6.1 Data Indexing for further information on this topic.

Index Maps may also be used to map indexes to associated named graphs, if

the term is defined with @container set to an array containing both @graph and

@index, and optionally including @set. The value consists of the node objects

contained within the named graph which is indexed using the referencing

key, which can be represented as a simple graph object if the value does not

include @id, or a named graph if it includes @id.

A property-based index map is a variant of index map were indexes are

semantically preserved in the graph as property values. A property-based

index map may be used as a term value within a node object if the term is

defined with @container set to @index, or an array containing both @index and

@set, and with @index set to a string. The values of a property-based index

map MUST be node objects or strings which expand to node objects.

When expanding, if the active context contains a term definition for the value

of @index, this term definition will be used to expand the keys of the index

map. Otherwise, the keys will be expanded as simple value objects. Each

node object in the expanded values of the index map will be added an

additional property value, where the property is the expanded value of

@index, and the value is the expanded referencing key.

See § 4.6.1.1 Property-based data indexing for further information on this

topic.

An id map is used to associate an IRI with a value that allows easy

programmatic access. An id map may be used as a term value within a node

object if the term is defined with @container set to @id, or an array containing

both @id and @set. The keys of an id map MUST be IRIs (relative IRI, compact

IRI (including blank node identifiers), or absolute IRI), the keyword @none, or

a term which expands to @none, and the values MUST be node objects.

If the value contains a property expanding to @id, it's value MUST be

equivalent to the referencing key. Otherwise, the property from the value is

used as the @id of the node object value when expanding.

Id Maps may also be used to map graph names to their named graphs, if the

9.10 Property-based Index Maps§

9.11 Id Maps§

https://www.w3.org/TR/json-ld11/

155 of 189

term is defined with @container set to an array containing both @graph and

@id, and optionally including @set. The value consists of the node objects

contained within the named graph which is named using the referencing key.

A type map is used to associate an IRI with a value that allows easy

programmatic access. A type map may be used as a term value within a node

object if the term is defined with @container set to @type, or an array

containing both @type and @set. The keys of a type map MUST be IRIs

(relative IRI, compact IRI (including blank node identifiers), or absolute IRI),

terms, or the keyword @none, and the values MUST be node objects or strings

which expand to node objects.

If the value contains a property expanding to @type, and it's value is contains

the referencing key after suitable expansion of both the referencing key and

the value, then the node object already contains the type. Otherwise, the

property from the value is added as a @type of the node object value when

expanding.

A nested property is used to gather properties of a node object in a separate

dictionary, or array of dictionaries which are not value objects. It is

semantically transparent and is removed during the process of expansion.

Property nesting is recursive, and collections of nested properties may

contain further nesting.

Semantically, nesting is treated as if the properties and values were declared

directly within the containing node object.

A context definition defines a local context in a node object.

A context definition MUST be a dictionary whose keys MUST be either terms,

compact IRIs, absolute IRIs, or one of the keywords @language, @base, @type,

@vocab, or @version.

If the context definition has an @language key, its value MUST have the lexical

form described in [BCP47] or be null.

9.12 Type Maps§

9.13 Property Nesting§

9.14 Context Definitions§

https://www.w3.org/TR/json-ld11/

156 of 189

If the context definition has an @base key, its value MUST be an absolute IRI,

a relative IRI, or null.

If the context definition has an @type key, its value MUST be a dictionary with

the single member @container set to @set.

If the context definition has an @vocab key, its value MUST be a absolute IRI, a

compact IRI, a blank node identifier, a relative IRI, a term, or null.

If the context definition has an @version key, its value MUST be a number

with the value 1.1.

The value of keys that are not keywords MUST be either an absolute IRI, a

compact IRI, a term, a blank node identifier, a keyword, null, or an expanded

term definition.

An expanded term definition is used to describe the mapping between a term

and its expanded identifier, as well as other properties of the value associated

with the term when it is used as key in a node object.

An expanded term definition MUST be a dictionary composed of zero or more

keys from @id, @reverse, @type, @language, @context, @prefix, or @container. An

expanded term definition SHOULD NOT contain any other keys.

If the term being defined is not a compact IRI or absolute IRI and the active

context does not have an @vocab mapping, the expanded term definition

MUST include the @id key.

Term definitions with keys which are of the form of a compact IRI or absolute

IRI MUST NOT expand to an IRI other than the expansion of the key itself.

If the expanded term definition contains the @id keyword, its value MUST be

null, an absolute IRI, a blank node identifier, a compact IRI, a term, or a

keyword.

If an expanded term definition has an @reverse member, it MUST NOT have

@id or @nest members at the same time, its value MUST be an absolute IRI, a

blank node identifier, a compact IRI, or a term. If an @container member

exists, its value MUST be null, @set, or @index.

If the expanded term definition contains the @type keyword, its value MUST

be an absolute IRI, a compact IRI, a term, null, or one of the keywords @id,

@json, @none, or @vocab.

If the expanded term definition contains the @language keyword, its value

https://www.w3.org/TR/json-ld11/

157 of 189

MUST have the lexical form described in [BCP47] or be null.

If the expanded term definition contains the @container keyword, its value

MUST be either @list, @set, @language, @index, @id, @graph, @type, or be null or

an array containing exactly any one of those keywords, or a combination of

@set and any of @index, @id, @graph, @type, @language in any order . @container

may also be an array containing @graph along with either @id or @index and

also optionally including @set. If the value is @language, when the term is used

outside of the @context, the associated value MUST be a language map. If the

value is @index, when the term is used outside of the @context, the associated

value MUST be an index map.

If an expanded term definition has an @context member, it MUST be a valid

context definition.

If the expanded term definition contains the @nest keyword, its value MUST

be either @nest, or a term which expands to @nest.

If the expanded term definition contains the @prefix keyword, its value MUST

be true or false.

Terms MUST NOT be used in a circular manner. That is, the definition of a

term cannot depend on the definition of another term if that other term also

depends on the first term.

See § 3.1 The Context for further discussion on contexts.

JSON-LD keywords are described in § 1.7 Syntax Tokens and Keywords, this

section describes where each keyword may appear within different JSON-LD

structures.

@base

The @base keyword MUST NOT be aliased, and MAY be used as a key in a

context definition. Its value MUST be an absolute IRI, a relative IRI, or

null.

@container

The @container keyword MUST NOT be aliased, and MAY be used as a

key in an expanded term definition. Its value MUST be either @list, @set,

@language, @index, @id, @graph, @type, or be null, or an array containing

exactly any one of those keywords, or a combination of @set and any of

@index, @id, @graph, @type, @language in any order. The value may also be

9.15 Keywords§

https://www.w3.org/TR/json-ld11/

158 of 189

an array containing @graph along with either @id or @index and also

optionally including @set.

@context

The @context keyword MUST NOT be aliased, and MAY be used as a key

in the following objects:

node objects (see § 9.2 Node Objects),

value objects (see § 9.5 Value Objects),

graph objects (see § 9.4 Graph Objects),

list objects (see § 9.7 Lists and Sets),

set objects (see § 9.7 Lists and Sets),

nested properties (see § 9.13 Property Nesting), and

expanded term definitions (see § 9.14 Context Definitions).

The value of @context MUST be null, an absolute IRI, a relative IRI, a

context definition, or an array composed of any of these.

@id

The @id keyword MAY be aliased and MAY be used as a key in a node

object or a graph object. The unaliased @id MAY be used as a key in an

expanded term definition, or as the value of the @container key within an

expanded term definition. The value of the @id key MUST be an absolute

IRI, a relative IRI, or a compact IRI (including blank node identifiers). See

§ 3.3 Node Identifiers, § 4.1.4 Compact IRIs, and § 4.5.1 Identifying Blank

Nodes for further discussion on @id values.

@index

The @index keyword MAY be aliased and MAY be used as a key in a node

object, value object, graph object, set object, or list object. The unaliased

@index MAY be used as the value of the @container key within an

expanded term definition. Its value MUST be a string. See § 9.9 Index

Maps for a further discussion.

@language

The @language keyword MAY be aliased and MAY be used as a key in a

value object. The unaliased @language MAY be used as a key in a context

definition, or as the value of the @container key within an expanded term

definition. Its value MUST be a string with the lexical form described in

[BCP47] or be null.. See § 9.9 Index Maps for a further discussion.

@list

The @list keyword MAY be aliased and MUST be used as a key in a list

object. The unaliased @list MAY be used as the value of the @container

key within an expanded term definition. Its value MUST be one of the

https://www.w3.org/TR/json-ld11/

159 of 189

following:

string,

number,

true,

false,

null,

node object,

value object, or

an array of zero or more of the above possibilities

See § 4.3 Value Ordering for further discussion on sets and lists.

@nest

The @nest keyword MAY be aliased and MAY be used as a key in a node

object. The unaliased @nest MAY be used as the value of a simple term

definition, or as a key in an expanded term definition. When used in a

node object, its value must be a dictionary. When used in an expanded

term definition, its value MUST be a term expanding to @nest. Its value

MUST be a string. See § 9.13 Property Nesting for a further discussion.

@none

The @none keyword MAY be aliased and MAY be used as a key in an index

map, id map, language map, type map. See § 4.6.1 Data Indexing, § 4.6.2

Language Indexing, § 4.6.3 Node Identifier Indexing, § 4.6.4 Node Type

Indexing, § 4.8.3 Named Graph Indexing, or § 4.8.2 Named Graph Data

Indexing for a further discussion.

@prefix

The @prefix keyword MUST NOT be aliased, and MAY be used as a key in

an expanded term definition. Its value MUST be true or false. See § 4.1.4

Compact IRIs and § 9.14 Context Definitions for a further discussion.

@reverse

The @reverse keyword MAY be aliased and MAY be used as a key in a

node object. The unaliased @reverse MAY be used as a key in an expanded

term definition. The value of the @reverse key MUST be an absolute IRI, a

relative IRI, or a compact IRI (including blank node identifiers). See § 4.7

Reverse Properties and § 9.14 Context Definitions for further discussion.

@set

The @set keyword MAY be aliased and MUST be used as a key in a set

object. The unaliased @set MAY be used as the value of the @container key

within an expanded term definition. Its value MUST be one of the

https://www.w3.org/TR/json-ld11/

160 of 189

following:

string,

number,

true,

false,

null,

node object,

value object, or

an array of zero or more of the above possibilities

See § 4.3 Value Ordering for further discussion on sets and lists.

@type

The @type keyword MAY be aliased and MAY be used as a key in a node

object or a value object. The unaliased @type MAY be used as a key in an

expanded term definition, or as the value of the @container key within an

expanded term definition. The value of the @type key MUST be a term,

absolute IRI, a relative IRI, or a compact IRI (including blank node

identifiers). Within an expanded term definition, its value may also be

either @id or @vocab. This keyword is described further in § 3.5 Specifying

the Type and § 4.2.1 Typed Values.

@value

The @value keyword MAY be aliased and MUST be used as a key in a

value object. Its value key MUST be either a string, a number, true, false

or null. This keyword is described further in § 9.5 Value Objects.

@version

The @version keyword MUST NOT be aliased and MAY be used as a key in

a context definition. Its value MUST be a number with the value 1.1. This

keyword is described further in § 9.14 Context Definitions.

@vocab

The @vocab keyword MUST NOT be aliased and MAY be used as a key in a

context definition or as the value of @type in an expanded term definition.

Its value MUST be a absolute IRI, a relative IRI, a compact IRI, a blank

node identifier, an empty string (""), a term, or null. This keyword is

described further in § 9.14 Context Definitions, and § 4.1.2 Default

Vocabulary.

10. Relationship to RDF§

https://www.w3.org/TR/json-ld11/

161 of 189

JSON-LD is a concrete RDF syntax as described in [RDF11-CONCEPTS].

Hence, a JSON-LD document is both an RDF document and a JSON document

and correspondingly represents an instance of an RDF data model. However,

JSON-LD also extends the RDF data model to optionally allow JSON-LD to

serialize generalized RDF Datasets. The JSON-LD extensions to the RDF

data model are:

In JSON-LD properties can be IRIs or blank nodes whereas in RDF

properties (predicates) have to be IRIs. This means that JSON-LD

serializes generalized RDF Datasets.

In JSON-LD lists use native JSON syntax, either contained in a list object,

or described as such within a context. Consequently, developers using the

JSON representation can access list elements directly rather than using

the vocabulary for collections described in [RDF-SCHEMA]..

RDF values are either typed literals (typed values) or language-tagged

strings whereas JSON-LD also supports JSON's native data types, i.e.,

number, strings, and the boolean values true and false. The JSON-LD 1.1

Processing Algorithms and API specification [JSON-LD11-API] defines the

conversion rules between JSON's native data types and RDF's

counterparts to allow round-tripping.

(FEATURE AT RISK) ISSUE

The use of blank node identifiers to label properties is obsolete, and may

be removed in a future version of JSON-LD, as is the support for

generalized RDF Datasets.

Summarized, these differences mean that JSON-LD is capable of serializing

any RDF graph or dataset and most, but not all, JSON-LD documents can be

directly interpreted as RDF as described in RDF 1.1 Concepts [RDF11-

CONCEPTS].

Authors are strongly encouraged to avoid labeling properties using blank

node identifiers, instead, consider one of the following mechanisms:

a relative IRI, either relative to the document or the vocabulary (see

§ 4.1.2.1 Using the Document Base for the Default Vocabulary for a

discussion on using the document base as part of the vocabulary

mapping).

a URN such as urn:example:1, see [URN], or

a "Skolem IRI" as per Replacing Blank Nodes with IRIs of [RDF11-

https://www.w3.org/TR/json-ld11/

162 of 189

CONCEPTS].

The normative algorithms for interpreting JSON-LD as RDF and serializing

RDF as JSON-LD are specified in the JSON-LD 1.1 Processing Algorithms and

API specification [JSON-LD11-API].

Even though JSON-LD serializes RDF Datasets, it can also be used as a RDF

graph source. In that case, a consumer MUST only use the default graph

and ignore all named graphs. This allows servers to expose data in languages

such as Turtle and JSON-LD using content negotiation.

NOTE

Publishers supporting both dataset and graph syntaxes have to ensure that

the primary data is stored in the default graph to enable consumers that

do not support datasets to process the information.

This section is non-normative.

The process of serializing RDF as JSON-LD and deserializing JSON-LD to RDF

depends on executing the algorithms defined in RDF Serialization-

Deserialization Algorithms in the JSON-LD 1.1 Processing Algorithms and API

specification [JSON-LD11-API]. It is beyond the scope of this document to

detail these algorithms any further, but a summary of the necessary

operations is provided to illustrate the process.

The procedure to deserialize a JSON-LD document to RDF involves the

following steps:

Expand the JSON-LD document, removing any context; this ensures that

properties, types, and values are given their full representation as IRIs

and expanded values. Expansion is discussed further in § 5.1 Expanded

Document Form.

1.

Flatten the document, which turns the document into an array of node

objects. Flattening is discussed further in § 5.3 Flattened Document

Form.

2.

Turn each node object into a series of RDF triples.3.

For example, consider the following JSON-LD document in compact form:

10.1 Serializing/Deserializing RDF§

https://www.w3.org/TR/json-ld11/

163 of 189

Running the JSON-LD Expansion and Flattening algorithms against the JSON-

LD input document in the example above would result in the following

output:

Deserializing this to RDF now is a straightforward process of turning each

EXAMPLE 134: Sample JSON-LD document

{

"@context": {

"name": "http://xmlns.com/foaf/0.1/name",

"knows": "http://xmlns.com/foaf/0.1/knows"

 },

"@id": "http://me.markus-lanthaler.com/",

"name": "Markus Lanthaler",

"knows": [

 {

"@id": "http://manu.sporny.org/about#manu",

"name": "Manu Sporny"

 }, {

"name": "Dave Longley"

 }

]

}

EXAMPLE 135: Flattened and expanded form for the previous example

[

 {

"@id": "_:b0",

"http://xmlns.com/foaf/0.1/name": "Dave Longley"

 }, {

"@id": "http://manu.sporny.org/about#manu",

"http://xmlns.com/foaf/0.1/name": "Manu Sporny"

 }, {

"@id": "http://me.markus-lanthaler.com/",

"http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",

"http://xmlns.com/foaf/0.1/knows": [

 { "@id": "http://manu.sporny.org/about#manu" },

 { "@id": "_:b0" }

]

 }

]

https://www.w3.org/TR/json-ld11/

164 of 189

node object into one or more RDF triples. This can be expressed in Turtle as

follows:

The process of serializing RDF as JSON-LD can be thought of as the inverse

of this last step, creating an expanded JSON-LD document closely matching

the triples from RDF, using a single node object for all triples having a

common subject, and a single property for those triples also having a

common predicate. The result may then be framed by using the Framing

Algorithm described in [JSON-LD11-FRAMING] to create the desired object

embedding.

RDF provides for JSON content as a possible literal value. This allows markup

in literal values. Such content is indicated in an RDF graph using a literal

whose datatype is set to rdf:JSON.

The rdf:JSON datatype is defined as follows:

The IRI denoting this datatype
is http://www.w3.org/1999/02/22-rdf-syntax-ns#JSON.

The lexical space
is the set of UNICODE [UNICODE] strings which conform to the JSON

Grammar as described in Section 2 JSON Grammar of [RFC8259].

The value space
is the union of the four primitive types (strings, numbers, booleans, and

null) and two structured types (objects and arrays) from [ECMASCRIPT].

Two JSON values and are considered equal if and only if the following

is true:

If and are both objects, both and have the same number of1.

EXAMPLE 136: Turtle representation of expanded/flattened document

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:b0 foaf:name "Dave Longley" .

<http://manu.sporny.org/about#manu> foaf:name "Manu Sporny" .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler" ;

 foaf:knows <http://manu.sporny.org/about#manu>, _:b0 .

10.2 The rdf:JSON Datatype§

A B

A B A B

https://www.w3.org/TR/json-ld11/

165 of 189

members, and each member in is equal to a corresponding member

in where

the keys are equal (as defined in Section 7.2.12, step 5.a in

[ECMASCRIPT]), and

the values are considered equal through applying this comparison

recursively.

Otherwise, if and are both arrays, both and have the same

number of elements, and each element is considered equal to the

corresponding element through applying this comparison

recursively.

2.

Otherwise, if and satisfy the Strict Equality Comparison defined

in Section 7.2.15 in [ECMASCRIPT].

3.

Otherwise, and are not equal.4.

The lexical-to-value mapping
is the result of parsing the lexical representation into an internal

representation consistent with [ECMASCRIPT] representation created by

using the JSON.parse function as defined in Section 24.5 The JSON Object

of [ECMASCRIPT].

The canonical mapping
is non-normative, as a normative recommendation for JSON

canonicalization is not yet defined. Implementations SHOULD use the

following guidelines when creating the lexical representation of a JSON

literal:

Serialize JSON using no unnecessary whitespace,

Keys in objects SHOULD be ordered lexicographically,

Native Numeric values SHOULD be serialized according to Section

7.1.12.1 of [ECMASCRIPT],

Strings SHOULD be serialized with Unicode codepoints from U+0000

through U+001F using lowercase hexadecimal Unicode notation

(\uhhhh) unless in the set of predefined JSON control characters

U+0008, U+0009, U+000A, U+000C or U+000D which SHOULD be serialized

as \b, \t, \n, \f and \r respectively. All other Unicode characters

SHOULD be serialized "as is", other than U+005C (\) and U+0022 (")

which SHOULD be serialized as \\ and \" respectively.

A

B

A B A B

Ai

Bi

A B

A B

https://www.w3.org/TR/json-ld11/

166 of 189

ISSUE

The JSON Canonicalization Scheme [JCS] is an emerging standard for

JSON canonicalization not yet ready to be referenced. When a JSON

canonicalization standard becomes available, this specification will

likely be updated to require such a canonical representation. Users are

cautioned from depending on the JSON literal lexical representation as

an RDF literal, as the specifics of serialization may change in a future

revision of this document.

See, Security Considerations in § C. IANA Considerations.

NOTE

Future versions of this specification may incorporate subresource integrity

[SRI] as a means of ensuring that cached and retrieved content matches

data retrieved from remote servers; see issue 86.

The retrieval of external contexts can expose the operation of a JSON-LD

processor, allow intermediate nodes to fingerprint the client application

through introspection of retrieved resources (see [fingerprinting-guidance]),

and and provide an opportunity for a man-in-the-middle attack. To protect

against this, publishers should consider caching remote contexts for future

use, or use the documentLoader to maintain a local version of such contexts.

As JSON-LD uses the RDF data model, it is restricted by design in its ability

to properly record JSON-LD Values which are strings with left-to-right or

right-to-left direction indicators. Both JSON-LD and RDF provide a

mechanism for specifying the language associated with a string (language-

tagged string), but do not provide a means of indicating the base direction of

the string.

Unicode provides a mechanism for signaling direction within a string (see

11. Security Considerations§

12. Privacy Considerations§

13. Internationalization Considerations§

https://www.w3.org/TR/json-ld11/

167 of 189

Unicode Bidirectional Algorithm [UAX9]), however, when a string has an

overall base direction which cannot be determined by the beginning of the

string, an external indicator is required, such as the [HTML] dir attribute,

which currently has no counterpart for RDF literals.

The issue of properly representing text direction in RDF is not something that

this Working Group can handle, as it is a limitation or the core RDF data

model. This Working Group expects that a future RDF Working Group will

consider the matter and add the ability to specify the text direction of

language-tagged strings.

Until a more comprehensive solution can be addressed in a future version of

this specification, publishers should consider this issue when representing

strings where the text direction of the string cannot otherwise be correctly

inferred based on the content of the string. See [string-meta] for a discussion

best practices for identifying language and base direction for strings used on

the Web.

This section is non-normative.

The image consists of three dashed boxes, each describing a different linked

data graph. Each box consists of shapes linked with arrows describing the

linked data relationships.

The first box is titled "default graph: <no name>" describes two resources:

http://example.com/people/alice and http://example.com/people/bob

(denoting "Alice" and "Bob" respectively), which are connected by an arrow

labeled schema:knows which describes the knows relationship between the two

resources. Additionally, the "Alice" resource is related to three different

literals:

Alice
an RDF literal with no datatype or language.

A. Image Descriptions§

A.1 Linked Data Dataset§

Description of the Linked Data Dataset figure in § 8.
Data Model

§

https://www.w3.org/TR/json-ld11/

168 of 189

weiblich | de
an language-tagged string with the value "weiblich" and language tag

"de".

female | en
an language-tagged string with the value "female" and language tag "en".

The second and third boxes describe two named graphs, with the graph

names "http://example.com/graphs/1" and "http://example.com/graphs/1",

respectively.

The second box consists of two resources: http://example.com/people/alice

and http://example.com/people/bob related by the schema:parent relationship,

and names the http://example.com/people/bob "Bob".

The third box consists of two resources, one named http://example.com

/people/bob and the other unnamed. The two resources related to each other

using schema:sibling relationship with the second named "Mary".

This section is non-normative.

The JSON-LD examples below demonstrate how JSON-LD can be used to

express semantic data marked up in other linked data formats such as Turtle,

RDFa, and Microdata. These sections are merely provided as evidence that

JSON-LD is very flexible in what it can express across different Linked Data

approaches.

This section is non-normative.

The following are examples of transforming RDF expressed in [Turtle] into

JSON-LD.

The JSON-LD context has direct equivalents for the Turtle @prefix

declaration:

B. Relationship to Other Linked Data Formats§

B.1 Turtle§

B.1.1 Prefix definitions§

https://www.w3.org/TR/json-ld11/

169 of 189

Both [Turtle] and JSON-LD allow embedding, although [Turtle] only allows

embedding of blank nodes.

EXAMPLE 137: A set of statements serialized in Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu> a foaf:Person;

 foaf:name "Manu Sporny";

 foaf:homepage <http://manu.sporny.org/> .

EXAMPLE 138: The same set of statements serialized in JSON-LD

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/"

 },

"@id": "http://manu.sporny.org/about#manu",

"@type": "foaf:Person",

"foaf:name": "Manu Sporny",

"foaf:homepage": { "@id": "http://manu.sporny.org/" }

}

B.1.2 Embedding§

EXAMPLE 139: Embedding in Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu>

 a foaf:Person;

foaf:name "Manu Sporny";

foaf:knows [a foaf:Person; foaf:name "Gregg Kellogg"] .

https://www.w3.org/TR/json-ld11/

170 of 189

In JSON-LD numbers and boolean values are native data types. While [Turtle]

has a shorthand syntax to express such values, RDF's abstract syntax

requires that numbers and boolean values are represented as typed literals.

Thus, to allow full round-tripping, the JSON-LD 1.1 Processing Algorithms

and API specification [JSON-LD11-API] defines conversion rules between

JSON-LD's native data types and RDF's counterparts. Numbers without

fractions are converted to xsd:integer-typed literals, numbers with fractions

to xsd:double-typed literals and the two boolean values true and false to a

xsd:boolean-typed literal. All typed literals are in canonical lexical form.

EXAMPLE 140: Same embedding example in JSON-LD

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/"

 },

"@id": "http://manu.sporny.org/about#manu",

"@type": "foaf:Person",

"foaf:name": "Manu Sporny",

"foaf:knows": {

"@type": "foaf:Person",

"foaf:name": "Gregg Kellogg"

 }

}

B.1.3 Conversion of native data types§

EXAMPLE 141: JSON-LD using native data types for numbers and boolean

values

{

"@context": {

"ex": "http://example.com/vocab#"

 },

"@id": "http://example.com/",

"ex:numbers": [14, 2.78],

"ex:booleans": [true, false]

}

https://www.w3.org/TR/json-ld11/

171 of 189

Both JSON-LD and [Turtle] can represent sequential lists of values.

This section is non-normative.

EXAMPLE 142: Same example in Turtle using typed literals

@prefix ex: <http://example.com/vocab#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/>

 ex:numbers "14"^^xsd:integer, "2.78E0"^^xsd:double ;

ex:booleans "true"^^xsd:boolean, "false"^^xsd:boolean .

B.1.4 Lists§

EXAMPLE 143: A list of values in Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> a foaf:Person;

 foaf:name "Joe Bob";

 foaf:nick ("joe" "bob" "jaybee") .

EXAMPLE 144: Same example with a list of values in JSON-LD

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/"

 },

"@id": "http://example.org/people#joebob",

"@type": "foaf:Person",

"foaf:name": "Joe Bob",

"foaf:nick": {

"@list": ["joe", "bob", "jaybee"]

 }

}

B.2 RDFa§

https://www.w3.org/TR/json-ld11/

172 of 189

The following example describes three people with their respective names

and homepages in RDFa [RDFA-CORE].

An example JSON-LD implementation using a single context is described

below.

EXAMPLE 145: RDFa fragment that describes three people

<div prefix="foaf: http://xmlns.com/foaf/0.1/">

 <li typeof="foaf:Person">

 Bob

 <li typeof="foaf:Person">

 Eve

 <li typeof="foaf:Person">

 Manu

</div>

https://www.w3.org/TR/json-ld11/

173 of 189

This section is non-normative.

The HTML Microdata [MICRODATA] example below expresses book

information as a Microdata Work item.

EXAMPLE 146: Same description in JSON-LD (context shared among node

objects)

{

"@context": {

"foaf": "http://xmlns.com/foaf/0.1/",

"foaf:homepage": {"@type": "@id"}

 },

"@graph": [

 {

"@type": "foaf:Person",

"foaf:homepage": "http://example.com/bob/",

"foaf:name": "Bob"

 }, {

"@type": "foaf:Person",

"foaf:homepage": "http://example.com/eve/",

"foaf:name": "Eve"

 }, {

"@type": "foaf:Person",

"foaf:homepage": "http://example.com/manu/",

"foaf:name": "Manu"

 }

]

}

B.3 Microdata§

https://www.w3.org/TR/json-ld11/

174 of 189

Note that the JSON-LD representation of the Microdata information stays

true to the desires of the Microdata community to avoid contexts and instead

refer to items by their full IRI.

EXAMPLE 147: HTML that describes a book using microdata

<dl itemscope

itemtype="http://purl.org/vocab/frbr/core#Work"

itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N">

<dt>Title</dt>

<dd><cite itemprop="http://purl.org/dc/terms/title">Just a Geek</cite

<dt>By</dt>

<dd>Wil Wheaton</span

<dt>Format</dt>

<dd itemprop="http://purl.org/vocab/frbr/core#realization"

itemscope

itemtype="http://purl.org/vocab/frbr/core#Expression"

itemid="http://purl.oreilly.com/products/9780596007683.BOOK">

<link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-

 Print

</dd>

<dd itemprop="http://purl.org/vocab/frbr/core#realization"

itemscope

itemtype="http://purl.org/vocab/frbr/core#Expression"

itemid="http://purl.oreilly.com/products/9780596802189.EBOOK">

<link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-

 Ebook

</dd>

</dl>

https://www.w3.org/TR/json-ld11/

175 of 189

This section has been submitted to the Internet Engineering Steering Group

(IESG) for review, approval, and registration with IANA.

Type name:
application

Subtype name:
ld+json

Required parameters:
None

Optional parameters:
profile

A non-empty list of space-separated URIs identifying specific

EXAMPLE 148: Same book description in JSON-LD (avoiding contexts)

[

 {

"@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N",

"@type": "http://purl.org/vocab/frbr/core#Work",

"http://purl.org/dc/terms/title": "Just a Geek",

"http://purl.org/dc/terms/creator": "Wil Wheaton",

"http://purl.org/vocab/frbr/core#realization":

 [

 {"@id": "http://purl.oreilly.com/products/9780596007683.BOOK"},

 {"@id": "http://purl.oreilly.com/products/9780596802189.EBOOK"}

]

 }, {

"@id": "http://purl.oreilly.com/products/9780596007683.BOOK",

"@type": "http://purl.org/vocab/frbr/core#Expression",

"http://purl.org/dc/terms/type": {"@id": "http://purl.oreilly.com/product-types/BOO

 }, {

"@id": "http://purl.oreilly.com/products/9780596802189.EBOOK",

"@type": "http://purl.org/vocab/frbr/core#Expression",

"http://purl.org/dc/terms/type": {"@id": "http://purl.oreilly.com/product-types/EBO

 }

]

C. IANA Considerations§

application/ld+json§

https://www.w3.org/TR/json-ld11/

176 of 189

constraints or conventions that apply to a JSON-LD document

according to [RFC6906]. A profile does not change the semantics of

the resource representation when processed without profile

knowledge, so that clients both with and without knowledge of a

profiled resource can safely use the same representation. The profile

parameter MAY be used by clients to express their preferences in the

content negotiation process. If the profile parameter is given, a server

SHOULD return a document that honors the profiles in the list which

are recognized by the server. It is RECOMMENDED that profile URIs

are dereferenceable and provide useful documentation at that URI.

For more information and background please refer to [RFC6906].

This specification defines six values for the profile parameter.

http://www.w3.org/ns/json-ld#expanded

To request or specify expanded JSON-LD document form.

http://www.w3.org/ns/json-ld#compacted

To request or specify compacted JSON-LD document form.

http://www.w3.org/ns/json-ld#context

To request or specify a JSON-LD context document.

http://www.w3.org/ns/json-ld#flattened

To request or specify flattened JSON-LD document form.

http://www.w3.org/ns/json-ld#frame

To request or specify a JSON-LD frame document.

http://www.w3.org/ns/json-ld#framed

To request or specify framed JSON-LD document form.

NOTE

Other specifications may publish additional profile parameter URIs

with their own defined sematics.

When used as a media type parameter [RFC4288] in an HTTP Accept

header [RFC7231], the value of the profile parameter MUST be

enclosed in quotes (") if it contains special characters such as

whitespace, which is required when multiple profile URIs are

combined.

When processing the "profile" media type parameter, it is important

to note that its value contains one or more URIs and not IRIs. In some

cases it might therefore be necessary to convert between IRIs and

URIs as specified in section 3 Relationship between IRIs and URIs of

https://www.w3.org/TR/json-ld11/

177 of 189

[RFC3987].

Encoding considerations:
See RFC 8259, section 11.

Security considerations:
See RFC 8259, section 12 [RFC8259]

Since JSON-LD is intended to be a pure data exchange format for

directed graphs, the serialization SHOULD NOT be passed through a

code execution mechanism such as JavaScript's eval() function to be

parsed. An (invalid) document may contain code that, when executed,

could lead to unexpected side effects compromising the security of a

system.

When processing JSON-LD documents, links to remote contexts and

frames are typically followed automatically, resulting in the transfer of

files without the explicit request of the user for each one. If remote

contexts are served by third parties, it may allow them to gather usage

patterns or similar information leading to privacy concerns. Specific

implementations, such as the API defined in the JSON-LD 1.1 Processing

Algorithms and API specification [JSON-LD11-API], may provide fine-

grained mechanisms to control this behavior.

JSON-LD contexts that are loaded from the Web over non-secure

connections, such as HTTP, run the risk of being altered by an attacker

such that they may modify the JSON-LD active context in a way that could

compromise security. It is advised that any application that depends on a

remote context for mission critical purposes vet and cache the remote

context before allowing the system to use it.

Given that JSON-LD allows the substitution of long IRIs with short terms,

JSON-LD documents may expand considerably when processed and, in

the worst case, the resulting data might consume all of the recipient's

resources. Applications should treat any data with due skepticism.

As JSON-LD places no limits on the IRI schemes that may be used, and

vocabulary-relative IRIs use string concatenation rather than IRI

resolution, it is possible to construct IRIs that may be used maliciously, if

dereferenced.

Interoperability considerations:
Not Applicable

Published specification:
http://www.w3.org/TR/json-ld

https://www.w3.org/TR/json-ld11/

178 of 189

Applications that use this media type:
Any programming environment that requires the exchange of directed

graphs. Implementations of JSON-LD have been created for JavaScript,

Python, Ruby, PHP, and C++.

Additional information:
Magic number(s):

Not Applicable

File extension(s):
.jsonld

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ivan Herman <ivan@w3.org>

Intended usage:
Common

Restrictions on usage:
None

Author(s):
Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Niklas

Lindström

Change controller:
W3C

Fragment identifiers used with application/ld+json are treated as in RDF

syntaxes, as per RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS].

This section is non-normative.

The following examples illustrate different ways in which the profile

parameter may be used to describe different acceptable responses.

C.1 Examples§

EXAMPLE 149: HTTP Request with profile requesting an expanded

document

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#expanded

https://www.w3.org/TR/json-ld11/

179 of 189

Requests the server to return the requested resource as JSON-LD in

expanded document form.

Requests the server to return the requested resource as JSON-LD in

compacted document form. As no explicit context resource is specified, the

server compacts using an application-specific default context.

Requests the server to return the requested resource as JSON-LD in both

compacted document form and flattened document form. Note that as

whitespace is used to separate the two URIs, they are enclosed in double

quotes (").

This section is non-normative.

The following is a list of issues open at the time of publication.

ISSUE 9: Content addressable contexts

Provide a means for referring to a remote context without without

requiring it to be downloaded.

EXAMPLE 150: HTTP Request with profile requesting a compacted

document

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#compacted

EXAMPLE 151: HTTP Request with profile requesting a compacted

document with a reference to a compaction context

GET /ordinary-json-document.json HTTP/1.1

Host: example.com

Accept: application/ld+json;profile="http://www.w3.org/ns/json-ld#flattened http://www.

D. Open Issues§

spec:enhancement spec:substantive

https://www.w3.org/TR/json-ld11/

180 of 189

ISSUE 19: Indexing without a predicate

Consider a mechanism such as Microdata's @itemref for including objects

within another referencing node.

ISSUE 86: Can SRI be used in JSON-LD and for which use cases?

Can SRI be used in JSON-LD and for which use cases?

ISSUE 108: Consider context by reference with metadata

Consider context by reference with metadata.

ISSUE 134: Does HTML's `<base>` effect `@context` IRI resolution?

Does HTML's <base> effect @context IRI resolution?

ISSUE 149: DocumentLoader should be more visible in the specs

DocumentLoader should be more visible in the specs.

ISSUE 155: IRIs are terms can be misdefined

IRIs are terms can be misdefined.

This section is non-normative.

A context may contain a @version member which is used to set the

spec:enhancement spec:substantive

defer-

future-version hr:security

defer-future-

version hr:privacy hr:security

spec:editorial

spec:editorial

hr:security propose

closing spec:bug spec:enhancement spec:substantive

E. Changes since 1.0 Recommendation of 16 January
2014

§

https://www.w3.org/TR/json-ld11/

181 of 189

processing mode.

An expanded term definition can now have an @context property, which

defines a context used for values of a property identified with such a

term.

@container values within an expanded term definition may now include

@id, @graph and @type, corresponding to id maps and type maps.

An expanded term definition can now have an @nest property, which

identifies a term expanding to @nest which is used for containing

properties using the same @nest mapping. When expanding, the values of

a property expanding to @nest are treated as if they were contained

within the enclosing node object directly.

The JSON syntax has been abstracted into an internal representation to

allow for other serializations that are functionally equivalent to JSON.

Added § 4.6.3 Node Identifier Indexing and § 4.6.4 Node Type Indexing.

Both language maps and index maps may legitimately have an @none key,

but JSON-LD 1.0 only allowed string keys. This has been updated to allow

@none keys.

The value for @container in an expanded term definition can also be an

array containing any appropriate container keyword along with @set

(other than @list). This allows a way to ensure that such property values

will always be expressed in array form.

In JSON-LD 1.1, terms will be chosen as compact IRI prefixes when

compacting only if a simple term definition is used where the value ends

with a URI gen-delim character, or if their expanded term definition

contains a @prefix member with the value true. The 1.0 algorithm has

been updated to only consider terms that map to a value that ends with a

URI gen-delim character.

Values of properties where the associated term definition has @container

set to @graph are interpreted as implicitly named graphs, where the

associated graph name is assigned from a new blank node identifier.

Other combinations include ["@container", "@id"], ["@container",

"@index"] each also may include "@set", which create maps from the

graph identifier or index value similar to index maps and id maps.

Additionally, see § F. Changes since JSON-LD Community Group Final Report.

F. Changes since JSON-LD Community Group Final
Report

§

https://www.w3.org/TR/json-ld11/

182 of 189

This section is non-normative.

Lists may now have items which are themselves lists.

Values of @type, or an alais of @type, may now have their @container set to

@set to ensure that @type members are always represented as an array.

This also allows a term to be defined for @type, where the value MUST be

a dictionary with @container set to @set.

The use of blank node identifiers to label properties is obsolete, and may

be removed in a future version of JSON-LD, as is the support for

generalized RDF Datasets.

The vocabulary mapping can be a relative IRI, which is evaluated either

against an existing default vocabulary, or against the document base. This

allows vocabulary-relative IRIs, such as the keys of node objects, are

expanded or compacted relative to the document base. (See Security

Considerations in § C. IANA Considerations for a discussion on how string

vocabulary-relative IRI resolution via concatenation.)

Added support for "@type": "@none" in a term definition to prevent value

compaction. Define the rdf:JSON datatype.

Term definitions with keys which are of the form of a compact IRI or

absolute IRI MUST NOT expand to an IRI other than the expansion of the

key itself.

Define different processor modes: pure JSON Processor, event-based

JSON processor, and full Processor.

For a full Processor, if a retrieved context URL returns an HTML

document, the first script element of type

application/ld+json;profile=http://www.w3.org/ns/json-ld#context, or

application/ld+json is used as the context for further processing. This

allows a mechanism for documenting the content of a context using

HTML.

A frame may also be located within an HTML document, identified using

type application/ld+json;profile=http://www.w3.org/ns/json-ld#frame.

This section is non-normative.

The editors would like to specially thank the following individuals for making

significant contributions to the authoring and editing of this specification:

G. Acknowledgements§

https://www.w3.org/TR/json-ld11/

183 of 189

Timothy Cole (University of Illinois at Urbana-Champaign)

Ivan Herman (W3C Staff)

Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

Dave Longley (Digital Bazaar)

David Lehn (Digital Bazaar)

David Newbury (J. Paul Getty Trust)

Robert Sanderson (J. Paul Getty Trust, co-chair)

Harold Solbrig (Johns Hopkins Institute for Clinical and Translational

Research)

Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of

Economics and Business)

A Soroka (Apache Software Foundation)

Ruben Taelman (Imec vzw)

Benjamin Young (Wiley, co-chair)

Additionally, the following people were members of the Working Group at the

time of publication:

Christopher Allen (Spec-Ops)

Steve Blackmon (Apache Software Foundation)

Dan Brickley (Google, Inc.)

Newton Calegari (NIC.br - Brazilian Network Information Center)

Victor Charpenay (Siemens AG)

Alejandra Gonzalez Beltran (University of Oxford)

Sebastian Käbisch (Siemens AG)

Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of

Economics and Business)

Leonard Rosenthol (Adobe)

Jean-Yves ROSSI (CANTON CONSULTING)

Antoine Roulin (CANTON CONSULTING)

Manu Sporny (Digital Bazaar)

Clément Wargnier de Wailly (CANTON CONSULTING)

A large amount of thanks goes out to the JSON-LD Community Group

participants who worked through many of the technical issues on the mailing

https://www.w3.org/TR/json-ld11/

184 of 189

list and the weekly telecons: Chris Webber, David Wood, Drummond Reed,

Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy,

Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob

Trainer, Ted Thibodeau Jr., and Victor Charpenay.

[BCP47]
Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September

2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47

[DOM]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://dom.spec.whatwg.org/

[ECMASCRIPT]
ECMAScript Language Specification. Ecma International. URL:

https://tc39.github.io/ecma262/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson;

Philip Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL:

https://html.spec.whatwg.org/multipage/

[IANA-URI-SCHEMES]
Uniform Resource Identifier (URI) Schemes. IANA. URL:

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON).

D. Crockford. IETF. July 2006. Informational. URL: https://tools.ietf.org

/html/rfc4627

[JSON-LD]
JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Markus Lanthaler. W3C. 16

January 2014. W3C Recommendation. URL: https://www.w3.org/TR/json-

ld/

[JSON-LD11]
JSON-LD 1.1. Gregg Kellogg. W3C. 14 December 2018. W3C Working

Draft. URL: https://www.w3.org/TR/json-ld11/

[JSON-LD11-API]
JSON-LD 1.1 Processing Algorithms and API. Gregg Kellogg. W3C. 14

December 2018. W3C Working Draft. URL: https://www.w3.org/TR/json-

H. References§

H.1 Normative references§

https://www.w3.org/TR/json-ld11/

185 of 189

ld11-api/

[JSON-LD11-FRAMING]
JSON-LD 1.1 Framing. Gregg Kellogg. W3C. 14 December 2018. W3C

Working Draft. URL: https://www.w3.org/TR/json-ld11-framing/

[RDF-SCHEMA]
RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February

2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/

[RDF11-CONCEPTS]
RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood;

Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL:

https://www.w3.org/TR/rdf11-concepts/

[RDF11-MT]
RDF 1.1 Semantics. Patrick Hayes; Peter Patel-Schneider. W3C. 25

February 2014. W3C Recommendation. URL: https://www.w3.org

/TR/rdf11-mt/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner.

IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org

/html/rfc2119

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R.

Fielding; L. Masinter. IETF. January 2005. Internet Standard. URL:

https://tools.ietf.org/html/rfc3986

[RFC3987]
Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard.

IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org

/html/rfc3987

[RFC4288]
Media Type Specifications and Registration Procedures. N. Freed; J.

Klensin. IETF. December 2005. Best Current Practice. URL:

https://tools.ietf.org/html/rfc4288

[RFC6839]
Additional Media Type Structured Syntax Suffixes. T. Hansen; A.

Melnikov. IETF. January 2013. Informational. URL: https://tools.ietf.org

/html/rfc6839

[RFC6906]
The 'profile' Link Relation Type. E. Wilde. IETF. March 2013.

Informational. URL: https://tools.ietf.org/html/rfc6906

[RFC7231]
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. R.

https://www.w3.org/TR/json-ld11/

186 of 189

Fielding, Ed.; J. Reschke, Ed.. IETF. June 2014. Proposed Standard. URL:

https://tools.ietf.org/html/rfc7231

[RFC8259]
The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray,

Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org

/html/rfc8259

[RFC8288]
Web Linking. M. Nottingham. IETF. October 2017. Proposed Standard.

URL: https://tools.ietf.org/html/rfc8288

[UAX9]
Unicode Bidirectional Algorithm. Mark Davis; Aharon Lanin; Andrew

Glass. Unicode Consortium. 4 February 2019. Unicode Standard Annex

#9. URL: https://www.unicode.org/reports/tr9/tr9-41.html

[UNICODE]
The Unicode Standard. Unicode Consortium. URL:

https://www.unicode.org/versions/latest/

[WEBIDL]
Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft.

URL: https://heycam.github.io/webidl/

[XMLSCHEMA11-2]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.

David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-

McQueen; Henry Thompson; Paul V. Biron et al. W3C. 5 April 2012. W3C

Recommendation. URL: https://www.w3.org/TR/xmlschema11-2/

[fingerprinting-guidance]
Mitigating Browser Fingerprinting in Web Specifications. Nick Doty. W3C.

28 March 2019. W3C Note. URL: https://www.w3.org/TR/fingerprinting-

guidance/

[JCS]
JSON Canonicalization Scheme (JCS). A. Rundgren; B. Jordan; S.

Erdtman. Network Working Group. February 16, 2019. Internet-Draft.

URL: https://tools.ietf.org/html/draft-rundgren-json-canonicalization-

scheme-05

[ld-glossary]
Linked Data Glossary. Bernadette Hyland; Ghislain Auguste Atemezing;

Michael Pendleton; Biplav Srivastava. W3C. 27 June 2013. W3C Note.

URL: https://www.w3.org/TR/ld-glossary/

H.2 Informative references§

https://www.w3.org/TR/json-ld11/

187 of 189

[LINKED-DATA]
Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-

Internal Document. URL: https://www.w3.org/DesignIssues

/LinkedData.html

[MICRODATA]
HTML Microdata. Charles McCathie Nevile; Dan Brickley; Ian Hickson.

W3C. 26 April 2018. W3C Working Draft. URL: https://www.w3.org

/TR/microdata/

[RDFA-CORE]
RDFa Core 1.1 - Third Edition. Ben Adida; Mark Birbeck; Shane

McCarron; Ivan Herman et al. W3C. 17 March 2015. W3C

Recommendation. URL: https://www.w3.org/TR/rdfa-core/

[rfc4122]
A Universally Unique IDentifier (UUID) URN Namespace. P. Leach; M.

Mealling; R. Salz. IETF. July 2005. Proposed Standard. URL:

https://tools.ietf.org/html/rfc4122

[RFC7049]
Concise Binary Object Representation (CBOR). C. Bormann; P. Hoffman.

IETF. October 2013. Proposed Standard. URL: https://tools.ietf.org

/html/rfc7049

[RFC7946]
The GeoJSON Format. H. Butler; M. Daly; A. Doyle; S. Gillies; S. Hagen; T.

Schaub. IETF. August 2016. Proposed Standard. URL:

https://tools.ietf.org/html/rfc7946

[SPARQL11-OVERVIEW]
SPARQL 1.1 Overview. The W3C SPARQL Working Group. W3C. 21 March

2013. W3C Recommendation. URL: https://www.w3.org/TR/sparql11-

overview/

[SRI]
Subresource Integrity. Devdatta Akhawe; Frederik Braun; Francois

Marier; Joel Weinberger. W3C. 23 June 2016. W3C Recommendation.

URL: https://www.w3.org/TR/SRI/

[string-meta]
Strings on the Web: Language and Direction Metadata. Addison Phillips;

Richard Ishida. W3C. 16 April 2019. W3C Working Draft. URL:

https://www.w3.org/TR/string-meta/

[TriG]
RDF 1.1 TriG. Gavin Carothers; Andy Seaborne. W3C. 25 February 2014.

W3C Recommendation. URL: https://www.w3.org/TR/trig/

[Turtle]

https://www.w3.org/TR/json-ld11/

188 of 189

RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February

2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/

[URN]
URN Syntax. R. Moats. IETF. May 1997. Proposed Standard. URL:

https://tools.ietf.org/html/rfc2141

[YAML]
YAML Ain’t Markup Language (YAML™) Version 1.2. Oren Ben-Kiki; Clark

Evans; Ingy döt Net. 1 October 2009. URL: http://yaml.org/spec/1.2

/spec.html

↑

https://www.w3.org/TR/json-ld11/

189 of 189

