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Abstract—State-of-the-art methods for handwriting text
recognition are based on deep learning approaches and lan-
guage modeling that require large data sets during training.
In practice, there are some applications where the system
processes mono-writer documents, and would thus benefit from
being trained on examples from that writer. However, this is
not common to have numerous examples coming from just one
writer. In this paper, we propose an approach to adapt both the
optical model and the language model to a particular writer,
from a generic system trained on large data sets with a variety
of examples. We show the benefits of the optical and language
model writer adaptation. Our approach reaches competitive
results on the READ 2018 data set, which is dedicated to model
adaptation to particular writers.

Keywords-Handwriting recognition; writer adaptation; deep
neural network; optical model; language model

I. INTRODUCTION

Deep learning approaches combined with language mod-
eling are now state-of-the art approaches for handwriting
recognition tasks. However, they require large amounts
of labeled training data to achieve optimal performance.
In speech and handwriting recognition, many personalized
applications have to deal with one specific handwriting
document or audio recording coming from one writer or
speaker. Besides, in the field of digital humanities, there is
a need for digitization and transcriptions of old manuscripts,
many of which being from one writer only.

Designing a handwriting recognition system trained to
recognize the writing and language style of some spe-
cific writers is attractive, but incompatible with the large
amount of examples required to train deep architectures
and language models. Another difficulty is that speech and
handwriting recognition systems may also suffer from a shift
in the distribution of the target language between the training
data set and the test data set.

As a consequence, there is a growing interest in de-
signing learning algorithms that can be trained on small
labeled data sets from the targeted domain, while keeping
a good generalization ability. Domain adaptation [1] and
transfer learning [2], [3] are machine learning approaches
that specifically address the problem of data distribution
shift between data sets that have some similar properties.
Transfer learning is now a widespread approach that has
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shown to be very efficient on various recognition tasks
such as handwriting recognition, signature identification or
medical imaging [4], [5]. In addition, the language itself, but
also lexicons as well as word frequencies may not match
the statistical distributions learned during language model
training. Statistical language model adaptation algorithms
[6] have also been designed in this respect.

This paper presents an approach to adapt a generic text
recognition system to a particular writer. In this respect, both
the optical model and the language model of the generic sys-
tem are considered during the adaptation phase. The generic
system components (optical and language models) are first
trained on a large data set (that does not contain any example
of the writer). The optical model is based on a reference
architecture that can benefit from transfer learning and data
augmentation. The language model benefits from sub-lexical
modeling [7] and model interpolation to circumvent the lack
of training examples from the writer.

Our approach is evaluated on the 2018 READ competition
[8] data sets, dedicated to writer adaptation analysis. We
show that our method reaches competitive performance on
the adaptation task and outperforms the systems which
have been submitted to the competition. To the best of our
knowledge, it is the first time that both an optical model and
a language model adaptation is evaluated simultaneously for
an adaptation task.

The article is organized as follows. In section II, we
discuss related works on handwriting recognition system
adaption, both for optical model and language model. Sec-
tion III presents the proposed strategy for writer adaptation.
Finally, experiments on the 2018 READ competition are
described in section IV.

II. RELATED WORKS

Speech and handwriting recognition both suffer from the
large variability between speakers or writers, and for both the
acoustic or optical model and the language model. This vari-
ability is known to limit the good recognition performance
of a generic multi-writer (speaker) system. Adaptation of
a generic recognition system to a specific data set should
therefore consider the adaptation of both the optical model
and the language model. This is the proposition of this



paper. Note that language model adaptation has been studied
extensively in speech recognition [9], but only few works
have focused on handwriting recognition until now.

A. Optical model adaptation

The adaptation strategy is either a data normalization
process [10] or a model adaptation process that modifies the
parameters of a general-purpose recognizer to the specific
speech or handwriting. In this respect, MLLR (Maximum
Likelihood Linear Regression) [11] and MAP (Maximum
A Posteriori) [12] have been proposed within the well
established framework of Hidden Markov Models (HMM) to
adapt the parameters of the acoustic/optical models, or their
structure [13]. It is to be noticed also that most of the state-
of-the-art industrial OCR rely on some adaptation principles
[14] by introducing heuristic rules or statistics gathered at
the document level.

Recently, as part of the ICFHR 2018 READ competition
[8], most of the participants proposed an optical model
composed of a Convolutional Neural Network (CNN) and
Bidirectional Long Short Term Memory (BLSTM) layers as
in [15] and [16]. One of them was using Multi-dimensional
LSTM (MDLSTM) [17], which has provided good perfor-
mance when trained on a generic large data set, but has
shown difficulty in carrying the writer adaptation process
with few samples. After the competition, [18] proposed a
fully convolutional network architecture trained with the
CTC loss function for text recognition. This system achieves
the best results on the READ 2018 data set, significantly
outperforming the other systems. Following the guidelines
of the READ 2018 competition, every systems are trained on
a generic data set, and then fine-tuned on specific documents
using transfer learning and data augmentation strategies.

B. Language model adaptation

Language model (LM) adaptation has been studied ex-
tensively in speech recognition. In practice, there is rarely
enough data to get a reliable language model learned on
samples of one single writer’s only [6]. Thus, language
model adaptation consists in deriving a specific language
model using a generic language model and a small training
data set (text samples of one writer). The generic LM
is previously trained on a much larger and general data
set. Language model adaptation is commonly performed by
interpolating the two models (specific and generic LM) [19],
typically using a linear interpolation. In such approaches, a
back-off to the generic LM can also be used as a way to fill
up missing statistics of the specific LM. A back-off threshold
has to be determined in this case.

In speech recognition, interpolations between generic LM
and task-specific uni-grams have been proposed in [20].
In [21], the authors proposed to interpolate the n-gram
probabilities of a generic and specific LM. In [6], weights
interpolating multiple predefined LMs are trained. Regarding

handwriting recognition, Xiu and Baird [22] adapted a word
lexicon from OCR results. Lee and Smith [23] modified
word uni-gram probabilities in caches. Besides, Wang et al.
[19] presented three methods for language model adaptation
in order to match a writer corpus with a predefined set of
generic LM.

Finally, some of the participants of the READ 2018
competition proposed to use language models, such as n-
grams of words, sub-lexical units or characters. In two
systems, language models are the result of the interpolation
of a document (writer) specific language model with a
generic one. For both systems, balance between the two LM
is set beforehand.

III. PROPOSED APPROACH

We present in this section our strategy to adapt a generic
handwriting recognition system to a specific writer. In the
following we will call generic data set a large data set
composed of multiple documents from different writers and
languages, and specific data set a smaller data set coming
from a document (or a subset of documents) written by
a single writer. Similarly, we will call generic model and
specific model an optical model or a language model trained
on the generic data set or the specific data set, respectively.

A. System overview

The system architecture is illustrated in Figure 1. We first
train a generic handwriting recognition system composed
of an optical model (Ps(O|W)) and a language model
(Pg(W)). This system is trained on the generic data set,
in order to model the variability between different writing
styles, languages and document images background. Note
that we showed in [24] that a language model can account
for numerous languages without affecting the performance,
thus providing a multilingual LM.

Both generic models (optical and language) serve as initial
models of the adaptation process intended to design specific
optical (Ps(O|W)) and language models (Pg(WV)). At de-
coding time, the outputs of the optical model, either generic
or specific, are analyzed by the appropriate language model
by exploring a search graph thanks to a Weighted Finite State
Transducer (WFST) and using the Viterbi algorithm. The
method selects the sentence W maximizing the a posteriori
probability P(TW|O) among all possible sentences W by
applying the Bayes formula:

W = argmax P(W|0) = arg max P(O|W)P(W)*g!"!

where O is the observation sequence coming from the
input image, P(O|W) is the probability of the observation
sequence given the sentence W computed thanks to the
optical character model and P(W) is the prior probability
of the sentence computed using the language model. The
two hyper-parameters, « and f, are the language model
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Figure 1. System architecture for writer adaptation.

scaling parameter and the word insertion penalty parameter,
respectively.

B. Generic system

Both components of the generic system, the optical model
(OCR) and the language model (LM), are inspired by recent
advances in the field.

1) Optical model: The optical model architecture is sim-
ilar to state-of-the-art architectures that combine multiple
convolution layers with recurrent layers [25]. Convolutional
layers are used to extract local features from the input
images, while recurrent layers captures long term sequential
dependencies. Input text line images are processed using
a sliding window that feed convolutional layers. Features
from every windows are concatenated to build a sequence
of feature vectors which is the input of the recurrent layers.
The whole optical model is trained using the well-known
Connectionist Temporal Classification algorithm [26] which
aligns the label sequences on their corresponding feature
sequences.

2) Data augmentation: Data augmentation has shown
to be an important trick to increase the variability of the
training data set, in order to improve the system generaliza-
tion. From the raw text line images, we create new images
by applying both slanting and scaling transformations. For
slanting, we apply a rotation of at most 1.5 radian on the
input image and pad it with the background pixel values
to get a rectangular image. Regarding scaling, we pad the
image with the background pixels on the left, right, top and
bottom according to randomly chosen horizontal and vertical
scaling factors.

3) Language model: Language models are based on sub-
lexical units called multigrams. Multigrams are sequences
of characters of variable length that are representative of
the language. As shown in [24], multigrams bring many
advantages compared to traditional word language models:
1) lexicon size is highly reduced; 2) multigrams are robust
units to cope with Out Of Vocabulary words (OOV); 3)
multigrams can be learned on any training corpus, without
the need for any linguistic expertise. To conclude, language
models based on multigrams have shown to be a good trade-
off between word language models and character language
models [7], [24]. We train a Hidden Semi-Markov Model
[27], [28] for estimating the set of multigrams that cover the
training corpus. Then, we train a n-gram language model of
multigrams on the training corpus, using a standard back-off
model with Kneser-Ney smoothing.

We estimate one Language Model per language in the
training corpus (denoted mono-LM) as well as one generic
Language Model estimated on the overall training corpus
(denoted multi-LM). These models will serve for language
identification as well as the initialization of the writer
adaptation process.

C. Writer adaptation

We now detail the writer and language adaptation pro-
cesses of the generic system.

1) Optical model adaptation: Writer adaptation of the
optical model relies on transfer learning [3]: the generic
optical model is used to initialize the specific optical model.
Then, the specific optical model is trained on the specific
writer data set only but using data augmentation (see section
III-B2). Moreover, as we are facing very small specific
training data sets, no additional data can be kept aside to
serve for validating the adaptation process. Therefore, the
optical model is trained on the whole specific data set using
a cross-validation procedure to select the number of training
epochs.

Writing size has also proven to be a significant parameter
to consider. In this respect, we introduced stride adaptation
of the sliding window. This is possible by estimating the
frames per label ratio on each specific training set, and then
adapting the stride accordingly.

2) Language model adaptation: Designing a language
model on a small specific data set is not straightforward.
Due to the lack of specific texts, LM estimations are not
representative of a specifc writer language distribution. In
case of writer adaptation, dealing with sub-lexical units
(e.g. multigrams) is a strong advantage compared to the
traditional word-based LM: - sub-lexical units appear more
frequently in the training corpus than words - they are less
diverse than words, and they have a better coverage of the
language. As a consequence, a multigram based LM has
a better modeling capacity of the writer’s language than a
traditional word language model. Nevertheless, a language



model estimated on a specific data set (i.e. the writer’s
corpus) may remain of limited capacity due to the small size
of the corpus. To avoid this limitation, we define a specific
language model as a linear interpolation of a writer-based
specific LM denoted LM, and a generic LM denoted LM :

LM = ALM,, + (1 — \)LM, 2)

where A\ balances between the two language models. The
generic language model LM, is the generic mono-LM that
can be associated to the corpus by choosing the generic
mono-LM with the smallest perplexity, subject to a thresh-
old. If no language is selected, the generic multi-LM is
selected as LM,.

In contrast to recent works that use a fixed value of A
[8], here A is selected using cross validation on the specific
training corpus. This allows to get a suitable value of A
using writer language examples. Besides, the two hyper-
parameters, o and  from equation 1, are optimized on a
generic validation data set, as the small amount of labeled
examples is used for training.

3) Decoding: We also apply data augmentation on test
data, at recognition time. This strategy produces multiple
predictions per observation in test. We combine the multiple
predictions using a ROVER algorithm [29], that has shown
to be a robust strategy [30], [31]. The ROVER algorithm
is made of two parts: an alignment module and a voting
module. The alignment module provides a label transition
network of minimal cost which is built using edit distance
and using an iterative process with pairwise comparisons.
The voting module consists in extracting the most probable
label sequence from the transition network.

IV. EXPERIMENTATION

We evaluate our approach on the READ data set that was
proposed as part of the ICFHR 2018 Automated Handwritten
Text Recognition competition [8].

A. Data and protocol

The ICFHR 2018 Automated Handwritten Text Recogni-
tion competition was aiming to evaluate writer adaptation
performance of generic systems. The data set consists of a
generic data set, composed of 17 heterogeneous documents
(roughly 12,000 text lines from various time periods and
languages), and 5 specific data sets written by only one
writer. The test set contains the 5 specific documents, each
document containing 15 pages of a writer that was not seen
during training.

Model adaptation is encouraged in the competition by pro-
viding multiple adaptation data sets for each test writer. For
each specific test set, 4 transcriptions have to be submitted
using respectively 0, 1, 4 or 16 specific pages for adaptation.
The 0 page case refers to the generic system (without
model adaptation). Hence, 20 transcriptions are submitted:
4 adaptation scenarios for the 5 specific documents. The

Character Error Rate (CER) was used to evaluate the systems
on each writer data set under each adaptation conditions,
and finally the average CER was computed on the whole
test sets.

B. Experimental setting

During training data augmentation was used to increase
the generic data set by 10, while we decided to increase
the specific data by 100 during adaptation. Indeed, there
is a need to have enough adaptation data to carry out the
adaptation process. Data augmentation is also introduced
on the test sets, producing 19 augmented copies of each
example. The recognition system provides 20 predictions for
each example and its 19 augmented versions. The multiple
predictions are combined using ROVER at character level,
so as to provide a unique prediction for each text line.

The optical character recognition model is composed of
8 convolutional layers (similarly to VGG16 [32]) with max-
pooling and dropout after two convolutions, followed by
two BLSTM layers [33] and a dense layer with softmax
activation in order to get a probability per label at each
frame. A sliding window of 32 pixels width and 64 pixels
height is applied in the writing direction. Stride adaptation
leads to a stride of 4 for two writers (Konzil C and Schiller)
and a stride of 2 for the 3 others, as the number of frames
per label is under 20. The optical model is implemented in
Keras [34] and trained using the Adam optimizer [35]. We
performed a 6-fold cross validation on the specific adaptation
set to prevent overfitting the optical models.

We choose a 9-gram language model of 2-multigrams.
There is one LM per specific document and 4 generic
mono-LM (one per language in the generic data set i.e.
German, English, Danish and Swedish) in addition to one
generic multi-LM. A threshold equal to 150 is used to select
the mono-LM using the perplexity. Language models are
estimated using the MIT language modeling toolkit [36]
and the modified Kneser-Ney smoothing method [37] to
estimate the back-off coefficients. Viterbi two-pass decoding
is applied. The X\ parameter (eq. 2) is the one providing the
lowest average perplexity on a 6-fold cross validation on the
specific set. Then, language model scale and word insertion
penalty (see eq. 1) are optimized on a generic validation set.

C. Results

We compare our results with those of the other partic-
ipants of the 2018 ICFHR competition: OSU, ParisTech,
PRHLT, RPPDI and LITIS (our previous work). Every
participant have used optical models based on convolutional
and recurrent layers, except RPPDI that uses a MDLSTM
network. n-gram LM were proposed by every participants,
except for OSU. LM are based on interpolation scheme with
a fixed value for )\, whatever the specific document. Data
augmentation was performed both in training and testing by
OSU and ParisTech, where the most frequent sequence of



Table T
AVERAGE CHARACTER ERROR RATE (CER) OF THE BEST SUBMITTED SYSTEMS COMPARED TO OUR PROPOSAL (THE LAST LINE). WE ALSO
EVALUATE THE IMPACT OF EACH ADAPTATION (OPTICAL MODEL AND LANGUAGE MODEL G OR S FOR GENERIC AND SPECIALIZED). THIS WORK
RELATES TO BOTH OPTICAL AND LANGUAGE MODEL SPECIALIZATION.

CER per additional specific training pages CER per specific test document
0 1 4 16 Imp Konzil C | Schiller Ricordi Patzig Schwerin || total CER
OSU 31.399 17.734 | 13.267 9.024 28.7 9.394 21.097 23.266 23.171 12.985 17.856
ParisTech 32.252 19.798 | 16.979 | 14.721 45.6 10.494 19.047 35.596 23.831 17.020 20.938
LITIS 35.294 22.508 | 16.887 | 11.345 32.1 9.139 25.692 30.501 25.184 18.041 21.508
PRHLT 32.793 22.157 | 17.895 | 13.329 40.6 8.651 18.393 35.069 26.257 18.653 21.541
RPPDI 30.805 28.404 | 27.246 | 22.846 74.1 11.901 21.880 37.292 32.752 28.553 27.325
FCI 25.347 | 12.628 | 8.279 5.825 22.9 6.490 13.766 | 17.330 | 14.845 12.329 13.020
omG+ImS | 26.556 25.532 | 25.129 | 24.699 93.01 9.046 21.314 32.539 32.263 26.993 25.479
om S 28.484 16.329 | 10.495 6.251 21.9 7.331 16.913 21.940 19.686 11.519 15.390
omS +ImG | 26.556 16.122 | 10.807 6.651 25.1 6.036 14.787 23.121 18.178 12.909 15.034
[ thiswork [ 26.556 [ 15.472 [ 9.999 [ 5.819 [[ 21.9 [ 5940 [ 14.811 | 21.616 [ 18.081 [ 11.793 [ 14.458 |

labels per data was selected to be the output of the system.
Finally, the system proposed by the Faculty of Computers
and Information of Asyut (FCI) has been submitted after
the deadline. Their approach is based on a deep fully con-
volutional network and many data augmentation strategies
(projective transforms, elastic distortions, sign flipping). This
approach significantly outperforms the systems submitted
during the competition.

Table I shows the results of our method compared to the
other methods that have been submitted. We achieve the best
improvement from 0 to 16 specific training pages with nearly
78% decrease of the CER. Our method also outperforms
the other ones submitted to the competition on every metric
(reported in [8]). While, the method proposed by [18] seems
relevant when it is trained without many specific examples,
our approach reaches state of the art performance on writer
adaptation using 16 specific training pages.

Table I also highlights the improvement of each model
adaptation (optical and LM). One notes that the system
is very poor without optical model specialization as the
specialized LM provides a small improvement only. In case
of a specialized optical model, the use of a generic LM may
benefit the optical model, especially when it is trained on a
small amount of specific pages. However, the shift between
the generic and writer language distinctiveness seems to be
too important and the use of a language model may have a
negative impact. This is illustrated on the Ricordi data set, as
there is no Italian text in the generic set and on the Schwerin
data set, which is the German specific document for which
the German generic mono-LM provides the higher perplexity
value. Finally, adding a specialized LM on the output of
a specialized optical model increases the recognition rate
nearly 1 point of percentage in CER.

Besides, as stated by [8], it is reasonable that a human
corrects a transcription with a CER below 10%. In this
regard, Table II shows the CER per specific document when
using 16 specific pages in training. Our method is the
only one that achieves a CER under 10% on each specific

Table 1T
CER PER DOCUMENT WITH 16 SPECIFIC PAGES IN TRAINING.

CER per specific test document
Konzil C | Schiller | Ricordi | Patzig | Schwerin < 10

OSU 3.79 12.45 15.04 12.54 3.50 2
ParisTech 8.02 14.58 30.19 15.51 9.18 2
LITIS 4.81 19.57 16.37 12.83 6.61 2
PRHLT 4.98 12.55 28.52 16.35 7.12 2
RPPDI 9.18 16.29 30.49 28.30 24.90 1
FCI 2.83 8.17 11.44 6.73 2.28 4
this work 2.73 8.41 9.72 7.19 2.74 5

document, with a CER under 3% for two of them. This
shows the interest of our method to real-life use cases,
when a perfect transcription is required and that automatic
transcription will be corrected by humans.

V. CONCLUSION

In this paper, we proposed to carry out writer adaptation
of a whole handwriting recognition system by adapting both
the optical model and the language model. The proposed
approach is evaluated on the ICFHR 2018 competition using
the READ data set and reaches state-of-the art performance
during writer adaptation. We obtain the best performance
both with 16 specific training pages to adapt the generic
system and the best improvement from the generic system
to the specific one. Our approach is the first one that reaches
a character error rates below 10% on each specific data set,
which was established to be the value below which human
correction can be conducted with acceptable efforts.
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