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Abstract—The most prominent type of artifact contaminating
electroencephalogram (EEG) signals is the eye blink (EB) artifact.
Hence, EB artifact detection is one of the most crucial pre-
processing step in EEG signal processing before this artifact can
be removed. In this work, an approach that identifies EB artifacts
without human supervision and automated varying threshold
setting is proposed and evaluated. The algorithm functions on
the basis of correlation between two EEG electrodes, Fp1 and
Fp2, followed by EB artifact threshold determination utilizing the
amplitude displacement from the mean. The proposed approach
is validated and evaluated in terms of accuracy and error rate
in detecting events of EB artifacts in EEG signals. Analysis
has revealed that the proposed approach achieved an average
of 96.6% accuracy compared to a conventional method of
identifying EB artifacts with a fixed constant threshold.

Keywords—Electroencephalogram, EB Artifacts, Automated
Threshold.

I. INTRODUCTION

The Electroencephalogram (EEG) signal has been in use
to interpret cognitive processes and physiological activity of
the brain for medical purposes such as diagnosing epilepsy,
sleep disorders, coma, encephalopathies and brain death. The
EEG signal is also being extensively used for various research
purposes, for example in neuroscience, cognitive science, cog-
nitive psychology, neurolinguistics and psychophysiological
research [1]. In addition, EEG signal is being progressively in-
vestigated for real time applications such as continual epilepsy
monitoring and brain computer interface (BCI). Hence, it is
important to extract meaningful neurological information from
EEG signal to facilitate its interpretation. However, EEG sig-
nals are often contaminated with undesired non-neurological
information which causes deviations in the signal of interest.
These undesired signals are termed artifacts. Superimposition
of these artifacts with EEG signal could potentially mystify
EEG’s interpretation. This is particularly relevant in medical
field where EEG signals are being used as a sole diagnostic
source, thus failing to recognize artifacts may severely affect
clinical decisions. Therefore, artifact identification in EEG sig-
nal processing is the first and most crucial step prior to artifact

removal. The most common types of artifacts contaminating
EEG signals are the cardiac artifact, the muscle artifact and
the eye blink artifact. The muscle artifact is induced by muscle
movement and contraction during EEG recording which takes
place when the subject talks and swallows. The pattern of the
artifact purely relies on the degree of muscle movement and
contraction. Cardiac artifact on the other hand is an effect of
electrical activity of the heart. The influence of cardiac artifact
on the scalp is typically low, with low amplitude, repetitive
and are of regular pattern. The eye blink (EB) artifact is the
strongest and most prominent type of artifact recorded along
with EEG, hence this research will focus on identifying it. EB
artifacts appear as spikes with amplitudes of around 10 times
greater than the actual brain signals, noticeable in the delta
wave range and can last up to 200ms to 400ms [2], [3].

A lot of methods have been developed in the past
for automatic identification or detection of EB artifacts in
EEG signal. One of the easiest and preferred ways for EB
artifact recognition is by simply using an amplitude threshold
[4]. This method determines if an EB artifact present in an
EEG segment if the amplitude in the segment exceeds a
predetermined amplitude threshold. However, the amplitude
of eye blinks may vary depending on the blinking strength of
an individual, hence this method may not identify EB artifacts
from an individual who exhibits gentle blinks which are lower
than the threshold value. The other common way of detecting
EB artifacts is through feature based identification which
determines the presence of EB artifact in an EEG segment
after extracting certain features. Some of the common features
used are the kurtosis, maximum absolute value, entropy-based
features and second-order difference in [4], [5], [6], [7]. As a
general rule, these artifact detection features require a certain
threshold value to classify or make a binary decision whether
or not an EEG segment is contaminated by EB artifact. As
elaborated earlier for the amplitude threshold, applying a fix
threshold value for the features discussed may lead to detection
errors due to the individual variance in blinking pattern and
blinking strength. As a result, the threshold values may need



to be tailored for every individual which will be impractical
in real time applications. This study proposes a new approach
to automatically identify EB artifacts with varying threshold
without any supervision on the EEG signal. The performance
of the proposed approach is measured by validating if the
proposed approach is accurate in identifying EB artifacts in
comparison with the use of a fix threshold.

The paper is organized as follows: Section II illustrates
the methodology, Section III elaborates the proposed algo-
rithm, results and discussions are included in Section IV and
V. Finally, Section VI provides the conclusion.

II. METHODOLOGY

A. Evaluation on Real EEG Signal

10 sets of EEG signals collected at Universiti Teknologi
PETRONAS, (UTP) are used to evaluate the proposed al-
gorithm. EB artifacts can be clearly captured in the frontal
channels, Fp1-Fp2 electrodes of the EEG recordings. Hence,
the proposed algorithm is evaluated on the frontal channel,
Fp1, of these EEG signals. All recorded signals are of different
durations, with a sampling frequency of 256 Hz. The evalu-
ation was performed using MATLAB R2016b in Windows 7
Professional (64 bit OS) with a 4GB RAM.

III. PROPOSED APPROACH

A. Unsupervised EB Artifact Region Detection

In an EEG signal recording, the EB artifacts are primarily
captured in the frontal electrodes, Fp1 and Fp2. This is because
the frontal electrodes are positioned close to the eyes. Another
logical point to note here is, both eyes of any individual blinks
simultaneously, hence the Fp1 and Fp2 electrodes should
theoretically unveil high correlation whenever eyes blink. To
validate this theory, the correlation between Fp1 and Fp2
channels of an EEG signal is computed in segments of 500
samples (1̃.95 seconds) per segment. This window size is
chosen so that at least one EB artifact can be captured in
this window. Figure 1 shows an example of Fp1’s and Fp2’s
recordings plotted out and their corresponding correlation
coefficient values in each segment.

The test has revealed that segments of Fp1 and Fp2
without EB artifact produces correlation below than 0.7,
whereas segments containing EB artifact results in higher
correlation, usually more than 0.9. Thus, existence of EB
artifact in a particular segment or window is supported by
the high correlation coefficient value, which proves the theory.
Following this, segments of the EEG signal contaminated with
EB artifacts are identified. However, EB artifact components
should be identified for subsequent analysis or artifact re-
moval, which requires a threshold. Next section will discuss on
the automated threshold level determination on every window
that was identified containing an EB artifact.

B. Automatic Thresholding to Identify EB Artifacts

Displacement or deviation of amplitude from the mean
is chosen as a threshold criteria to classify the EB artifact’s
onset point. The displacement of amplitude is chosen as EB

artifacts are higher in amplitude in nature relative to that of
the EEG or brain signal, hence the EB artifacts are expected to
yield higher displacement from mean amplitude in comparison
with uncontaminated EEG potentials. A threshold value is
required in the case of recognizing the starting event of an EB
artifact. First, the windows of Fp1 channel that were confirmed
containing EB artifacts identified through steps illustrated in
section III-A are subjected to attain displacement distribution
from the mean amplitude using:

Displacement[t] = |[X[t]− µ]| (1)

where, X[t] is the EEG signal’s amplitude at sample t = n
until t = n+500, n is any sample point of the signal where the
window starts, and µ is the mean of that window or segment.

An EB artifact event detection algorithm within a win-
dow or segment confirmed containing an EB artifact is then
designed. The onset of EB artifact is assumed 100 samples
(0.39 seconds) before the first sample of amplitude displace-
ment more than the threshold, within the window. The reason
setting the onset point in advanced of 100 samples before the
threshold is to provide a buffer for any subsequent analysis.
The end point of the EB artifact is found by aligning a 1
second (256 samples) window apart from the first sample of
amplitude displacement more than the threshold. A 1 second
window is chosen, because an eye blink can last up to 0.8
seconds (205 samples) in duration which can fit well into this
frame (100+256=356 samples).

An experiment was conducted to define classification
criteria to classify EEG potentials and EB artifacts. The
threshold value for EB artifact for windows containing EB
artifacts are checked and determined by this experiment. From
the displacement distribution, a mean (µ) and a standard
deviation (σ) are acquired. Figure 2 shows an example of
displacement distribution by setting the threshold value to be
any displacement values beyond 1σ from the mean, while
figure 3 shows EB artifacts components plotted in red when
threshold is set beyond 1σ.
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Fig. 2. Displacement Distribution for Threshold greater than 1σ
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Fig. 3. EB Artifacts for Threshold greater than 1σ

From Figure 3, it can be seen that some of the EEG
potentials are identified as EB artifacts when the threshold is
set beyond 1σ from the mean.

Figure 4 shows the displacement distribution of the same
segment by setting the threshold value to be any displacement
values beyond 2σ from the mean, while figure 5 shows EB
artifacts components plotted in red when threshold is set
beyond 2σ.

From Figure 5, it can be seen that all EB artifacts are
identified as EB artifacts when the threshold is set beyond 2σ
from the mean.

Figure 6 shows the same displacement distribution by
setting the threshold value to be any displacement values
beyond 3σ from the mean, while figure 7 shows EB artifacts
components plotted when threshold is set beyond 3σ.

From Figure 7, it can be seen that the EB artifacts are
not identified as EB artifacts when the threshold is set beyond
3σ from the mean.

Therefore the threshold for EB artifact dominating the
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Fig. 4. Displacement Distribution for Threshold greater than 2σ
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Fig. 5. EB Artifacts for Threshold greater than 2σ

EEG window in question can be correctly determined by
taking two standard deviation, 2σ width from mean of the



Displacement Distribution for Threshold greater than 3   
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Fig. 6. Displacement Distribution for Threshold greater than 3σ

Fig. 7. EB Artifacts for Threshold greater than 3σ

displacement distribution acquired.

threshold = mean + 2σ (2)

Figure 8 summarizes the EB artifact detection algorithm
in a flowchart.

IV. RESULTS

This section aims to measure the accuracy of the pro-
posed approach in detecting EB artifacts compared to the use
of a constant or common threshold. The constant threshold
is evaluated by fixing the threshold values of more than
10uV, 20uV, 30uV, 40uV and 50uV, whichever amplitude
displacement that exceeds these thresholds are considered to
be EB artifacts.

The binary prediction is used to test the detection of EB
artifacts, which produces below outcomes and the confusion
matrix as in Table I:

• True positive (TP): correct EB artifact detection
• False positive (FP): clean EEG identified as EB artifact
• True negative (TN): correct clean EEG identification
• False negative (FN): EB artifact identified as clean EEG

The efficiency of the proposed algorithm compared to
fix a constant threshold, is validated by manually inspecting

Start
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EB onset = 100 samples before EB start

EB end = 1 second after EB start,
EB region = EB onset to EB end,

Store this region as an EB artifact region

End
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NO
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Window (Fp1 & Fp2) = EB end + Window size

CC > 0.9

EB end = last point of 
window samples

Fig. 8. Flowchart of the Automated EB Artifact Identification Algorithm

TABLE I
CONFUSION MATRIX - EB ARTIFACT DETECTION

Detected
EB Artifact Clean EEG

Observed EB Artifact TP FN
Clean EEG FP TN

the EEG signals with measures derived from the confusion
matrix, such as the accuracy and error rate.

Error: The error rate, ERR is computed with mis-
detection of EB artifact and EEG divided by total number of
detections. Values approaching zero denotes better error rate.

ERR =
FP + FN

TP + TN + FN + FP
(3)

Accuracy: ACC is the opposite of error rate, where it is
the ratio of correct EB artifact and EEG detections by total
number of detections. The best accuracy is 1.

ACC =
TP + TN

TP + TN + FN + FP
(4)

The results obtained from the proposed method in com-
parison with constant thresholds in detecting EB artifacts
correctly, applied on the Fp1 channel of 10 EEG signals are
tabulated in Table II.

V. DISCUSSIONS

As elaborated in Section III-A, an automated EB arti-
fact detection algorithm is designed. The proposed approach
detects EB artifacts without any human supervision. First
EEG segments containing EB artifacts are recognized with the
concept of correlation between EEG electrodes, Fp1 and Fp2.
Secondly, to address the issue of fixing a constant threshold,



TABLE II
COMPARISON OF ACCURACY

Accuracy

Signal Proposed
(Automated Varying Threshold)

Fix Thresholds
10uV 20uV 30uV 40uV 50uV

EEG 1 94.4% 97.2% 91.7% 77.8% 50.0% 50.0%
EEG 2 98.9% 98.9% 97.8% 89.9% 57.3% 42.7%
EEG 3 97.9% 92.5% 98.9% 96.3% 49.7% 21.4%
EEG 4 97.5% 94.9% 94.9% 75.9% 27.8% 26.6%
EEG 5 96.9% 96.1% 97.7% 98.4% 97.7% 70.3%
EEG 6 94.3% 94.3% 94.3% 100.0% 98.7% 98.7%
EEG 7 97.9% 94.7% 97.9% 96.8% 97.9% 97.9%
EEG 8 97.0% 96.3% 94.0% 94.8% 92.5% 65.7%
EEG 9 94.8% 89.6% 95.7% 96.5% 87.0% 73.0%
EEG 10 96.2% 93.7% 94.9% 94.9% 94.3% 81.0%

AVERAGE 96.6% 94.8% 95.8% 92.1% 75.3% 62.7%

an automated and varying threshold is determined for every
EEG segment containing EB artifact using the amplitude dis-
placement. From Table II, the accuracy achieved in detecting
EB artifacts by the proposed technique is higher in average,
96.6% compared to 94.8%, 95.8%, 92.1%, 75.3% and 62.7%
achieved through fixing thresholds between 10uV to 50uV
of amplitude displacement. The individual accuracy value for
each EEG signal of the proposed automated threshold reveals
the accuracy has not fluctuated much, between 94% to 99%
compared to the constant thresholds, between 89% to 99% for
10uV, between 91% to 99% for 20uV, between 75% to 100%
for 30uV, between 27% to 99% for 40uV, and between 21%
to 99% for 50uV. The constant threshold has achieved 100%
accuracy for EEG set 6, which means the constant threshold
of more than 30uV for EB artifact detection suits well for
this data set. On the other hand, the 30uV threshold has only
achieved 75.9% of accuracy for EEG set 4. This indicates the
performance of fixing a constant threshold is purely dependent
on the nature of the EEG signal and is not consistent across all
EEG signals. While the automated threshold changes for every
window, whereby the threshold will correspond to the varying
nature of the EB artifacts. Hence, threshold is automatically
determined for every window without setting any specific
value.

VI. CONCLUSION

Conventional EB artifact detection algorithms depends
on constant thresholds or constant features to make a binary
decision to recognize if an EEG segment contains EB artifact
or not. In this paper, an unsupervised EB artifact detection
algorithm in EEG signal is proposed and evaluated. The
algorithm relies on the concept of correlation between two
EEG electrodes and the amplitude displacement range when
there is an event of EB activity. Based on the results and
discussions, it is apparent that the automated and unsupervised

EB artifact detection algorithm proposed in this paper is
accurate in identifying EB artifact events in an EEG signal.
On the other hand, the algorithm is also consistent in detecting
EB artifacts across different EEG signals compared to a con-
ventional algorithm which is fixed with a constant threshold to
detect EB artifacts. Thus, it can be concluded that the proposed
algorithm is a reliable solution in detecting EB artifacts across
all types of EEG signals which may have individual variance
due to blinking pattern and strength.
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