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ON THE PROBLEM OF PILLAI WITH PADOVAN NUMBERS AND

POWERS OF 3

MAHADI DDAMULIRA

Abstract. Let {Pn}n≥0 be the sequence of Padovan numbers defined by P0 = 0,

P1 = 1, P2 = 1 and Pn+3 = Pn+1 + Pn for all n ≥ 0. In this paper, we find all
integers c admitting at least two representations as a difference between a Padovan

number and a power of 3.

1. Introduction

We consider the sequence {Pn}n≥0 of Padovan numbers defined by

P0 = 0, P1 = 1, P2 = 1, and Pn+3 = Pn+1 + Pn for all n ≥ 0.

This is sequence A000931 on the Online Encyclopedia of Integer Sequences (OEIS). The
first few terms of this sequence are

{Pn}n≥0 = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . . .

In this paper, we study the Diophantine equation

Pn − 3m = c(1)

for a fixed integer c and variable integers n and m. In particular, we are interested in
finding those integers c admitting at least two representations as a difference between a
Padovan number and a power of 3. This equation is a variation of the Pillai equation

ax − by = c(2)

where x, y are non-gative integers and a, b, c are fixed positive integers.
In the 1930’s, Pillai (see [19, 20]) conjectured that for any given integer c ≥ 1, the
number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2 to the equation (2)
is finite. This conjecture is still open for all c 6= 1. The case c = 1 is Catalan’s conjecture
which was proved by Mihăilescu (see [18]). Pillai’s work was an extension of the work of
Herschfeld (see [15, 16]), who had already studied a particular case of the problem with
(a, b) = (2, 3). Since then, different variations of the Pillai equation have been studied.
Some recent results for the different variations of the Pillai problem involving Fibonacci
numbers, Tribonacci numbers, Pell numbers, the k-generalized Fibonacci numbers and
other generalized linearly recurrent sequences, with powers of 2, have been completely
studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
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2. Main Result

We discard the situations when n = 1 and n = 2 and just count the solutions for n = 3
since P1 = P2 = P3 = 1. The reason for the above convention is to avoid trivial parametric
families such as 1−3m = P1−3m = P2−3m = P3−3m. For the same reasons, we discard
the situation when n = 4 and just count the solutions for n = 5 since P4 = P5 = 2. Thus,
we always assume that n ≥ 2 and n 6= 4. The main aim of this paper is to prove the
following result.

Theorem 1. The only integers c having at least two representations of the form Pn−3m

are c ∈ {−6, 0, 1, 22, 87}. Furthermore, all the representations of the above integers as
Pn − 3m with integers n ≥ 3, n 6= 4 and m ≥ 0 are given by

−6 = P13 − 33 = P6 − 32;

0 = P10 − 32 = P6 − 31 (= P3 − 30);

1 = P14 − 33 = P7 − 31 (= P5 − 30);(3)

22 = P20 − 35 = P16 − 33;

87 = P24 − 36 = P17 − 33.

3. Preliminary results

3.1. The Padovan sequence. Here, we recall some important properties of the Padovan
sequence {Pn}n≥0. The characteristic equation

Ψ(x) := x3 − x− 1 = 0

has roots α, β, γ = β̄, where

α =
r1 + r2

6
, β =

−(r1 + r2) +
√
−3(r1 − r2)

12

and

r1 =
3

√
108 + 12

√
69 and r2 =

3

√
108− 12

√
69.

Furthermore, the Binet formula is given by

Pn = aαn + bβn + cγn for all n ≥ 0,(4)

where

a =
(1− β)(1− γ)

(α− β)(α− γ)
, b =

(1− α)(1− γ)

(β − α)(β − γ)
, c =

(1− α)(1− β)

(γ − α)(γ − β)
= b̄.(5)

Numerically, the following estimates hold:

1.32 < α < 1.33

0.86 < |β| = |γ| = α− 1
2 < 0.87(6)

0.72 < a < 0.73

0.24 < |b| = |c| < 0.25.

By induction, one can easily prove that

αn−2 ≤ Pn ≤ αn−1 holds for all n ≥ 4.(7)
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Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then [K,Q] = 6.
Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by

G := Gal(K/Q) ∼= {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Thus, we identify the automorphisms of G with the permutations of the roots of the
polynomial Ψ. For example, the permutation (αγ) corresponds to the automorphism
σ : α→ γ, γ → α, β → β.

3.2. Linear forms in logarithms. To prove our main result Theorem 1, we use several
times a Baker–type lower bound for a nonzero linear form in logarithms of algebraic
numbers. There are many such bounds in the literature like that of Baker and Wüstholz
from [2]. In this paper we use the result of Matveev [17], which is one of our main tools.
Let γ be an algebraic number of degree d with minimal primitive polynomial over the
integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− γ(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of γ. Then
the logarithmic height of γ is given by

h(γ) :=
1

d

(
log a0 +

d∑
i=1

log
(

max{|γ(i)|, 1}
))

.

In particular, if γ = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(γ) = log max{|p|, q}. The following are some of the properties of the logarithmic height
function h(·), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),(8)

h(ηs) = |s|h(η) (s ∈ Z).

Theorem 2 (Matveev). Let γ1, . . . , γt be positive real algebraic numbers in a real algebraic
number field K of degree D, b1, . . . , bt be nonzero integers, and assume that

(9) Λ := γb11 · · · γ
bt
t − 1,

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where
B ≥ max{|b1|, . . . , |bt|},

and
Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

3.3. Baker-Davenport reduction lemma. During the calculations, we get upper bounds
on our variables which are too large, thus we need to reduce them. To do so, we use some
results from the theory of continued fractions. Specifically, for a nonhomogeneous linear
form in two integer variables, we use a slight variation of a result due to Dujella and Pethő
(see [13], Lemma 5a), which is itself a generalization of a result of Baker and Davenport
[1]. For a real number X, we write ||X|| := min{|X − n| : n ∈ Z} for the distance from
X to the nearest integer.
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Lemma 1 (Dujella, Pethő). Let M be a positive integer, p/q be a convergent of the
continued fraction of the irrational number τ such that q > 6M , and A,B, µ be some real
numbers with A > 0 and B > 1. Let further ε := ||µq|| −M ||τq||. If ε > 0, then there is
no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

Finally, the following lemma is also useful. It is Lemma 7 in [14].

Lemma 2 (Gúzman, Luca). If m > 1, Y > (4m2)m and Y > x/(log x)m, then

x < 2mY (log Y )m.

4. Proof of Theorem 1

Assume that there exist positive integers n,m, n1,m1 such that (n,m) 6= (n1,m1), and

Pn − 3m = Pn1
− 3m1 .

In particular, we can assume that m ≥ m1. If m = m1, then Pn = Pn1
, so (n,m) =

(n1,m1), which gives a contradiction to our assumption. Thus m > m1 ≥ 0. Since

Pn − Pn1
= 3m − 3m1 ,(10)

and the right-hand side is positive, we get that the left-hand side is also positive and so
n > n1. Thus, n ≥ 5 and n1 ≥ 3, because n 6= 4.
Using the equation (10) and the inequality 7, we get

αn−4 ≤ Pn−2 ≤ Pn − Pn1
= 3m − 3m1 < 3m,(11)

αn−1 ≥ Pn ≥ Pn − Pn1
= 3m − 3m1 ≥ 3m−1,(12)

from which we get that

1 +

(
log 3

logα

)
(m− 1) < n <

(
log 3

logα

)
m+ 4.(13)

If n < 500, then m ≤ 200. We ran a Mathematica program for 2 ≤ n1 < n ≤ 500 and
0 ≤ m1 < m ≤ 200 and found only the solutions from the list (3). From now, we assume
that n ≥ 500. Note that the inequality (13) implies that 4m < n. Therefore, to solve the
Diophatine equation (1), it suffices to find an upper bound for n.

4.1. Bounding n. By using (1) and (4) and the estimates (6), we get

aαn + bβn + cγn − 3m = aαn1 + bβn1 + cγn1 − 3m1

|aαn − 3m| = |aαn1 + b(βn1 − βn) + c(γn1 − γn)− 3m1 |
≤ aαn1 + |b|(|β|n + |β|n1) + |c|(|γ|n + |γ|n1) + 3m1

≤ aαn1 + 2|b|(|β|n + |β|n1) + 3m1

≤ aαn1 + 4|b||β|n + 3m1

< αn1 + 3m1

< 2 max{αn1 , 3m1}.
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Multiplying through by 3−m, using the relation (11) and using the fact that α < 3, we
get

|aαn3−m − 1| < 2 max

{
αn1

3m
, 3m1−m

}
< max{αn1−n+5, 3m1−m+1}.(14)

For the left-hand side, we apply the result of Matveev, Theorem 2 with the following data

t = 3, γ1 = a, γ2 = α, γ3 = 3, b1 = 1, b2 = n, b3 = −m.
Through out we work with the field K := Q(α) with D = 3. Since max{1, n,m} ≤ n, we
take B := n. Further,

a =
α(α+ 1)

3α2 − 1
,

the minimum polynomial of a is 23x3 − 23x2 + 6x − 1 and has roots a, b, c. Also by
(6), we have max{|a|, |b|, |c|} < 1. Thus, h(γ1) = h(a) = 1

3 log 23. So we can take
A1 := 3h(γ1) = log 23. We can also take A2 := 3h(γ2) = logα, A3 := 3h(γ3) = 3 log 3.
We put

Λ = aαn3−m − 1.

First we check that Λ 6= 0, if it were, then aαn = 3m ∈ Z. Conjugating this relation
by the automorphism (αβ), we obtain that bβn = 3m, which is a contradiction because
|bβn| < 1 while 3m ≥ 1 for all m ≥ 0. Thus, Λ 6= 0. Then by Matveev’s theorem, the
left-hand side of (14) is bounded as

log |Λ| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(log 23)(logα)(3 log 3).

By comparing with (14), we get

min{(n− n1 − 5) logα, (m−m1 − 1) log 3} < 7.97× 1012(1 + log n),

which gives

min{(n− n1) logα, (m−m1) log 3} < 7.98× 1012(1 + log n).(15)

Now we split the argument into two cases
Case 1. min{(n− n1) logα, (m−m1) log 3} = (n− n1) logα.

In this case, we rewrite (10) as

|aαn − aαn1 − 3m| ≤ |b|(|β|n + |β|n1) + |c|(|γ|n + |γ|n1) + 3m1

≤ 2|b|(|β|n + |β|n1) + 3m1

≤ 4|b||β|n + 3m1

< 1 + 3m1 ≤ 3m1+1,

which implies ∣∣a(αn−n1 − 1)αn13−m − 1
∣∣ < 3m1−m+1.(16)

We put

Λ1 = a(αn−n1 − 1)αn13−m − 1.

As before, we take K = Q(α), so we have D = 3. To see that Λ1 6= 0, for if Λ1 = 0, then

a(αn−n1 − 1)αn1 = 3m.

By conjugating the above relation by the Galois automorphism (αβ), we get that

b(βn−n1 − 1)βn1 = 3m.
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The absolute value of the left-hand side is at most |b(βn−n1−1)βn1−1| ≤ |b|(|βn|+|βn1 |) <
2|b||β|n < 1, while the absolute value of the right-hand side is at least 3m ≥ 1 for allm ≥ 0,
which is a contradiction. Thus, Λ1 6= 0.
We apply Theorem 2 on the left-hand side of (16) with the data

t = 3, γ1 = a(αn−n1 − 1), γ2 = α, γ3 = 3, b1 = 1, b2 = n1, b3 = −m.

Since

h(γ1) ≤ h(a) + h(αn−n1 − 1)

<
1

3
log 23 +

1

3
(n− n1) logα+ log 2

<
1

3
(log 8 + log 23) +

1

3
× 7.98× 1012(1 + log n) by (15)

<
1

3
× 8.00× 1012(1 + log n)(17)

So, we can take A1 := 8.00× 1012(1 + log n). Furthermore, as before, we take A2 := logα
and A3 := 3 log 3. Finally, since max{1, n1,m} ≤ n, we can take B := n. Then, we get

log |Λ1| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(8.00× 1012(1 + log n))(logα)(3 log 3).

Then,

log |Λ1| > −6.38× 1025(1 + log n)2.

By comparing the above relation with (16), we get that

(m−m1) log 3 < 6.40× 1025(1 + log n)2.(18)

Case 2. min{(n− n1) logα, (m−m1) log 3} = (m−m1) log 3.
In this case, we rewrite (10) as∣∣aαn − (3m−m1 − 1) · 3m1

∣∣ ≤ aαn1 + |b|(|β|n + |β|n1) + |c|(|γ|n + |γ|n1)

≤ aαn1 + 4|b||β|n

< 1 +
3

4
αn1 < αn1 ,

which implies that

|a(3m−m1 − 1)−1αn3−m1 − 1| <
αn1

3m − 3m1
≤ 3αn1

3m

< 3αn1−n+4 < αn1−n+5.(19)

We put

Λ2 = a(3m−m1 − 1)−1αn3−m1 − 1.

Clearly, Λ2 6= 0, for if Λ2 = 0, then aαn = 3m− 3m1 , by similar arguments of conjugation
and taking absolute values on both sides as before we get a contradiction. We again apply
Theorem 2 with the following data

t = 3, γ1 = a(3m−m1 − 1)−1, γ2 = α, γ3 = α, b1 = 1, b2 = n, b3 = −m1.
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We note that

h(γ1) = h(a(3m−m1 − 1)−1) ≤ h(a) + h(3m−m1 − 1)

=
1

3
log 23 + h(3m−m1 − 1) < log(3m−m1+2)

= (m−m1 + 2) log 3 < 8.00× 1013(1 + log n) by (15).

So, we can take A1 := 2.40× 1013(1 + log n). Further, as in the previous applications, we
take A2 := logα and A3 := 3 log 3. Finally, since max{1, n,m1} ≤ n, we can take B := n.
Then, we get

log |Λ2| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(2.40× 1013(1 + log n))(logα)(3 log 3).

Thus,

log |A2| > −1.91× 1026(1 + log n)2.

Now, by comparing with (19), we get that

(n− n1) logα < 1.92× 1026(1 + log n)2.(20)

Therefore, in both Case 1 and Case 2, we have

min{(n− n1) logα, (m−m1) log 3} < 7.98× 1012(1 + log n),

max{(n− n1) logα, (m−m1) log 3} < 1.92× 1026(1 + log n)2.(21)

Finally, we rewrite the equation (10) as

|aαn − aαn1 − 3m + 3m1 | = |bβn1 + cγn1 | < 1.

Dividing through by 3m − 3m1 , we get∣∣∣∣a(αn−n1 − 1)

3m−m1 − 1
αn13−m1 − 1

∣∣∣∣ <
1

3m − 3m1
≤ 3

3m

≤ 3α−(n+n1−4) ≤ α4−n,(22)

since 1.32 < α ≤ αn1 . We again apply Theorem 2 on the left-hand side of (22) with the
data

t = 3, γ1 =
a(αn−n1 − 1)

3m−m1 − 1
, γ2 = α, γ3 = 3, b1 = 1, b2 = n1, b3 = −m1.

By using the algebraic properties of the logarithmic height function, we get

3h(γ1) = 3h

(
a(αn−n1 − 1)

3m−m1 − 1

)
≤ 3h

(
a(αn−n1 − 1)

)
3 + h(3m−m1 − 1)

< log 23 + 3 log 2 + 3(n− n1) logα+ 3(m−m1) log 3

< 3.86× 1026(1 + log n)2,

where in the above inequalities, we used the argument from (21). Thus, we can take
A1 := 3.86× 1026(1 + log n), and again as before A2 := logα and A3 := 3 log 3. If we put

Λ3 =
a(αn−n1 − 1)

3m−m1 − 1
αn13−m1 − 1,

we need to show that Λ3 6= 0. If not, Λ3 = 0 leads to

a(αn − αn1) = 3m − 3m1 .
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A contradiction is reached upon a conjuagtion by the automorphism (αβ) in K and by
taking absolute values on both sides. Thus, Λ3 6= 0. Applying Theorem 2 gives

log |Λ3| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(3.86× 1026(1 + log n)2)(logα)(3 log 3),

a comparison with (22) gives

(n− 4) < 3.08× 1039(1 + log n)3,

or

n < 3.10× 1039(1 + log n)3.(23)

Now by applying Lemma 2 on (23) with the data m = 3, Y = 3.10 × 1039 and x = n,
leads to n < 2× 1046.

4.2. Reducing the bound for n. We need to reduce the above bound for n and to do
so we make use of Lemma 1 several times. To begin, we return to (14) and put

Γ := n logα−m log 3 + log a.

For technical reasons we assume that min{n − n1,m − m1} ≥ 20. We go back to the
inequalities for Λ, Λ1 and Λ2, Since we assume that min{n − n1,m −m1} ≥ 20 we get
|eΓ − 1| = |Λ| < 1

4 . Hence, |Λ| < 1
2 and since the inequality |y| < 2|ey − 1| holds for all

y ∈
(
− 1

2 ,
1
2

)
, we get

0 < |Γ| < 2 max{αn1−n+5, 3m1−m+1} ≤ max{αn1−n+6, 3m1−m+2}.
Assume that Γ > 0. We then have the inequality

n

(
logα

log 3

)
−m+

log a

log 3
< max

{
α6

(log 3)αn−n1
,

9

(log 3)3m−m1

}
.

< max{36 · α−(n−n1), 9 · 3−(m−m1)}.
We apply Lemma 1 with the data

τ =
logα

log 3
, µ =

log a

log 3
, (A,B) = (36, α) or (9, 3).

Let τ = [a0; a1, a2, . . .] = [0; 3, 1, 9, 1, 2, 1, 4, 1, 2, 2, 1, 1, 3, 1, 2, 1, 20, 1, 1, 1, 3, 11, 1, . . .] be
the continued fraction of τ . We choose M := 2 × 1046 which is the upper bound on n.
By Mathematica, we find out that the convergent

p

q
=
p88

q88
=

3123049185137266854491675319812527194766363593581

12201370578769620000479260876419428374896683408344

is such that q = q88 > 6M . Furthermore, it yields ε > 0.394, and therefore either

n− n1 ≤
log(36q/ε)

logα
< 416, or m−m1 ≤

log(9q/ε)

log 3
< 105.

In the case Γ < 0, we consider the inequality

m

(
log 3

logα

)
− n+

log(1/a)

logα
< max

{
α6

logα
α−(n−n1),

9

logα
· 3−(m−m1)

}
< max{64α−(n−n1), 15 · 3−(m−m1)}.

We then apply Lemma 1 with the data

τ =
log 3

logα
, µ =

log(1/a)

logα
, (A,B) = (64, α), or (15, 3).
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Let τ = [a0; a1, a2, . . .] = [3; 4, 4, 1, 1, 4, 4, 9, 11, 2, 7, 4, 2, 4, 2, 1, 1, 1, 1, 2, 1, 1, 16, 1, . . .] be
the continued fraction of τ . Again, we choose M = 3 × 1046, and in this case the
convergent p/q = p91/q91 is such that q = q91 > 6M . Further, this yields ε > 0.394, and
therefore either

n− n1 ≤
log(64q/ε)

logα
< 416 , or m−m1 ≤

log(15q/ε)

log 3
< 105.

These bounds agree with the bounds obtained in the case Γ > 0. As a conclusion, we
have that either n− n1 ≤ 416 or m−m1 ≤ 105 whenever Γ 6= 0.
Now, we distinguish between the cases n−n1 ≤ 416 and m−m1 ≤ 105. First, we assume
that n − n1 ≤ 416. In this case we consider the inequality for Λ1, (16) and also assume
that m−m1 ≤ 20. We put

Γ1 = n1 logα−m log 3 + log
(
a(αn−n1 − 1)

)
.

Then inequality (16) implies that

|Γ1| <
6

3m−m1
.

If we further assume that Γ1 > 0, we then get

0 < n1

(
logα

log 3

)
−m+

log(a(αn−n1 − 1))

log 3
<

6

(log 3)3m−m1
<

6

3m−m1
.

Again we apply Lemma 1 with the same τ as in the case Γ > 0. We use the 88-th
convergent p/q = p88/q88 of τ as before. But in this case we choose (A,B) := (9, 3) and
use

µl =
log(a(αl − 1))

log 3
,

instead of µ for each possible value of l := n− n1 ∈ [1, 2, . . . , 416]. For all values of l, we
get ε > 9.9954× 10−8. Hence by Lemma 1, we get

m−m1 <
log(9q/ε)

log 3
< 110.

Thus, n − n1 ≤ 416 implies that m −m1 ≤ 110. A similar conclusion is reached when
Γ1 < 0.
Now let us turn to the case m−m1 ≤ 105 and we consider the inequlity for Λ2, (19). We
put

Γ2 = n logα−m1 log 3 + log(a(3m−m1 − 1)),

and we also assume that n− n1 ≥ 20. We then have

|Γ2| <
2α6

αn−n1
.

We assume that Γ2, then we get

0 < n

(
logα

log 3

)
−m1 +

log(a(3m−m1 − 1))

log 3
<

3α6

(log 3)αn−n1
<

106

αn−n1
.

We apply again Lemma 1 with the same τ, q, M, (A,B) := (106, α) and

µl =
log(a(3l − 1))

log 3
for k = 1, 2, . . . , 105.
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We get ε > 7.7434× 10−11, therefore

n− n1 <
log(106q/ε)

logα
< 464.

A similar conclusion is reached when Γ2 < 0. To conclude, we first get that either
n−n1 ≤ 416 or m−m1 ≤ 105. If n−n1 ≤ 416, then m−m1 ≤ 110, and if m−m1 ≤ 105
then n−n1 ≤ 464. Thus, we conclude that we always have n−n1 ≤ 464 and m−m1 ≤ 110.
Finally we go to the inequality of Λ3, (22). We put

Γ3 = n1 logα−m1 log 3 + log

(
a(αn−n1 − 1)

3m−m1 − 1

)
.

Since n ≥ 500, the inequality (22) implies that

|Γ3| <
3

αn−4
=

3α6

αn
.

Assuming that Γ3 > 0, then

0 < n1

(
logα

log 3

)
−m1 +

log(a(αk − 1)/(3l − 1)

log 3
<

3α6

(log 3)αn
<

116

αn
,

where (k, l) := (n−n1,m−m1). We again apply Lemma 1 with the same τ, q, M, (A,B) :=
(116, α) and

µk,l =
log(a(αk − 1)/(3l − 1)

log 3
for 1 ≤ k ≤ 464, 1 ≤ l ≤ 110.

For these cases, we get ε > 4.579572× 10−10, so we obtain

n ≤ log(116q/ε)

logα
< 458.

A similar conclusion is reached when Γ3 < 0. Hence, n < 500. However, this contradicts
our working assumption that n ≥ 500. This completes the proof of Theorem 1.
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