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ABSTRACT

Based on a numerical approach, we propose in this study to characterize the interaction between a laminar
boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. For
the purpose of this study, we define a canonical configuration that will help to improve our physical under-
standing of the interaction between a laminar flow and vaporization or condensation. By performing a full set of
simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number
depending on the dimensionless numbers (the Reynolds number, the Prandtl number, the Jakob number and the
density ratio) that characterize both vaporization and condensation. As attended, the Nusselt number decreases
or increases in the configurations involving vaporization or condensation respectively. For high Jakob number,
opposite trends are observed depending whether if vaporization or condensation is considered. Indeed a sa-
turation of the heat flux happens in the first case, whereas a self-amplification of the heat flux occurs in the
second one. Since the Nusselt number expressions are known, analytical expressions for the integrated heat flux
exchanged at the liquid/vapor interface can be determined. Our study also takes interest to the behaviour of the
viscous friction of the vapor flow on the liquid pool, which is weakly affected by the phase change, despite the
important variation of the local flow structure due to evaporation or condensation. The physical mechanisms
inducing all these phenomena are here discussed and clarified.

1. Introduction

There is currently little information on how an external flow will
modify evaporation or condensation of a liquid plane surface in spite of
its significant interest in various fields, such as processes in thermal
engineering, in combustion applications, weather forecasting or climate
modeling. Most applications cited above involve turbulent flows and
gas mixture. Nevertheless, the simpler configuration where a laminar
superheated or subcooled vapor flow is shearing a saturated liquid in-
terface has still never been solved whether theoretical, numerical or
experimental approaches are considered. This would be a significant
step forward before considering more complex configurations. The
theory of an expanding laminar boundary layer of a fluid above a solid
plate, known as the Blasius theory [1], has been generalized to account
for heat transfer between the fluid and an isothermal plate by Pohl-
hausen in Ref. [21]. Both theories are based on a boundary layer hy-
pothesis assuming that the velocity component in the streamwise di-
rection is much higher than the one in the normal direction to the plate.
However, when one considers an expanding boundary layer of a
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superheated or subcooled vapor flow over a saturated liquid, the latter
assumption is no longer valid due to the phase change vapor flow that
will respectively blow or aspirate the boundary layer, depending on
whether vaporization or condensation occurs. The mathematical com-
plexity of this problem being strongly increased, the resulting flow will
exhibit a fully two-dimensional rotational structure for which a classical
theoretical analysis can hardly be practiced. Consequently, using fully
resolved numerical simulation is a promising alternative for tackling
such a problem in order to improve our knowledge in the field of heat
transfer in liquid-vapor flow with phase change. Phase change heat
transfer, treated using the so-called conception of the two-phase
boundary layer, has been a subject of study in several papers. For ex-
ample, Koh et al. made an analysis of a saturated vapor in a forced-
convection flow over a flat plate in Ref. [12] and a vertical plate in Ref.
[13]. The configuration with film boiling was studied for a forced-
convection flow by Cess and Sparrow in Ref. [4] and for a free-con-
vection flow by Kaneyasu and Takehiro in Ref. [11]. Turkyilmazoglu in
Ref. [32] studies the traditional Stefan problems concerning solidifi-
cation or liquidisation phenomena of a phase changing bar. Regarding



the interaction between liquid-vapor phase change and two-phase
flows, s ince t he s eminal w orks o f R enksizbulut a nd Y uen [23,24],
where correlations on Nusselt number and drag coefficient of evapor-
ating droplets have been designed, a few studies have been dedicated to
fully characterize other configurations.

Scriven [27] has proposed 1D theory of bubble growth involving an
induced phase change flow motion (radial and irrotational flow). In the
context of bubble growth, Ruckenstein and Davis [25] have developed a
theoretical study where the external flow is approximated by a poten-
tial flow. Nevertheless, rotational effects can have influence both on the
viscous friction and the heat flux as it is the case in the present study.

In this paper, we present a numerical study to characterize the in-
teraction between a superheated or subcooled external laminar vapor
flow shearing a static and plane liquid pool at saturation temperature.
The Blasius-Pohlhausen theory of an expanding laminar boundary layer
over an isothermal plate can be considered as a reference solution. Qur
purpose was to find, for this configuration, a correlation on the Nusselt
number accounting for the modification of the local thermal gradient
on the interface due to the vaporization or condensation induced flow.
As the local structure of the flow is also modified in the vicinity of the
liquid-vapor interface, our study includes an analysis on the interfacial
viscous friction when phase change occurs.

To the best of our knowledge, the study on the interaction between
an external vapor flow and the liquid/vapor phase change of a liquid
pool has never been conducted before in the proposed configuration. In
addition to its academic interest, this study could also be relevant in
more industrial configurations, as for example in space applications. In
launchers fuel tanks, the pressure regularization is done by injecting
vapor jets above a liquid plane. It is of utmost importance to predict the
vaporization or condensation mass flow rate in such a configuration. A
solution is to solve the flow only on a small region close to the liquid/
vapor interface and obtain local laws on the heat flux that could be used
as a closure model in larger scale approaches.

2. Numerical methods for the direct numerical simulation
2.1. Mathematical formulation

The model used to compute the process of heat transfer with phase
change is identical to one described in Refs. [10,31], where the liquid
and the vapor phases are supposed incompressible and mono-
component. It is assumed that the fluid d ensities a nd t he thermo-
physical properties in each phase are spatially uniform. Therefore, the
mathematical formulation of the two-phase incompressible flow is:

V-V =0, 1)

DV
th = —Vp + V-(2uD) + pg. @
where V is the velocity field, p is the pression field, p is the density, u is
the dynamic viscosity, D is the deformation tensor and g is the gravity
acceleration.

The thermal field is computed by solving a simplified conservation
energy equation, formulated using the enthalpy primitive variable:

DT
pCp (E) = V-(kVT), @
where T is the thermal field, C, is the specific heat at constant pressure
and k is the thermal conductivity.

The governing equations are formulated in a “Jump Condition
Form”, meaning that the field equations are written in each phase se-
parately and additional jump conditions have to be imposed at the in-
terface to maintain the conservation of mass (Eq. (4)), momentum (Eq.
(5)) and energy (Eq. (6)). The movement of expansion or suction in the
vapor, depending on whether vaporization or condensation occurs, is
directly related to the phase change mass flow rate,

V] = m[l] n.

el 4

Because of the interface motion, momentum in the direction of the

unit normal vector n is convected at the relative velocity of the fluid

with respect to the interface. Including the effects of the pressure and

surface tension forces, the momentum balance normal to the interface
writes

[p]r=crx+2[;z%] —mz[l] .
on r P r (5)

Finally, the balance of energy at the interface translates that the
thermal flux exchanged at the interface depends on the energy released
or absorbed in the process of phase change,

[=kVT-n]F = L, (6)

with o the surface tension, x the local interface curvature, n the normal
vector at the interface pointing towards the liquid phase, L the latent
heat of vaporization, m the phase change rate and °—‘:' the normal de-
rivative of the normal velocity component. The operator [-|r accounts
for the jump across the interface I and it is defined by: [fIr = f,,p — fig-

The formalism to deduce the jump equations (4)-(6) is described in
Appendix A (see Refs. [7,8,19]).

As in this paper we consider a plane interface, simulations results do
not depend on surface tension due to zero interface curvature.
Moreover, according to the second law of thermodynamics and as-
suming that the local equilibrium hypothesis is still valid, the interface
temperature is imposed at the saturation temperature. This assumption
is thermodynamically consistent with a pure liquid/vapor system, see
for instance the following reference [3].

2.2. Numerical methods

In this section, the methods used in our numerical study are pre-
sented. The dimensional Navier Stokes equations (1)-(6) are solved for
a steady incompressible two-phase flow in a two-dimensional domain.

Thermal field is computed by solving the simplified conservation
energy Eq. (3). As the liquid-gas interface is not boundary fitted with
computational grid, the suitable jump conditions can be imposed across
the interface following the general guidelines of the Ghost Fluid Method
[6] to maintain the conservation of mass [19,30] and energy [7,8,31].
That is made possible by using the subgrid location of the interface with
a static Level Set function whose zero level curve represents the inter-
face [20]. Spatial derivatives are computed with fifth order WENO-Z
schemes [2]. A Black-Box MultiGrid solver [5] is used to solve the
pressure Poisson equation and we perform an implicit temporal dis-
cretization of the viscous terms as presented in Refs. [15,16]. The
system of unsteady equations is solved until reaching a steady state by
using a second order TVD Runge-Kutta scheme for the temporal in-
tegration.

As the interface temperature is constant and continuous across the
interface, the following algorithm, named GFTSB (Ghost Fluid Thermal
Solver for Boiling) in Refs. [31,34], has been designed in Ref. [7] to
solve the heat transfer around the interface when phase change occurs.
The scheme used for solving the energy equation is given by

T T wnyTn = v.kVT)
At B 7)

First, solve the temperature field in the liquid domain with a pre-
scribed Dirichlet boundary condition at the interface
pCp T = AtV-(k VT = p,Cp (T = Atu]-VT}), if¢ >0
Tlr = Tt (8)

with ¢ the Level Set function. Next, solve the temperature field in the
vapor domain with the same prescribed Dirichlet boundary condition at



the interface

p,Cp, T = AtV-(k,VTI*) = p,Cp. (T2 — Ar.VTY), if$ < 0
Tir = Tt ©

Once the temperature field has been computed, the local mass flow
rate can be easily deduced from

" = [=kVT-n];
Loap (10)

Given that the temperature field in the liquid is uniform and equal
to the saturation temperature, the thermal flux in the liquid phase is
zero. The local mass flow rate depends therefore only on the thermal
flux in the vapor phase. This formalism allows switching naturally from
vaporization to condensation depending only on the sign of the thermal
gradient. Indeed, if the vapor is superheated ri is positive and this leads
to a blowing effect in the vapor phase. On the other hand, if the vapor is
subcooled, 1 becomes negative which generates an aspirating flow
towards the interface.

Our in house code, DIVA, has been extensively validated with the-
oretical solutions [9,31,34] and with experimental data whether Nu-
cleate Boiling [10,33] or Leidenfrost Droplet [26] is considered. Suc-
cessful comparisons between numerical simulations and experimental
data in Ref. [29] for droplets collisions or in Ref. [14] for oscillations of
rising bubbles or droplets have also been reported.

3. Computational configuration of numerical simulations
3.1. Initialization and boundary conditions

We consider here the canonical configuration of an expanding
Blasius-Pohlhausen boundary layer interacting with a saturated and
static liquid pool. Our aim is to investigate the influence of the external
flow on the local heat flux, for an improved knowledge on the inter-
action between liquid/vapor phase change and fluid mechanics. Even
though each different industrial system would require a specific quan-
titative study, there is a strong interest in understanding local me-
chanisms in academic configurations. A possible experimental set-up
representative of our computations is illustrated in Fig. 1.

The actual computational domain implemented in our simulations is
the liquid/vapor domain (for x > x;). The interface has a plane shape,
which corresponds to the asymptotic case of a high Weber number
(high surface tension value). The vapor stream is flowing in the upper
part of the domain over a static saturated liquid pool located in the
lower part of the computational domain. An inflow boundary condition
is used on the left of the domain for the injection of the superheated or
subcooled vapor flow. Given that the purpose of this work is to study
the influence of the liquid/vapor phase change on an expanding
Blasius-Pohlhausen boundary layer, a boundary layer thickness &y, has
to be imposed at the inlet of the domain. This boundary layer thickness
depends on the length of the solid plate, defined as x;, on the schematics
in Fig. 1. It should be emphasized that the results of the present study
will directly depend on the inlet boundary layer thickness dy;. Such a

1 Teo; Uoo
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Fig. 1. Schematics of the expanding Blasius-Pohlhausen boundary layer inter-
acting with a saturated and static liquid pool.

dependence on the boundary layer thickness is classical in Fluid Me-
chanics and has been observed for various type of flows as reported in
Refs. [17,18] in the framework of primary atomization, for instance.

Velocity and temperature inflow profiles are computed by solving
respectively the Prandtl [22] and the Pohlhausen [21] boundary layer
equations:

'’ 1 '
@+ Ef mf'(m) =0, an
and

" Pr , _
6 () + Tf me'm =0 12)

where f= ;Toande = %arethenormaﬁzed stream function and the
non-dimensional temperature, respectively; AT is the thermal gradient.
The boundary conditions are: 7 =0: f=0,f =0; 75— co:f" =1 for
Eq. (11)and n=0:8=0; 75 — oco: 8 =1 for Eq. (12). We recall that
7~ % is the dimensionless variable, & ~ J% is the boundary layer

thickness, Pr = "kﬁ is the Prandtl number.

Free-boundary condition is used on top and on the right of the
computational domain, in order to avoid containment effects and to
maintain isobaric conditions.

As the aim of this work is to characterize a steady solution of the
interaction between an external flow and a static liquid pool, it is
considered that the interface position is fixed in time in order to
maintain a constant liquid height in the computational domain. This
assumption is fitting with the schematics of a possible experimental set-
up proposed in Fig. 1, if one considers an additional device that allows
maintaining a constant liquid level in the liquid pool. Unlike boiling,
stationary hypothesis is a classical approximation [28] when con-
sidering the evaporation of a liquid (as droplet evaporation for in-
stance) interacting with a superheated vapor since the velocity of the
vapor flow is much higher than the interface speed regression.

Moreover, it has been verified that for viscosity ratios % € [2,56]
the liquid motion due to the shear stress of the vapor flow on the in-
terface can be neglected in our configurations. Consequently, only the
velocity jump condition due to phase change will interact with the
external flow. However, such a configuration is consistent with the
static liquid hypothesis only if one assumes a sufficiently high density
ratio, since the ratio between the interface velocity and the vapor ve-
locity on the interface is close to the density ratio.

The velocity and thermal field are initialized, in the whole domain,
with the Blasius-Pohlhausen dynamic and thermal boundary layer
profiles, respectively.

3.2. Computational domain and mesh grid

To avoid the thermal singularity on the phase change mass flow rate
at the inlet plane, we assume that the vapor flow has traveled a distance
x;, over an isothermal solid plate before contacting the liquid pool
(Fig. 2 and Fig. 3). Consequently, the boundary layer thickness of the
vapor inlet flow depends on this distance x;, that can be accounted for in

our dimensionless analysis by defining an inlet Reynolds number Re,,,
PulooXs.
U

such as Rey, = . The dimensions of the computational domain are

(I, 1y) with I, = 6.78,;,, &y, = min(8,, ) where &, = 4.92 ‘;% and
VAL

or= 6,,Pr'% are the dynamic and the thermal boundary layers, re-
spectively. Our interest is to compute the spatial development of the
thermal and dynamical boundary layers over the saturated liquid pool.
A study on containment effects allowed showing that, for the vapor-
ization configuration, the dimension in the normal direction has to be
I, = 2I,, while, in the condensation configuration, I, = I, is sufficient to
ensure that the numerical solutions do not depend on the computa-
tional domain size. That can be explained considering that the vapor-
ization has a “blowing” effect on the boundary layer and so a larger
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Fig. 2. Streamlines and temperature profile [K] of a liquid pool evaporating in
an superheated gas flow for Pr = 0.98, Re,; = 211, % = 1623, Ja,q, = 7.38; left -
classic Blasius boundary layer, right - the boundary layer blown by the va-
porization.

= —-—
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Fig. 3. Streamlines and temperature profile [K] of a subcooled gas flow con-

densating in the liquid pool. for Pr = 0.98, Re;; = 211, :—’ = 1623, Jacond = 0.74;
v

left - classic Blasius boundary layer, right - the boundary layer “aspirated” by

the condensation.
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domain in the y-direction is needed to assure that the development of
the boundary layer is not affected by the upper boundary condition.
Unlike vaporization, condensation aspirates the boundary layer, so
containement effects have smaller influence on its spatial development.

Even though the present parametric study has been conducted using
the computation configuration presented in Section 3.1., some addi-
tional verifications have been done to ensure that the upstream con-
tainment effects do not have a significant influence on the Nusselt
number evolution (Fig. B.16 in B).

A convergence study with different mesh grids has been carried out
for both configurations, for a couple of liquid/vapor defined by the
following dimensionless numbers: Pr=1.022, Rey = 85.726,
% = 17.746, and two different values for the Jakob number: Ja,q, = 3.69

a‘ild Jaygp = 8.87 for the vaporization and Jacong = 0.37 and Jacond = 1.15
for the condensation. The dimensionless numbers are defined as it
follows: Re, = & ";’”’, s Jaygy = EoToo Bt g JQgong = —C""(T’;_'-T‘”). The
subscript V' is forvvapor and T is for liquid, p is the viscosity, Cp, is the
specific heat, k is the thermal conductivity, T, — Ty is the thermal
gradient and U, is the velocity in the uniform zone outside the
boundary layer.

The local dimensionless coefficient of heat transfer, known also as
the local Nusselt number, is defined as

x__ 4xX
k k(T -Ty)' 13)

Nu, =

where h is the convective heat transfer coefficient, ¢; is the local heat
flux at the liquid/vapor interface and T; is the liquid/vapor interface
temperature, equal to the saturation temperature Tgy.

At first glance, the evolution of the Nusselt number seems to be
converged with the grid 256 x 256, for the vaporization (Fig. 4) and
with the grid 128 x 128 for the condensation configuration (Fig. 5).
Nevertheless, the velocity jump at x = x; from a single-phase boundary
layer flow to a phase change boundary layer flow has to be captured
and well resolved. As one of the objectives of this numerical study is to
define correlations on the Nusselt number, high accuracy is required.
Consequently, the mesh grid 2048 x 1024 - for the vaporization, and
1024 x 1024 - for the condensation have been chosen to run the present
numerical study. At the inlet, this mesh grid allows to have ~ 150 points
in the boundary layer.

Since all the simulations are 2D and reach a steady state, the overall
computational cost of one simulation remains moderate even if a very
refined grid is considered. This has permitted to perform a full para-
metric study by varying the four dimensionless numbers characterizing

——— 128x128
—— — 256x256
————— 512x512
— — = 1024x1024
—rmmimm 2048x2048

"0.0021

1 1 J
0.004 0.006 0.008

0.002
x [m]
(b) Ja = 8.87

Fig. 4. Convergence study for the evolution of the Nusselt number for the vaporization configuration, for the dimensionless numbers: Re,; = 85.726, Pr = 1.022,

A = 17.746.
Py
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Fig. 5. Convergence study for the evolution of the Nusselt number for the condensation configuration, for the dimensionless numbers: Re,; = 85.726, Pr = 1.022,

A — 17.746.
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our configuration in a wide range of values. Moreover, solving mass and
momentum conservation equations in the liquid field enabled us to
assess that neglecting the liquid motion was a correct assumption, for
high viscosity ratio.

4. Results and discussion
4.1. Parametric study

A parametric study has been conducted to determine how the
Nusselt number is varying with the dimensionless numbers character-
izing our configuration. These dimensionless numbers can be extracted
from the physical model as: the Reynolds number Re, from the mo-
mentum balance Eq. (2), the Prandtl number Pr from the energy con-
servation equation Eq. (3), the Jakob number Ja from the balance of
energy at the interface Eq. (6) and the density ratio % from the jump
condition on the mass conservation Eq. (4). ’

The physical variables varied in this parametric study are the ve-
locity U, for the Reynolds number, the thermal conductivity of the
vapor k for the Prandtl number, the latent heat L for the Jakob number
and the liquid density p, for the density ratio.

The range of values for our parametric study was: Re,, = (15; 1250),
Pr = (0.6; 8), Ja = (0.00037; 8.87) and % = (10; 5000), with approxi-
mately fifty simulations in both conﬁgur::ltions.

——————————— Ja =
-

Ja = 11.5
Blasius Theory

1 1 1
0.004

x [m]

Fig. 6. Spatial evolution of the Nusselt number for different Jakob number for
the vaporization configuration; Pr = 1.022, Re,;, = 85.726, % = 17.746.
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Fig. 7. Spatial evolution of the Nusselt number for different Jakob number for
the condensation configuration; Pr = 1.022, Re,, = 85.726, Pﬂ = 17.746.
v

0.006

4.2. The spatial evolution of the Nusselt number

The spatial evolution of the Nusselt number along the longitudinal
coordinate x is showed in Fig. 6 for vaporization, and in Fig. 7 for
condensation, with a couple of liquid/vapor defined by the following
dimensionless numbers: Pr = 1.022, Re,, = 85.726, % = 17.746, and
different values of Jakob number. One can see that the Nusselt number
is lower for vaporization and higher for condensation than the Nusselt
number obtained from the Blasius theory. Indeed, as observed in Fig. 2,
when vaporization occurs, the thermal boundary layer being thickened
due to the expansion flow of vapor, the heat transfer coefficient de-
creases. The same trend has been observed by Yan and Soong in Ref.
[35], where the convective heat and mass transfer along an inclined
heated plate with film evaporation have been studied. On the other
hand, the condensation involves an aspirating flow towards the liquid/
vapor interface, as it can be visualized in Fig. 3. As this flow decreases
the thermal boundary layer thickness, the heat transfer coefficient is
increased.

For the vaporization, the minimum value observed on the Nusselt
number can be related to the rapid decrease of the heat flux in the
vicinity of the inlet flow (see Fig. 8). This can be explained by the
connecting zone between the Blasius-Pohlhausen expanding boundary
layer (for x < x;) and the established flow in interaction with the phase
change (for x > > x;).

The influence of the Jakob number on the spatial evolution of the
Nusselt number can also be visualized in Figs. 6 and 7. The increase of
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Fig. 8. Vaporization Configuration - Evolution of the local heat flux ¢; with the
x-axis for the dimensionless numbers: Pr = 1.022, Re,; = 85.726, ﬁ = 17.746 and

different values of Jakob number.

the Jakob number implies an increase of the vapor/liquid phase change
and therefore the Nusselt number decreases or increases if vaporization
or condensation is respectively concerned, as expected. Figs. 6 and 7 are
now compared in regard to the influence of the Jakob number on the
Nusselt number evolution. If the Jakob number is doubled and then
tripled, in the case of the boundary layer “blown” by the liquid pool
vaporization, a decrease of the intervals between the succesives curves
is observed, while if the boundary layer is “aspirated” by the con-
densation, the intervals between the succesives curves increase. These
unanticipated results will be further explained, but first, the correla-
tions on the Nusselt number will be presented.

4.3. Correlations on the Nusselt number

By fitting the numerical Nusselt number evolution obtained in all of
our simulations, we have found, general correlations that depend on the
dimensionless numbers characterizing this configuration. In what fol-
lows, the resulting correlations are presented separately for the va-
porization and for the condensation. For the sake of simplicity, the
approach to find these correlations is described in the Appendix C. Both
correlations have been designed by adding correction terms to the
Nusselt number from the Blasius theory which is defined as
Nu' = 0.332Pr0333Re?3,

4.3.1. Vaporization
The correlation for the Nusselt number with vaporization has the
following expression

Nuy® = Nuf' - (a(i - 1) + B)H(x =),
o )

where H (x — x1) is the Heaviside function who has a non-zero value
only for x > xz, a, 8 and n have the following expressions

Pl
o= 0.294Re£,‘_‘°5Pr°'33’(1 - e'°'°m(’“ P_v_l))}
—0.12
n = 0.935Re 21 pro07jq=01 217",

Py

Pl
ﬁ = 0_119ch-_“77pr0237(1 - e—QOOﬂJa(E_l) )’

4.3.2. Condensation
In the configuration involving condensation, the correlation on the
Nusselt number writes as

Table 1
The average relative error and the maximum relative error for the Nusselt
number for different couples of dimensionless numbers.

Condensation (%] Emax[%]

cl1 Pr=8, Rey, = 85.726 1.028 1171
Ja=037,2 =176
Py
c2 Pr =098, Rey, = 1250 0.58 0.75

Ja=0179, £ = 1623
Py

c3 Pr=1.022, Rey; = 85.726 0.65 1.34
Ja=07,2L =176
Py
c4 Pr =098, Rey, = 105.51 0.28 0.32
Ja = 0.179, £ = 5000
Py
c5 Pr =098, Rey, = 30 1.38 1.6
Ja=0179, £ = 1623
Py
C.6 Pr =6, Rey; = 105.51 1.69 1.8
Ja=0179, 2 = 1623
Py
Cc7 Pr =098, Rey; =105.51 0.57 0.703
Ja =029, & = 1623
Py
Vaporization (%) Emax|%]
LAl Pr=8, Rey, = 85.726 1.56 7

Ja=369,L-176
Py
V.2 Pr =098, Re,; = 1250 1.09 1.45
Ja=0179, 2 = 1623
Py

v.3 Pr=1.022, Rey, = 85.726 213 9.4
Ja=2887,2 176
v
V.4 Pr = 0.98, Rey; = 105.51 2.4 2.8
Ja =0.179, £ = 3500
Py
V.5 Pr=1.022, Rex; = 30 48 6
Ja=369,2L =176
Pv
V.6 Pr=1.022, Rey, = 85.726 1.8 2.69
Ja=369,L _5
Pv
v.7 Pr =098, Rey, = 105.51 217 2.64

Ja = 03598, £ = 1623
Py

m
Nu&™d = NuP + (y(i - 1) + n)H(X = Xxg),
X, (15)

where vy,  and m have the following expressions
el
y= 0.0854Reg_‘83Pr°35"(eM°m“ P_v-l) - 1),

al
m = 0.519Rez>** py0.042,002985lag

1.25
7 = 0.00042Rey,*** Pro>s [Ja (ﬂ - l)) .

4.3.3. Validation of the proposed correlations

For the sake of validation of the proposed correlations, we present
for various configurations in Table 1, the average relative error ¢ and
the maximum relative error g,,, between the computed Nusselt
number and the correlations, with the relative error defined as:
€= %100%. One can see that the average relative error be-
tween thexNusselt number from DNS and the correlation is less than 2%
for condensation and less than 5% for vaporization. Comparisons be-
tween the proposed correlations and numerical results are also plotted
in Fig. 9 for the vaporization and in Fig. 10 for the condensation for
different configurations from Table 1.
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Fig. 9. Spatial evolution of the Nusselt number for different configurations extracted from Table 1 for the case involving vaporization.

4.4. Asymptotic cases

The correlations on the Nusselt number can be simplified when
considering asymptotic cases, as it will be shown in the following
paragraphs.
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4.4.1. Asymptotic cases for the vaporization Nusselt number correlation

If Ja — 0, the approximation of the terms depending on the Jakob
number yields simpler expressions for the parameters a and f from Eq.
(14):
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Fig. 10. Spatial evolution of the Nusselt number for different configurations extracted from Table 1 for the case involving condensation.



a(Ja = 0) = 0.00731a(ﬂ - I)RefL‘495Pr°'333

v

and

B(Ja — 0) = 0.0005Ja (ﬂ - I)Re)?,'merO'z”.

v

This asymptotic case brings out a linear evolution of the Nusselt
number, both with the Jakob number and the density ratio, for low
vaporization rate.

When Ja = 0, the correction terms equal to 0 as the jump condition
on the velocity field is zero. Hence, the boundary layers are not mod-
ified and the expression of the Nusselt number fits simply with the one
obtained with the Blasius theory.

Considering the asymptotic cases Ja — oo or % — o0, it can be
shown that in the vaporization case, the expressicv)n of the Nusselt
number tends towards a saturation value:

Nuy®(Ja — o0) — NuB' — (0.294Re*> Pro333 + 0.119Re 4777 Pro2374),

It can be explained by remarking that an increase of the vapor su-
perheat tends to increase the local heat flux on the interface, and thus,
the jump on the normal velocity. As this jump condition tends to
thicken the thermal boundary layer and thus to decrease the local heat
flux, the saturation effect results from an equilibrium state between
these two antagonistic effects.

4.4.2. Asymptotic cases for the condensation Nusselt number correlation
The expression of the Nusselt number in the condensation case is
now presented for a low Jakob number.
If Ja — 0, Eq. (15) becomes:
X

Nuﬁ""d ~ Nufl + y(f

m
- 1) H(x — x1),
X1,

with

yUa = 0) = 0.0087](1(& - 1)Re,?i483pr°~356

v
and

m(Ja — 0) = 0.519Re;"** Pr=0042,

considering
n(Ja - 0) = 0.

As for the vaporization, when Ja = 0, the Nusselt number simply fits
with the Blasius theory.

Moreover, if Ja — oo or % — o0, an opposite trend to the one ob-
served for vaporization is relvaorted. In the case of condensation, the
oncoming subcooled flow being aspirated towards the interface, the
thickness of the thermal boundary layer is reduced. This leads to an
increase of the local heat transfer as it can be visualized in Fig. 7. It is
found that in the case of condensation, no saturation effect on the
Nusselt number is observed neither in the numerical simulations, nor in
the expression of the proposed correlation 15. This can be understood
by remarking that, compared to vaporization, in the case of con-
densation, the jump condition on the normal velocity is of opposite
direction, favoring the local heat transfer. These trends have also been
observed when Figs. 6 and 7 were compared regarding to the influence
of the Jakob number on the evolution of the Nusselt number.

4.5. The integrated heat flux

From the correlations on the Nusselt number one can calculate the
expression of the integrated heat flux exchanged at the liquid/vapor
interface.

4.5.1. Vaporization

Given the expression (eq. (14)) of the Nusselt number when va-
porization happens, the heat flux per unit of width, integrated between
x;, and x is defined as

PP, x;) = [ P )dx = k(T — Tiar) S, P

L x

ER]
= k(T — Toa)| S MOy — o [ ) dx— B [ Ldx

XL, XL X XL X

e

The different components of eq. (16) are calculated as it follows

x Nu®!(x) _ i _ 4
‘/;L — dx = 2(NuB(x) — NuP!(x;)), a7

. = " LA mesc(n), as)

1
sin (7n)
2Fl(—n, -n;1—n; X—L) is the Gauss hypergeometric function, defined

X
as

where  csc(zn) = is the cosecant function and

Fabeg= L© i(r(a+k)1“(b+k)z_")
24 \4, 0, 6 =

L@ro) 2 I'(c+ k) k!
with T'(a) = (a — 1)! the gamma function.

If one considers also the region x € (0, x;) where the boundary layer
is evolving without interacting with the vaporization, one will find the
following expression for the heat flux per unit of width

D(x, 1) = i pP (e + T P (x)dx = k(To = Tsm){zzvum )

e (%L)zl:l(_n—_nl_n% — mese(nn) | + ﬁln(%) H(x —x.)

n

a9

The expression (eq. (19)) of the integrated heat flux is plotted in
Fig. 11. The black curve represents the integrated flux exchanged if the
boundary layer evolved without interacting with the liquid vaporiza-
tion. The dotted lines depict the x-evolution of the thermal flux ex-
changed at the liquid/vapor interface from x; to L, for different values
of the Jakob number. As expected, the vaporization reduces the ex-
changed heat flux.
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Fig. 11. The x-evolution of the integrated exchanged thermal flux at the in-
terface for Pr = 1.022, Re,, = 85.726, g = 17.746 and different values of the
v

Jakob number - vaporization configuration.
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Jakob number - condensation configuration.

4.5.2. Condensation

For the configuration with condensation, the approach to calculate
the exchanged heat flux is the same as for the vaporization. Considering
the expression (eq. (15)) of the Nusslet number, the exchanged heat flux
per unit of width is expressed as

(x, xp) = [ HOdx + [ ¢ (x)dx = k(T = Tm){ZNuB‘(XH

(i) 2Fl(_”"_"':l—m,"—J:- — mesc(zm) +7;ln( ) HOe=x)

X
m XL

+17

(20)

The evolution of the integrated heat flux is plotted in Fig. 12. The
black curve represents the integrated flux exchanged if the boundary
layer evolved without interacting with the condensation. The dotted
lines depict the x-evolution of the exchanged heat flux at the liquid/
vapor interface from x;, to L, for different values of the Jakob number.
The exchanged heat flux is increased by the condensation.

4.6. The influence of the phase change on the viscous friction

We now examine the influence of the liquid/vapor phase change on
the viscous friction. Given the expression of the viscous tensor:

ou ou ov
W “(a—y + z)

ou ov ov
"(s + z) Xy

~§

we know that at the interface of normal vector ey, the stress vector
T = 7-ey has the following normal and shear components: T-e, = [t%
du dv
and T-ey = #(E + B_X)
The friction coefficient can be determined by: % = % with the
P
expression of the interfacial friction: 7; = T-e,l),. We recall that for the

Blasius theory the friction coefficient is CTFI = %. Plotted in Fig. 13 is
the evolution of the friction coefficient for the three configurations, i.e.
Blasius theory, vaporization and condensation. One can see that, sur-
prisingly, the phase change does not influence the viscous friction at the
liquid/vapor interface, despite the modification of the velocity field in
the vicinity of the interface.
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Fig. 13. Evolution of the friction coefficient for: Pr = 1.022, Re,, = 85.726,
% = 17.746, Jaugp = 3.69 and Jamns = 0.369.
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Fig. 14. Evolution of the tangential velocity u for the vaporization study case
for Pr=1.022, Re, = 85726, ﬁ =17.746, Ja,,, = 3.69: black line - Blasius
theory, red dashed line - vaporization configuration. Zoom on the liquid region
(the bottom left) and on the zone close to the interface (middle right).

In order to justify the relevance of this result we will further take a
look at the tangential and the normal velocities at the liquid/vapor
interface. For the sake of simplicity we will take only the example of the
vaporization. In Fig. 14, the evolution of the tangential velocity with
the Y-axis is plotted for x = %. It is noteworthy that the evolution of the
tangential velocity profile in the vaporization configuration is almost
identical to the Blasius boundary layer velocity profile, despite the
vapor blowing in the normal direction due to phase change. The liquid
motion due to the shear stress of the vapor flow on the interface is
negligible (see the zoom at the bottom left of the figure). Moreover,
there is little modification of the tangential velocity profile at the li-
quid/vapor interface (for y = —0.005 m) (see the zoom situated in the
middle right of the graphics). As simulations showed that we can still
make the assuption %‘ > %, this explains why only marginal mod-
ifications of the interfacial friction coefficient are observed.

Plotted in Fig. 15 is the evolution of the normal velocity v and the
thermal flux @ = k.,‘;—T with the Y-axis for a fixed value of x. An im-
portant difference can be observed between the normal velocity from
the Blasius theory and the normal velocity when the vaporization
phenomenon occurs. Unlike the classical Blasius theory, where the
thermal flux is induced only by conduction, in the phase change con-
figuration there is a significant influence of the thermal convection in
the transverse direction. Thereby, it can be understood that the dis-
continuity on the Nusselt number is induced by the jump condition on
the normal velocity field.
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5. Conclusions
Based on numerical simulations, in this paper we propose correla-
tions on the influence of an external flow on the vaporization or con-

densation of a static liquid pool. It is shown that the local flow, induced

Appendix A. Jump conditions

by the phase change, decreases or increases, respectively, the local heat
flux, depending upon vaporization or condensation is considered. For
the vaporization configuration it was found that the Nusselt number,
and therefore the heat transfer, decreases exponentially with the Jakob
number until reaching a saturation value. The opposite trend is ob-
served for the condensation, for which the Nusselt number increases as
an exponential function of the Jakob number. Another noteworthy re-
sult is about the viscous friction on the interface, or the tangential
component of the viscous tensor, which is weakly affected by the phase
change in the case of a plane interface. Additionally, given the evolu-
tion of the normal velocity v with y, the influence of the phase change
on the normal component of the viscous tensor is still very weak in
comparison to the tangential one, as it is the case for the classical
Blasius boundary layer. Moreover, even if the profiles are not super-
imposed, it can be qualitatively observed that the derivative Z—; is in the
same order of magnitude with or without phase change. This is why we
can conclude that the liquid vapor phase change has little influence on
the components of the viscous stress vector.
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The liquid and the vapor phases are separated by an interface across which the phase change occurs (i.e. the liquid vaporizes into vapor or the
vapor condenses into the liquid). The subscripts [ and v are used to refer to the liquid and vapor phases, respectively. The interface velocity is denoted
by Vr and n is the local unit vector pointing towards the liquid phase. The interface mass flux, m: is obtained by using the mass conservation across

the interface:

m=p (Vi = Vp)n =p,(V, — Vp)n.

(A1)

The jump on the velocity field across the interface can therefore be written as:

V] = m[l] n.
Plr

(A.2)

According to the second law of thermodynamics and assuming that the local equilibrium hypothesis is still valid, the interface temperature is
imposed at the saturation temperature: T} = T, = Ty, at the interface. Integrating Eq. (3) across the interface along with Eq. (A.1) gives the following

jump condition for the energy conservation

[oh(V; = Vp)n]r = [-kVT-n]r,

(A.3)

where the operator [-]r accounts for the jump across the interface I' and it is defined by: [f]r = f, — f; and h defines the enthalpy. It is assumed that h
depends only on the temperature. By using Eq. (A.1), the jump condition for the energy conservation rewrites

WL = [-kVT-n],

(A.4)

with L = [h]; the latent heat of phase change. Finally, integrating Eq. (2) across the interface and including the effects of surface tension leads to:

on r

which, by using Eq. (A.2), is rewritten as

[plr = o + Z[M%L - mZ[%l

(A.5)

(A.6)

Appendix B. The influence of a conditioning section within the simulation domain

We have included here a graph demonstrating the validity of the inflow boundary condition. A conditioning section has been added, where the



boundary layer is spatially developing from a certain point x = x;, to x = x;. The phase change is plugged at x; and we want to investigate the
differences between imposing a Blasius profile at the inlet plane and simulating its development upstream. Even if the computation domain starts
before the point x = Xx;, the evolution of the Nusselt number is not affected at all in the far field and only weakly affected in the inlet vicinity, as
demonstrated on the figure below.
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Figure B.16. Spatial evolution of the Nusselt number. Condensation configuration for: Pr = 1.022, Re,; = 85.726, Ja = 1.15 and % = 17.746.
v
Appendix C. Parametrical study

The purpose of the present work was to investigate the influence of liquid/vapor phase change on the Blasius theory results, particularly on the
Nusselt number evolution. At first, the correction

NuP = Nu2 = F(Re,, Pr, Ja, 2, x_y_),
Py

(C1
has been plotted.
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Fig. C.16. The correction on the Nusselt number from the Blasius theory with the x-axis - Vaporization configuration - dimensionless numbers: Pr = 1.022,
Rey; = 85.726, Ja = 3.60 and 7' = 17.746.
v

As it can be seen in Fig. C.17, for x = x;, the correction Nu — Nu! # 0 and it increases with x as a power function. Therefore, the Nusselt
number with vaporization can be written as

Nuy™ = Nu2' - (a (i - 1) + [B)H(x - x),
= (C.2)

where the Heaviside function H (x — x;) enables locating the phase change only for x > x.
The next step in our inquiry was to determine the evolution of the parameters a, f and n with the dimensionless numbers characterizing the
configuration of interest: Reynolds number Rey,, Prandtl number Pr, Jakob number Ja and the density ratio £. It is noteworthy that, given the

dimensionless form of Eq. (C.2), the choice of an inlet Reynolds number Re,, instead of a general Reynolds number Re; is straightforward.
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Figure C.18. Evolution of the jump ﬂ(Re,L, Pr, Ja, %) for x = x;, - Vaporization configuration.

The addressed approach to determine the parameters a, $ and n is developed as it follows. First, the jump B for x = x; has been examined. Its
evolution with the Reynolds number Rey, (Fig. C.18a), the Prandtl number (Fig. C.18b), the Jakob number (Fig. C.18c) and finally with the density
ratio (Fig. C.18d) have been plotted.

By means of a Matlab library, CFTool, one was able to obtain its evolution with the dimensionless numbers,

Py

g = 0.119Re,?:’77pr°-2374(1 - exp(—0.0043Ja (ﬂ - 1)))
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Figure C.19. Spatial evolution of the correction on the Nusselt number from the Blasius theory obtained from the numerical simulation and the function fitting its
evolution: @ = 2.062 and n = 0.3561; B known for the corresponding couple of dimensionless numbers.

In the interest of finding the expressions of the parameters a and n from Eq. (C.2), the relation Nu? — Nu!® has been plotted with the x axis for
each value of dimensionless number. For example, in Fig. C.19 the evolution of Nu® = Nu® is plotted for Rey, = 85.7226, Pr = 1.022, Ja = 3.689,
and % = 17.746. Conducting a full set of simulations sweeping a large range of values for the dimensionless numbers enabled us to determine the

v
expressions of parameters a and n,

a = 0.294Rep; > pro33 (1 - exp(—o.02481a (ﬂ - 1)))

v

and

—0.12
n = 0.9351Re; 1 Pr=o9. ja—O.l(ﬂ) .
Py

Their evolution with each dimensionless number is plotted in Fig. C.20 and Fig.C.21.
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