C. M. Thomas and K. M. Nielsen, Mechanisms of, and barriers to, horizontal gene transfer between bacteria, Nat Rev Microbiol, vol.3, pp.711-732, 2005.

L. S. Frost, R. Leplae, A. O. Summers, and A. Toussaint, Mobile genetic elements: the agents of open source evolution, Nat Rev Microbiol, vol.3, pp.722-754, 2005.

R. Wozniak and M. K. Waldor, Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow, Nat Rev Microbiol, vol.8, pp.552-63, 2010.

X. Bellanger, S. Payot, N. Leblond-bourget, and G. Guédon, Conjugative and mobilizable genomic islands in bacteria: evolution and diversity, FEMS Microbiol Rev, vol.38, pp.720-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01474898

V. Burrus, G. Pavlovic, B. Decaris, and G. Guédon, Conjugative transposons: the tip of the iceberg, Mol Microbiol, vol.46, pp.601-611, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01659089

A. P. Roberts and P. Mullany, Tn 916 -like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance, FEMS Microbiol Rev, vol.35, pp.856-71, 2011.

J. Guglielmini, L. Quintais, M. P. Garcillán-barcia, F. De-la-cruz, and E. Rocha, The repertoire of ICE in prokaryotes underscores the Unity, diversity, and ubiquity of conjugation, PLoS Genet, vol.7, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647077

J. Top, R. Willems, and M. Bonten, Emergence of CC17 Enterococcus faecium: from commensal to hospital-adapted pathogen, FEMS Immunol Med Microbiol, vol.52, pp.297-308, 2008.

J. Huang, L. Chen, D. Li, M. Wang, F. Du et al., Emergence of a vanG -carrying and multidrug resistant ICE in zoonotic pathogen Streptococccus suis, Vet Microbiol, vol.222, pp.109-122, 2018.

M. Haenni, A. Lupo, and J. Madec, Antimicrobial Resistance in Streptococcus spp. Microbiol Spectr, vol.6, 2018.

E. A. Sansevere and D. A. Robinson, Staphylococci on ICE: overlooked agents of horizontal gene transfer, Mob Genet Elem, vol.7, pp.1-10, 2017.

M. Brouwer, P. J. Warburton, A. P. Roberts, P. Mullany, and A. E. , Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile

, PLoS One, vol.6, 2011.

V. Adams, X. Han, D. Lyras, and J. I. Rood, Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens, Plasmid, 2018.

F. Santoro, M. E. Vianna, and A. P. Roberts, Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci, Front Microbiol, vol.5, 2014.

C. Ambroset, C. Coluzzi, G. Guédon, M. Devignes, V. Loux et al., New insights into the classification and integration specificity of Streptococcus integrative conjugative elements through extensive genome exploration, Front Microbiol, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01262284

M. R. Schroeder and D. S. Stephens, Macrolide Resistance in Streptococcus pneumoniae, Front Cell Infect Microbiol, vol.6, 2016.

F. De-la-cruz, L. S. Frost, R. J. Meyer, and E. L. Zechner, Conjugative DNA metabolism in gram-negative bacteria, FEMS Microbiol Rev, vol.34, pp.18-40, 2010.

E. L. Zechner, G. Moncalián, and F. De-la-cruz, Type IV secretion in gram-negative and gram-positive bacteria, pp.93-113, 2017.

E. Cabezón, J. Ripoll-rozada, A. Peña, F. De-la-cruz, and I. Arechaga, Towards an integrated model of bacterial conjugation, FEMS Microbiol Rev, vol.39, pp.81-95, 2014.

O. Draper, C. E. César, C. Machón, F. De-la-cruz, and M. Llosa, Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells, Proc Natl Acad Sci, vol.102, pp.16385-90, 2005.

M. Chandler, F. De-la-cruz, F. Dyda, A. B. Hickman, G. Moncalian et al., Breaking and joining single-stranded DNA: the HUH endonuclease superfamily, Nat Rev Microbiol, vol.11, pp.525-563, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00944976

G. Ramachandran, A. Miguel-arribas, D. Abia, P. K. Singh, I. Crespo et al., Discovery of a new family of relaxases in Firmicutes bacteria, PLoS Genet, vol.13, 2017.

M. P. Garcillan-barcia, M. V. Francia, L. De, and F. Cruz, The diversity of conjugative relaxases and its application in plasmid classification, FEMS Microbiol Rev, vol.33, pp.657-87, 2009.

T. V. Ilyina and E. V. Koonin, Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria, Nucleic Acids Res, vol.20, pp.3279-85, 1992.

W. Salgado-pabon, S. Jain, N. Turner, C. Van-der-does, and J. P. Dillard, A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae, Mol Microbiol, vol.66, pp.930-977, 2007.

M. V. Francia, D. B. Clewell, F. De-la-cruz, and G. Moncalian, Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases, Proc Natl Acad Sci, vol.110, pp.13606-13617, 2013.

J. A. Wisniewski, D. A. Traore, T. L. Bannam, D. Lyras, J. C. Whisstock et al., TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens: the novel relaxase TcpM, Mol Microbiol, vol.99, pp.884-96, 2016.

C. A. Lee, J. Thomas, and A. D. Grossman, The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions, J Bacteriol, vol.194, pp.3165-72, 2012.

C. Coluzzi, G. Guédon, M. Devignes, C. Ambroset, V. Loux et al., A glimpse into the world of integrative and Mobilizable elements in streptococci reveals an unexpected diversity and novel families of mobilization proteins, Front Microbiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580789

P. Douarre, E. Sauvage, C. Poyart, and P. Glaser, Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus, J Antimicrob Chemother, p.277, 2015.

J. M. Rocco and G. Churchward, The integrase of the conjugative transposon Tn916 directs strand-and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease Orf20, J Bacteriol, vol.188, pp.2207-2220, 2006.

L. D. Wright and A. D. Grossman, Autonomous replication of the conjugative transposon Tn916. Zhulin IB, editor, J Bacteriol, vol.198, pp.3355-66, 2016.

C. A. Lee and A. D. Grossman, Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis, J Bacteriol, vol.189, pp.7254-61, 2007.

S. B. Carr, S. Phillips, and C. D. Thomas, Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication, Nucleic Acids Res, vol.44, pp.2417-2445, 2016.

R. P. Nash, S. Habibi, Y. Cheng, S. A. Lujan, and M. R. Redinbo, The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1, Nucleic Acids Res, vol.38, pp.5929-5972, 2010.

S. Datta, C. Larkin, and J. F. Schildbach, Structural insights into single-stranded DNA binding and cleavage by F factor TraI, Structure, vol.11, pp.1369-79, 2003.

A. Ilangovan, C. Kay, S. Roier, E. Mkami, H. Salvadori et al., Cryo-EM structure of a Relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation, Cell, vol.169, pp.708-721, 2017.

J. S. Edwards, L. Betts, M. L. Frazier, R. M. Pollet, S. M. Kwong et al., Molecular basis of antibiotic multiresistance transfer in Staphylococcus aureus, Proc Natl Acad Sci, vol.110, pp.2804-2813, 2013.

R. Pluta, D. R. Boer, F. Lorenzo-díaz, S. Russi, H. Gómez et al., Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance, Proc Natl Acad Sci, vol.114, pp.6526-6561, 2017.

S. Chuzeville, A. Puymège, J. Madec, M. Haenni, and S. Payot, Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in streptococci. Biswas I, editor, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01637786

D. A. Boyd and M. R. Mulvey, The VanE operon in Enterococcus faecalis N00-410 is found on a putative integrative and conjugative element, Tn6202, J Antimicrob Chemother, vol.68, pp.294-303, 2013.

X. Han, X. Du, L. Southey, D. M. Bulach, T. Seemann et al., Functional analysis of a bacitracin resistance determinant located on ICE Cp1 , a novel Tn 916 -like element from a conjugative plasmid in Clostridium perfringens, Antimicrob Agents Chemother, vol.59, pp.6855-65, 2015.

R. Machielsen, R. J. Siezen, S. Van-hijum, and J. Van-hylckama-vlieg, Molecular description and industrial potential of Tn 6098 conjugative transfer conferring alpha-Galactoside metabolism in Lactococcus lactis, Appl Environ Microbiol, vol.77, pp.555-63, 2011.

P. J. Rauch, D. Vos, and W. M. , Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis, J Bacteriol, vol.174, pp.1280-1287, 1992.

E. A. Sansevere, X. Luo, J. Y. Park, S. Yoon, K. S. Seo et al., Transposasemediated excision, conjugative transfer, and diversity of ICE 6013 elements in Staphylococcus aureus, J Bacteriol, vol.199, 2017.

R. P. Novick, Staphylococcal plasmids and their replication, Annu Rev Microbiol, vol.43, pp.537-65, 1989.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-58, 2015.

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nat Protoc, vol.5, pp.725-763, 2010.

C. D. Thomas, D. F. Balson, and W. V. Shaw, In vitro studies of the initation of staphylococcal plasmid replication, J Biol Chem, vol.265, pp.5519-5549, 1990.

N. Carraro, V. Libante, C. Morel, B. Decaris, F. Charron-bourgoin et al., Differential regulation of two closely related integrative and conjugative elements from Streptococcus thermophilus, BMC Microbiol, vol.11, p.238, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01659072

X. Bellanger, A. P. Roberts, C. Morel, F. Choulet, G. Pavlovic et al., Conjugative transfer of the integrative conjugative elements ICESt1 and ICESt3 from Streptococcus thermophilus, J Bacteriol, vol.191, pp.2764-75, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01659303

A. Puymège, S. Bertin, G. Guédon, and S. Payot, Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNALys CTT gene, Mol Gen Genomics, vol.290, pp.1727-1767, 2015.

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat Protoc, vol.1, pp.2876-90, 2007.

F. Lorenzo-diaz, L. Dostal, M. Coll, J. F. Schildbach, M. Menendez et al., The MobM relaxase domain of plasmid pMV158: thermal stability and activity upon Mn2+ and specific DNA binding, Nucleic Acids Res, vol.39, pp.4315-4344, 2011.

J. Kopec, A. Bergmann, G. Fritz, E. Grohmann, and W. Keller, TraA and its N-terminal relaxase domain of the gram-positive plasmid pIP501 show specific oriT binding and behave as dimers in solution, Biochem J, vol.387, pp.401-410, 2005.

A. Guasch, M. Lucas, G. Moncalian, M. Cabezas, R. Pérez-luque et al., Recognition and processing of the origin of transfer DNA by relaxase TrwC, Nat Struct Biol, vol.10, pp.1002-1012, 2003.

A. F. Monzingo, A. Ozburn, S. Xia, R. J. Meyer, and J. D. Robertus, The structure of the minimal Relaxase domain of MobA at 2.1 Å resolution, J Mol Biol, vol.366, pp.165-78, 2007.

R. R. Koepsel, R. W. Murray, W. D. Rosenblum, and S. A. Khan, The replication initiator protein of plasmid pT181 has sequence-specific endonuclease and topoisomerase-like activities, Proc Natl Acad Sci, vol.82, pp.6845-6854, 1985.

C. A. Lee, A. Babic, and A. D. Grossman, Autonomous plasmid-like replication of a conjugative transposon, Mol Microbiol, vol.75, pp.268-79, 2010.

L. M. Guzmán and M. Espinosa, The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT, J Mol Biol, vol.266, pp.688-702, 1997.

M. Llosa, G. Grandoso, M. A. Hernando, and F. De-la-cruz, Functional domains in protein TrwC of plasmid R388: dissected DNA strand transferase and DNA helicase activities reconstitute protein function, J Mol Biol, vol.264, pp.56-67, 1996.

E. Lanka and B. M. Wilkins, DNA processing reactions in bacterial conjugation, Annu Rev Biochem, vol.64, pp.141-69, 1995.

S. Xia and J. D. Robertus, Effect of divalent ions on the minimal relaxase domain of MobA, Arch Biochem Biophys, vol.488, pp.42-49, 2009.

C. Larkin, R. Haft, M. J. Harley, B. Traxler, and J. F. Schildbach, Roles of active site residues and the HUH motif of the F plasmid TraI relaxase, J Biol Chem, vol.282, pp.33707-33720, 2007.

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Res, vol.16, pp.10881-90, 1988.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-328, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

D. T. Jones, W. R. Taylor, and J. M. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, pp.275-82, 1992.

L. Y. Geer, CDART: protein homology by domain architecture, Genome Res, vol.12, pp.1619-1642, 2002.

Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, CD-HIT suite: a web server for clustering and comparing biological sequences, Bioinformatics, vol.26, pp.680-682, 2010.

R. C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinf, vol.5, p.113, 2004.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, issue.22, pp.4673-80, 1994.

G. E. Crooks and . Weblogo, A Sequence Logo Generator, Genome Res, vol.14, pp.1188-90, 2004.

E. Maguin, P. Duwat, T. Hege, D. Ehrlich, and A. Gruss, New thermosensitive plasmid for gram-positive bacteria, J Bacteriol, vol.174, pp.5633-5641, 1992.

I. Biswas, A. Gruss, S. D. Ehrlich, and E. Maguin, High-efficiency gene inactivation and replacement system for gram-positive bacteria, J Bacteriol, vol.175, pp.3628-3663, 1993.

Y. Que, J. Haefliger, P. Francioli, and P. Moreillon, Expression of Staphylococcus aureus clumping factor a in Lactococcus lactis subsp. cremoris using a new shuttle vector, Infect Immun, vol.68, pp.3516-3538, 2000.

N. Dahmane, V. Libante, F. Charron-bourgoin, E. Guédon, G. Guédon et al., Diversity of integrative and conjugative elements of Streptococcus salivarius and their intra-and interspecies transfer, Appl Environ Microbiol, vol.83, pp.337-354, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01543490

L. J. Mcguffin, K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction server, Bioinformatics, vol.16, pp.404-409, 2000.

R. Adamczak, A. Porollo, and J. Meller, Combining prediction of secondary structure and solvent accessibility in proteins, Proteins, vol.59, pp.467-75, 2005.

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, JPred4: a protein secondary structure prediction server, Nucleic Acids Res, vol.43, pp.389-94, 2015.

G. Yachdav, E. Kloppmann, L. Kajan, M. Hecht, T. Goldberg et al., PredictProtein--an open resource for online prediction of protein structural and functional features, Nucleic Acids Res, vol.42, pp.337-380, 2014.

G. Raghava, APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning

. Soler, Mobile DNA, vol.10, p.18, 2019.

N. Sreerama and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal Biochem, vol.287, pp.252-60, 2000.

L. Whitmore and B. A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res, vol.32, pp.668-73, 2004.

G. Böhm, R. Muhr, and R. Jaenicke, Quantitative analysis of protein far UV circular dichroism spectra by neural networks, Protein Eng Des Sel, vol.5, pp.191-196, 1992.

B. Webb, A. Sali, A. Bateman, W. R. Pearson, L. D. Stein et al., Comparative Protein Structure Modeling Using MODELLER: Comparative Protein Structure Modeling Using Modeller, 2016.

M. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures, Protein Sci, vol.15, pp.2507-2531, 2006.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, J Comput Chem, vol.26, pp.1781-802, 2005.

J. Huang and A. D. Mackerell, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, J Comput Chem, vol.34, pp.2135-2180, 2013.

G. Pavlovic, V. Burrus, B. Gintz, B. Decaris, and G. Guédon, Evolution of genomic islands by deletion and tandem accretion by site-specific recombination: ICESt1-related elements from Streptococcus thermophilus, Microbiology, vol.150, pp.759-74, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01659488

N. Nakayama, I. Narumi, S. Nakamoto, and H. Kihara, Complete nucleotide sequence of pSTK1, a cryptic plasmid from Bacillus stearothermophilus TK015, Biotechnol Lett, vol.15, pp.1013-1019, 1993.