Seismicity in sheared granular matter
Aghil Zadeh, Jonathan Barés, Joshua Socolar, Robert Behringer

To cite this version:

HAL Id: hal-02137063
https://hal.archives-ouvertes.fr/hal-02137063
Submitted on 22 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Seismicity in sheared granular matter

Aghil Abed Zadeh,† Jonathan Barés, Joshua E. S. Socolar, and Robert P. Behringer

1 Department of Physics & Center for Non-linear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
2 Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France

We report on experiments investigating the dynamics of a slider that is pulled by a spring across a granular medium consisting of a vertical layer of photoelastic disks. The motion proceeds through a sequence of discrete events, analogous to seismic shocks, in which elastic energy stored in the spring is rapidly released. We measure the statistics of several properties of the individual events: the energy loss in the spring, the duration of the movement, and the temporal profile of the slider motion. We also study certain conditional probabilities and the statistics of mainshock-aftershock sequences. At low driving rates, we observe crackling with Omori-Utsu, Båth, and waiting time laws similar to those observed in seismic dynamics. At higher driving rates, where the sequence of events shows strong periodicity, we observe scaling laws and asymmetrical event shapes that are clearly distinguishable from those in the crackling regime.

I. INTRODUCTION

A wide variety of physical systems exhibit stick-slip dynamics in response to a steady driving force. In such systems, configurations of microscopic elements remain stable as the force builds up, then undergo fast microscopic rearrangements during macroscopic relaxation events. When the driving force is increased slowly, the distribution of event sizes often develops a power-law form, and the system is said to “crackle” [1]. Examples can be found in phenomena associated with fracture [2–5], friction [6,7], magnetization [8], neural activity [9,10], and seismicity [5,11,12], to mention a few. Many experimental studies [13–19], simulations [17,20–23], and theoretical models [24–27] have investigated the statistics of sizes and durations of slip events in disordered athermal systems. Such studies typically focus on the quasistatic regime, where the driving rate is slower than any relevant intrinsic time scale. Several conceptual tools for characterizing the dynamics were originally developed for the purpose of analyzing seismological data and forecasting earthquakes. In that context, it has been observed that the statistics of mainshocks (MS) and aftershocks (AS) follow several phenomenological scaling laws [28]: the Gutenberg-Richter power-law decay in the event size distribution; a power-law distribution of the waiting times between successive events [5,11,29]; a power-law distribution of AS productivity as a function of MS magnitude [30,31]; Båth’s law [32] for the constancy of the size ratio of the largest AS to the MS that produced it; and the Omori-Utsu law [33–35] for the decay in the rate of AS following a given MS. These laws, referred to as the fundamental laws of seismology [36], are used in the probabilistic forecasting of earthquakes, and it is important to understand their mechanistic origins and potential applicability to other types of crackling phenomena.

This paper reports on experimental studies of a slider that is pulled over a granular material. The system resembles earthquake systems in that stress accumulates at a slow, constant rate due to an external driving mechanism and is released rapidly in discrete events. Moreover, the granular matter (gouge) between two tectonic plates may play an important role in earthquake dynamics, which motivates us to probe the dynamics induced by the granular matter alone, in the absence of appreciable elastic deformations of the plates themselves. Krim et al. have also noted the importance of vibrations in determining frictional properties of granular materials, employing an apparatus quite similar to ours to study the statistics of events for a slider pulled at a given speed while vibrating at various frequencies [37]. The present work focuses on the zero vibration case and the dependence of event statistics on the pulling speed.

Our system undergoes a transition from crackling to periodic dynamics as the driving rate is increased [38]. We present results for all of the statistical quantities mentioned above in both regimes. We find that for slow driving rates our system follows familiar seismic laws and their associated predictions. For higher driving rates, however, the statistics of plastic events changes significantly. Our results in the crackling regime can serve as tests for general theories that have been developed in other contexts, such as the theory of epidemic-type aftershock sequences [36,39].

II. EXPERIMENTAL PROCEDURE

The experimental setup used for the present study is similar to the one used in Refs. [38,40], illustrated schematically in Fig. 1(a). A toothed two-dimensional (2D) frictional slider of length 25 cm and mass 85 g is attached to a linear spring of stiffness \(k = 70 \) N/m. The end of the spring is pulled at a constant speed \(c \). The slider lies on a vertical bed of bi-disperse cylindrical elastic particles of diameters 4 and 5 mm, with the number ratio \(N_{\text{small}}/N_{\text{big}} = 2.7 \). The granular
FIG. 1. Stick-slip event statistics for loading speed $c = 0.1 \text{ mm/s}$. (a) Schematic of the experiment at loading speed c. (b) Time series of the spring energy E (blue) and radiated power P (black). (c) An enlarged view of a single peak in P with starting time t_i, duration D_i, and size S_i. The horizontal line indicates the threshold used for event detection. (d) PDF of the event sizes. The blue dashed line is a fit to the form of Eq. (1) with $\beta = 1.22 \pm 0.07$ and $S_{\text{max}} = 6.1 \times 10^{-4} \pm 0.7 \times 10^{-4}$ J. Error bars show 95% confidence intervals. (e) Average event shape for $D_i \in (0.01, 0.02)$ s. The blue solid line is computed from the experimental data, and the blue dashed line is a fit to Eq. (2) with $\sigma = 1.09 \pm 0.02$. (f) Event duration as a function of event size. Gray dots are individual events; the black line is the binned average. The dashed line shows a power-law corresponding to $1/\gamma = 0.79$.

III. CRACKLING DYNAMICS

We consider the statistical relations between avalanches. Figure 2(a) shows the waiting time distribution, which would show a simple exponential decay for an uncorrelated Poisson process. Each curve is obtained by setting a lower cutoff size S_c and compiling the PDF of the times $\Delta t = t_j - t_i$, where j and j' refer to successive events with $S > S_c$. The curves are scaled horizontally by the average waiting time, T, between the included events, which yields a collapse to a single curve that can be fit by a power law with an exponential cutoff [11]:

$$P(\Delta t|S_c) \sim \frac{1}{T} u^{-\nu} e^{-\frac{\nu}{\max}}.$$

where $u = \Delta t/T$, $\nu = 1.10 \pm 0.08$ and $\max = 3.04 \pm 0.15$. The dashed line shows the best fit.

Another conventional method for characterizing correlations between events is known as seismicity declustering [5,43]. For any event \mathcal{M} (called the mainshock), associated aftershocks are defined as all subsequent events occurring before the next event larger than \mathcal{M}. The inset of Fig. 2(a) shows the average number, $N_{\mathcal{A}}$, of AS associated with MS of a given size, $S_{\mathcal{A}}$. We have checked that its productivity law remains unchanged after random shuffling of the sequence of events.

IV. CORRELATIONS BETWEEN EVENTS

For slower pulling speeds, we collect roughly 1000 avalanches per run, and we include several runs in our statistical analysis. For higher speeds, we collect ten runs with roughly 50 slip events per run.

To identify avalanches, we choose a threshold for P of 1.5 μW, which is above our rms noise level of 1.16 μW. As illustrated in Fig. 1(c), an avalanche starts when P exceeds the threshold and ends when it next drops below the threshold [17,41]. For each event, we extract the starting time t_i, the duration D_i, and the event size S_i, defined as the total energy radiated during the event, and the temporal profile of the power released by the spring, $P_i(t)$, for $\tau \in [0, D_i]$, where $\tau = t - t_i$. We then construct the following statistical quantities: the probability density function (PDF) for event sizes, $P(S)$; the average duration of events of a given size, $D(S)$; and the average scaled event shape for events with $D_i \in [D - \delta, D + \delta]$, $\overline{P}(u) = \langle P_i(t) \rangle / \max$, where $u = \tau/D_i$. Finally, we identify the AS’s associated with a given MS for the purpose of observing Bάth’s law, the productivity law, and the Omori-Utsu law.
Given the absence of relevant correlations in the sequence of event sizes, the law can be computed directly from the cumulative event size distributions $F(S) = \int_{s_{\text{min}}}^{S} p(s)ds$ [5]:

$$N_{\text{AS}}(S_{\text{MS}}) = \frac{F(S_{\text{MS}})}{1 - F(S_{\text{MS}})}.$$ \hspace{1cm} (4)

The result, shown as a dashed line in the inset of Fig. 2(a), matches the direct computation, confirming that the sequence of event sizes is essentially random.

Finally, we study the temporal structure of aftershocks, which is characterized by the Omori-Utsu law for the time dependence of the rate r of aftershock events [33,35] and Båth’s law for the ratio ρ of the size of a MS to its largest AS. Figure 2(b) shows the rate r of aftershocks following a MS of size S_{MS} as a function of the time elapsed since the MS, averaged over MS with similar sizes: r is a function of $(t - t_{\text{MS}})$. Curves for different S_{MS} collapse under the rescaling $t - t_{\text{MS}} \to (t - t_{\text{MS}})/N_{\text{AS}}(S_{\text{MS}})$ revealing that

$$r(t|S_{\text{MS}}) \sim u^{-\beta}f(u),$$ \hspace{1cm} (5)

where $u = (t - t_{\text{MS}})/N_{\text{AS}}(S_{\text{MS}})$ and f is a scaling function. We find $\beta \approx 0.7$.

The inset of Fig. 2(b) shows ρ as a function of S_{MS}. Within the error bars, the data are consistent with Båth’s law, which states that $\rho = S_{\text{MS}}/\max(S_{\text{AS}})$ is independent of S_{MS} and close to 1. Once again, permuting the sequence of events randomly does not change the curve, as shown by blue crosses. This implies that, like productivity law, Båth’s law finds its origin in the distribution of individual event sizes, without requiring system memory of the type introduced in epidemic-type aftershock sequence (ETAS) models [36,39].

V. DRIVING RATE EFFECT

As the driving rate is increased, the system passes into the periodic regime discussed in Ref. [38]. We report here the changes in avalanche statistics associated with this transition. Figure 3(a) shows the evolution of $P(S)$ with increasing c. The crackling behavior at low driving rates evolves to a uniform distribution with an upper cutoff reaching a stable form for $c > c_{c} \approx 20 $ mm/s. The inset shows the dependence on c of the $P(S)$ exponent, β, indicating that $\beta \sim \ln(c)$ for $10^{-1} < c < c_{c}$. For faster c, β vanishes within the error bars. For slower c it saturates at a constant value near 1.22.

Figure 3(b) shows the evolution of $P(\Delta t)$ to a narrow, Gaussian-like distribution for $c > c_{c}$ indicating a characteristic time between events. The inset shows the upper cutoff, Δt_{max}, as a function of c, revealing a power-law decay for c slower than c_{c}: $\Delta t_{\text{max}} \sim c^{-0.75 \pm 0.03}$ For faster c, Δt_{max} decays only logarithmically with increasing c, as discussed in Ref. [38].

Both $D(S)$ and $\overline{P}_{D}(u)$ for $D = 0.015$ s show clearly discernible differences in the periodic regime from their crackling behavior at low c. Figure 4(a) shows $D(S)$ for different pulling speeds. While $D(S)$ is a power law in all cases, the exponent is observed to decrease from ~ 0.8 for low c to ~ 0.3 for $c > c_{c}$.

Figure 4(b) shows how the average event shape of Fig. 1(c) evolves with increasing c. $\overline{P}_{D}(u)$ develops a left-shifted asymmetry as c increases. The exponent σ and asymmetry parameter a of Eq. (2) are plotted as a function of c in the top and bottom insets. σ is roughly constant for low c, then slowly increases to a saturation value for $c > c_{c}$, a is near zero for low c and increases sharply to a constant for $c > c_{c}$, meaning that during the average event in the periodic regime, the slider accelerates faster than it decelerates.

VI. DISCUSSION

Our experiments demonstrate that slowly shearing a granular bed by means of a pulled slider on its surface gives rise to the same types of scale-free distributions of event sizes, durations, and shapes as those seen in other crackling systems. We
observe behavior that is well described by standard versions of
the Gutenberg-Richter law, Omori’s law, the productivity law,
and Båth’s law. As the driving rate is increased, the parameters
characterizing the statistics vary smoothly until a crossover
occurs to the qualitatively different behavior observed in the
periodic regime reported in Ref. [38].

Comparing our results to those from other systems in the
crackling regime, we find the following. Our size exponent β
matches that observed in many other studies. Several quasi-
static theoretical models and simulations [21,23,25–27], as
well as fracture experiments by Barès et al. [3], reproduce
the same scaling exponent within the error bars. This value
is smaller, however, than that observed in other dynamic 3D
experiments [13,14,16,44] and the mean-field model exponent
of 1.5 [16,22,24,29], and it is larger than was found some
other studies [20,45]. The exponent γ we measure for the
$D(S)$ power law agrees with 3D experiments of Dalton et al.
[13] and with dislocation dynamics models [45]. It is lower,
however, than those of simulations by Liu et al. [23] and
a mean-field model by Budrikis et al. [26]. Our measured
exponent ν for the waiting time law agrees with the creep
mean-field model [29]. Finally, as has been recently reported
for nominally brittle fracture in amorphous materials [5],
we find that the productivity statistics and Båth’s law can
be directly implied from the Gutenberg-Richter law, without
knowing the correct sequence of events. This fact disquali-
fiﬁes ETAS [36] for modeling our system.

The symmetric parabolic avalanche shape we observe in
the crackling regime is predicted by many models [42], in-
cluding the mean-field model [24]. In the periodic regime,
however, we find asymmetric avalanche shapes with param-
ers different from those predicted by 3D simulations [23].
The source of the asymmetry is not clear, but we conjecture
that it is related to a crossover in time scales associated with
the slider motion and the relaxation dynamics of the granular
bed. Moreover, we measure an exponent σ different from
the value $\gamma - 1$ predicted in Ref. [42]. This may be due
to the combination of the physical effect of a finite driving
rate and the experimental resolution that requires a
finite threshold value for event detection. The former may yield
overlapping avalanches that we classify as a single event, and
the latter may result in the splitting of single avalanches into
two or more events [46]. Similar features were observed in
Barkhausen pulses [47] and were shown to result from the

![PDF, $P(S)$](image1)

![PDF, $P(\Delta t)$](image2)

![PDF, P_D](image3)
finite value of the demagnetization factor. Further investigation of the grain scale dynamics during slip events is needed to clarify the origin of these macroscopic phenomena.

Note added. Bob Behringer passed away unexpectedly before this manuscript could be drafted. He played a crucial role in this work and his contribution clearly justifies inclusion as an author.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions with Kirsten Martens and Daniel Bonamy. The work was supported by NSF Grants No. DMR-1206351 and No. DMR-1809762, NASA Grant No. NNX15AD38G, the William M. Keck Foundation, and DARPA Grant No. 4-34728.

[34] T. Utsu, Aftershocks and earthquake statistics (3): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1), J. Faculty Sci., Hokkaido Univ., Ser. 7 Geophys. 3, 379 (1972).

