, Success stories: air force; material substitution and new sealing, 4, s.l, AMPTIAC Q, vol.7, 2003.

Z. Wang, P. Chen, H. Li, B. Fang, and Z. Zheng, The intergranular corrosion susceptibility of 2024 Al alloy during re-ageing after solution treating and cold-rolling, Corros. Sci, vol.114, pp.156-168, 2017.

R. Bonzom and R. Oltra, Intergranular corrosion propagation rate of 2024 alloy investigated via the "one-dimensional artificial pit" technique, Corros. Sci, vol.111, pp.850-855, 2016.

S. P. Knight, M. Salagaras, A. M. Wythe, F. De-carlo, and A. R. Trueman, In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys, Corros. Sci, vol.52, pp.3855-3860, 2010.

J. A. Derose, T. Suter, A. Ba?kowiec, J. Michalski, K. J. Kurzydlowski et al., Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio, Corros. Sci, vol.55, pp.313-325, 2012.

T. Hu, H. Shi, D. Hou, T. Wei, S. Fan et al., A localized approach to study corrosion inhibition of intermetallic phases of AA 2024-T3 by cerium malate, Appl. Surf. Sci, pp.1011-1032, 2019.

B. G. Prakashaiah, D. Vinaya-kumara, A. Pandith, A. Shetty, and B. E. Rani, Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives, Corros. Sci, vol.136, pp.326-338, 2018.

W. Zhang and G. S. Frankel, Transitions between pitting and intergranular corrosion in AA2024, Electrochim. Acta, vol.48, pp.1193-1210, 2003.

J. Wloka and S. Virtanen, Detection of nanoscale ?-MgZn 2 phase dissolution from an AlZn-Mg-Cu alloy by electrochemical mocrotransients, Surf. Interface Anal, vol.40, pp.1219-1225, 2008.

V. Guillaumin and G. Mankowski, Localised corrosion of 2024 T351 aluminum alloy in chloride media, Corros. Sci, vol.41, pp.421-438, 1998.

J. R. Galvele and S. M. Demicheli, Mechanism of intergranular corrosion of Al-Cu alloys, Corros. Sci, vol.10, pp.795-807, 1970.

V. Y. Gertsmann and S. M. Bruemmer, Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys, Acta Mater, vol.49, pp.1589-1598, 2001.

V. Randle, The coincidence site lattice and the 'sigma enigma, Mater. Charact, vol.47, pp.411-416, 2001.
DOI : 10.1016/s1044-5803(02)00193-6

X. Y. Fang, W. G. Wang, H. Guo, X. Zhang, and B. X. Zhou, Corrosion behaviors of random and special grain boundaries in a sensitized 304 stainless steel, J. Iron Steel Res. Intern, vol.14, pp.339-343, 2007.

S. H. Kim, U. Erb, and K. T. Aust, Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum, Scripta Mater, vol.44, pp.835-839, 2001.
DOI : 10.1016/s1359-6462(00)00682-5

A. J. Davenport, Y. Yuan, R. Ambat, B. J. Connolly, M. Strangwood et al., Intergranular corrosion and stress corrosion cracking of sensitised AA5182, Mater. Sci. Forum, pp.641-646, 2006.

M. Guérin, J. Alexis, E. Andrieu, L. Laffont, W. Lefebvre et al., Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy, Corros. Sci, vol.102, pp.291-300, 2016.

C. Luo, X. Zhou, G. E. Thompson, and A. E. Hugues, Observations of intergranular corrosion in AA2024-T351: the influence of grain stored energy, Corros. Sci, vol.61, pp.35-44, 2012.

M. L. De-bonfils-lahovary, L. Laffont, and C. Blanc, Characterization of intergranular corrosion defects in a 2024 T351aluminium alloy, Corros. Sci, vol.119, pp.60-67, 2017.

Y. Ma, X. Zhou, G. E. Thompson, M. Curioni, X. Zhong et al., Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy, vol.53, pp.4141-4151, 2011.

T. Hashimoto, X. Zhou, P. Skeldon, and G. E. Thompson, Structure of the copper-enriched layer introduced by anodic oxidation of copper-containing aluminium alloy, Electrochim. Acta, vol.179, pp.394-401, 2015.

X. Zhou, C. Luo, Y. Ma, T. Hashimoto, G. E. Thompson et al., Grain stored energy and the propagation of intergranular corrosion in AA2xxx

T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S. J. Haigh et al., Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging, Corros. Sci, vol.103, pp.157-164, 2016.

M. L. De-bonfils-lahovary, M. C. Lafouresse, J. Delfosse, L. Laffont, and C. Blanc, Characterization and control of the intergranular corrosion defects in a 2024 T351 aluminium alloy, NACE Conference Paper, pp.2017-9427, 2017.

C. Larignon, J. Alexis, E. Andrieu, L. Lacroix, G. Odemer et al., Investigation of Kelvin probe force microscopy efficiency for the detection of hydrogen ingress by cathodic charging in an aluminium alloy, Scripta Mater, vol.68, pp.479-482, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00784218

M. C. Lafouresse, M. L. De-bonfils-lahovary, C. Charvillat, L. Oger, L. Laffont et al., A Kelvin probe force microscopy study of hydrogen insertion and desorption into 2024 aluminum alloy, J. Alloys Comp, vol.722, pp.760-766, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627635

M. C. Lafouresse, M. L. De-bonfils-lahovary, L. Laffont, and C. Blanc, Hydrogen mapping in an aluminium alloy using an alternating current scanning electrochemical microscope (AC-SECM), Electrochem. Commun, vol.80, pp.29-32, 2017.

R. F. Schaller, S. Thomas, N. Birbilis, and J. R. Scully, Spatially resolved mapping of the relative concentration of dissolved hydrogen using the scanning electrochemical microscope, Electrochem. Commun, vol.51, pp.54-58, 2015.

S. Thomas, N. Ott, R. F. Schaller, J. A. Yuwono, P. Volovitch et al., The effect of absorbed hydrogen on the dissolution of steel, Heliyon, vol.2, p.209, 2016.

W. Barrows, R. Dingreville, and D. Spearot, Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations, Mater. Sci. Eng, vol.650, pp.354-364, 2016.

Y. Takahashi, H. Kondo, R. Asano, S. Arai, K. Higuchi et al., Direct evaluation of grain boundary hydrogen embrittlement: a micromechanical approach, Mater. Sci. Eng. A, vol.661, pp.211-216, 2016.

A. Oudriss, J. Bouhattate, C. Savall, J. Creus, X. Feaugas et al., On the implication of hydrogen on inter-granular fracture, Procedia Mater. Sci, vol.3, pp.2030-2034, 2014.

A. Oudriss, J. Creus, J. Bouhattate, C. Conforto, C. Berziou et al., Grain size and grain boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater, vol.19, pp.6814-6829, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01892728

A. Oudriss, S. L. Guernic, Z. Wang, B. Osman, J. Hoch et al., Meso-scale anisotropic hydrogen segregation near grainboundaries in polycrystalline nickel characterized by EBSD/SIMS, Mater. Lett, vol.165, pp.217-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01892883

S. Bechtle, M. Kumar, B. P. Somerday, M. E. Launey, and R. O. Ritchie, Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials, Acta Mater, vol.57, pp.4148-4157, 2009.

H. K. Birnbaum, C. E. Buckley, F. Zeides, E. Sirois, P. Rozenak et al., Hydrogen in aluminium, J. Alloys Comp, vol.253, pp.260-264, 1997.

W. Zhang and G. S. Frankel, Localized corrosion growth kinetics in AA2024 alloys, J. Electrochem. Soc, vol.149, pp.510-519, 2002.

W. Zhang and G. S. Frankel, Anisotropy of localized corrosion in AA2024-T3, Electrochem. Sol. State Lett, vol.3, pp.268-270, 2000.

L. Priester, Les joints de grains: De la théorie à l'ingénierie, s.l, EDP Sci, 2006.

M. Winning and A. D. Rollet, Transition between low and high angle grain boundaries, Acta Mater, vol.53, pp.2901-2907, 2005.

N. Birbilis, M. K. Cavanaugh, L. Kovarik, and R. G. Buchheit, Nano-scale dissolution phenomena in Al-Cu-Mg alloys, Electrochem. Com, vol.10, pp.32-37, 2008.

S. Garcia-vergara, P. Skeldon, G. E. Thompson, P. Bailey, T. C. Noakes et al., Morphology of enriched alloy layers in an anodized Al-Cu alloy, Appl. Surf. Sci, vol.205, pp.121-127, 2003.

F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2004.

B. W. Bennett and H. W. Pickering, Effect of grain boundary structure on sensitization and corrosion of stainless steel, Metal. Trans. A, vol.18, pp.1117-1124, 1987.

S. R. Ortner and V. Randle, A study of the relation between grain boundary type and sensitisation in a partially-sensitised AISI 304 stainless steel using electron backscattering patterns, Surf. Interface Anal, vol.23, pp.1543-1547, 1989.