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Nonparametric confidence interval for conditional
quantiles with large-dimensional covariates

Laurent Gardes
Université de Strasbourg & CNRS, IRMA, UMR 7501,

7 rue René Descartes, 67084 Strasbourg Cedex, France

Abstract

The first part of the paper is dedicated to the construction of a v - nonpara-
metric confidence interval for a conditional quantile with a level depending on
the sample size. When this level tends to 0 or 1 as the sample size increases,
the conditional quantile is said to be extreme and is located in the tail of the
conditional distribution. The proposed confidence interval is constructed by
approximating the distribution of the order statistics selected with a nearest
neighbor approach by a Beta distribution. We show that its coverage proba-
bility converges to the preselected probability v and its accuracy is illustrated
on a simulation study. When the dimension of the covariate increases, the
coverage probability of the confidence interval can be very different from .
This is a well known consequence of the data sparsity especially in the tail of
the distribution. In a second part, a dimension reduction procedure is pro-
posed in order to select more appropriate nearest neighbors in the right tail
of the distribution and in turn to obtain a better coverage probability for ex-
treme conditional quantiles. This procedure is based on the Tail Conditional
Independence assumption introduced in (Gardes, Eztremes, pp. 57-95, 18(3),
2018).

Keywords: Extreme conditional quantiles, confidence interval, dimension re-
duction.

1 Introduction

In a large range of applications, it is necessary to examine the effects of an
observable RP-valued random covariate X on the distribution of a dependent
R-valued variable Y. For instance, Y can model the level of ozone in the air and



X be the vector gathering the concentration of other pollutants and weather
conditions (e.g., Han et al. [17]). The relation between X and Y is commonly
studied through the conditional expectation E(Y | X). An alternative way is
to analyze conditional quantiles of Y given X. Recall that for all x € X C R?,
X being the support of X, and for @ € (0,1), the (1 — a)-conditional quantile
of Y given X =z is Q(a | z) = inf{y; S(y | «) < a}, where S(- | z) :=P(Y >
- | X = x) is the conditional survival function of Y given X = x. Starting
from n independent copies (X1,Y7),...,(X,,Y,) of the random vector (X,Y),
conditional quantile estimation has been investigated by several authors see for
example Stute [27] and Yang [30] for the case of a fixed level o and Gardes |9]
and Gardes et al. [14] for an extreme level @ = a,, — 0. Instead of a point
estimation of Q(« | xg) where xg is a given point in X, we are interested here
in the construction of a confidence interval for conditional quantiles. More
specifically, our goal is to find a random interval [A,, ,(20), Bn~(z0)] such
that,

lim P {[An (@0), Basy(20)] 2 Qo | 20)} = 7, 1)

n—oo

where v € (0, 1) is a preselected probability. Usually, we take v = 0.9 or 0.95.
To allow us to make inference on the right and left tails of the conditional
distribution, we also consider the case where o = a,, depends on the sample
size n and tends to 0 or 1 as the sample size increases. In the application on
ozone concentration, this can be of high interest since large ozone levels in the
air may cause serious effects on public health and on the environment.

The literature on the construction of confidence interval for conditional quan-
tiles is, up to our knowledge, only dedicated to the case where « is a fixed
value in (0,1). Several approaches have been considered.

The first one is called direct approach and is discussed for instance in Fan
and Liu [7]). Let g(- | xo) be the first derivative of Q(- | xo) and let
0 < a1 < ag < 1. The construction of the confidence interval is based on
the existence of a random process @n( | z9) indexed by « € [aq, ag] for which
cn(@n( | 29) — Q(- | xo)) converges to a centered Gaussian process with vari-
ance ¢2(- | zo)o?(- | zo) for some positive sequence (c,,). It can be shown that
the coverage probability of the interval

(Qn (= 5wy a0 (e | 20) [ 20) , @n (0 + e gty por (e | 20) | o) |

converges to 7 for any a € [, o] where ug is the S-quantile of a standard
normal distribution. The main drawback of the direct approach is that in most
cases, the sequence c¢,, depends on unknown quantities, such as the probability
density function of X, that have to be estimated.

To avoid the estimation of ¢,,, resampling methods have been considered by
Parzen et al. 23] and Kocherginsky et al. [20]. Unfortunately, these methods
are often time consuming.

A last approach to construct confidence interval for conditional quantiles is
based on order statistics. The order statistic method has been first introduced



in the unconditional case, see e.g., Thompson [28|, Hutson [19] and David and
Nagaraja [5]. Let us briefly recall the construction procedure. Assume that
Y1,...,Y, are independent and identically distributed random variables with
common survival function Sy (-) and quantile function Qy(-). Denoting by
Yin < ... <Y,, the order statistics, if Sy (-) is a continuous and strictly
decreasing function, the probability integral transform ensures that

P(Yjn < Qy(@)) = P(Sy (Yjn) > @) = P(Un—jt1n > @),

where Uy, < ... < U,, are the order statistics associated to independent
standard uniform random variables. Denote by Fieta(+;a,b) the distribution
function of a Beta distribution with parameters a > 0 and b > 0 and let

1
L(m,a) := max {j e{l,...,m}; Fpetalym—7+1,7) < 27} and
. . 1—7
Ry(m,a) :=min<j e {l,...,m}; 1 — Fyeta(;m — j + 1, ])<T ,

for v € (0,1), m € N\ {0} and « € (0,1) with the convention max{0} = +oco
and min{()} = —oo. Since Uy,_ji1,, is distributed as a Beta distribution of
parameters n — j + 1 and n, one can show that

lim IP’{YL (n,a),ns YR (n,a)n | 2 Qy(a } V-

n—oo

This method of construction has been recently adapted by Goldman and
Kaplan [16] to the conditional case but always for a fixed quantile level .

The first contribution of this paper is to adapt the order statistics method
to the conditional case by using a nearest neighbors approach. Instead of
using the whole sample as in the unconditional case, only the k, closest
observations to xy are used in the order statistics method. The proposed
confidence interval can be used for extreme conditional quantiles i.e., when
the quantile level depends on n and tends to 0 or 1 as the sample size
increases. The construction of confidence intervals for extreme conditional
quantiles is more challenging because there are fewer observations available
in the tail.

The nearest neighbors method strongly depends on the (pseudo-)distance
in RP used to select the observations around the point of interest xg. The
Euclidean distance is of course the natural choice but when p becomes
large, some nearest neighbors can be located far away from the point of
interest leading to confidence intervals with bad coverage probabilities. This
is the well known curse of dimensionality phenomenon. To overcome this
problem, one way is to assume the existence of a function gy : R? — R such
that the conditional distribution of Y given X is equal to the conditional
distribution of Y given ¢o(X). In other words, it is assumed that X and



Y are independent conditionally on go(X), in symbols X 1Y | go(X), see
Basu and Pereira [1]. The dimension of the covariate is thus reduced since
X can be replaced by go(X). In this case, it seems preferable to use the
pseudo-distance dy defined for all (z,y) € RP xRP by do(x,y) = |go(x) — g0(y)|
instead of the Euclidean distance in RP. A natural question now is how
to find the true function gy and therefore the most suitable distance dy ?
One common approach is to assume that go is linear i.e., that go(z) = bOTa:
for all z € RP, where by is a given vector in RP. This corresponds to the
single-index model introduced in a regression context for instance by Li [21].
This single-index structure has been considered by Zhu et al. [31] for the
estimation of conditional quantiles when the level « is fixed. Finding the
distance reduces to finding the direction by. Its estimation has received much
attention in the literature; see Li [21] for the classical Sliced Inverse Regres-
sion (SIR) method, Cook and Weisberg [3], Samarov [25] and Cook and Li [2]).

Our second contribution is the proposition of a new data driven procedure
to find an appropriate distance to use in the nearest neighbors selection
process. This distance is then used in the nearest neighbors order statistics
approach for the construction of confidence intervals for conditional quantiles
with extreme levels « = a, — 0. To reach this goal, we start with the
dimension reduction assumption introduced in Gardes [10]. Roughly speaking,
for some function gp : R — R, we suppose that S(y | xg) is equivalent, as y
goes to infinity, to a function depending on x( only through go(z(). Hence,
inference on extreme conditional quantiles of Y given X can be achieved
only by using the information brought by the reduced covariate go(X)
and a good way to measure the closeness of the data to xzg is to use the
pseudo-distance defined for (z,y) € R? by do(x,y) = |go(x) — go(y)|. This
distance is estimated by assuming that gg belongs to a parametric family.
Note an estimator of gp has already been proposed by Gardes [10] in the
particular case of a linear function. Unfortunately, the estimation procedure
is computationally expensive.

The paper is organized as follows. The definition of the confidence interval
for conditional extreme quantiles is given in Section 2. In particular, we show
that the coverage probability of the proposed confidence interval converges
to the nominal one. This section corresponds to our first contribution. The
second contribution is handled in Section 3 where an estimator of the appro-
priate distance dy is proposed and used for the construction of a confidence
interval for extreme conditional quantiles. In each section, the methods are
illustrated with simulated data. An application to Chicago air pollution data
set is proposed in Section 4. Section 5 concludes. All the proofs are postponed
to Section 6.



2 Confidence interval construction

2.1 Definition and main result

Let (X1,Y1),...,(Xn, Ys) be n independent copies of a random vector (X,Y).
It is assumed throughout the paper that the distribution of (X,Y") is abso-
lutely continuous with respect to the Lebesgue measure. As mentioned in
the introduction, for a given xg € X where X is the support of X, our first
contribution is to propose a confidence interval for the conditional quantile

Qo | xo) := inf{y; S(y | zo) < o},

where S(- | zg) = P(Y > - | X = x0). In this paper, we assume that the
quantile level & = v, depends on the sample size n. More specifically,
lim o, =c€[0,1]. (2)
n—oo
Condition (2) with ¢ € (0,1) corresponds to a classical conditional quantile
level. This is the situation most frequently encountered in the literature. For
instance, if a,, = 1/2, the value Q(a, | zp) is the conditional median of Y
given X = zg.
When ¢ € {0,1} in (2), the level is said to be extreme. If ¢ =0 (resp. ¢ = 1),
the conditional quantile is located in the right tail (resp. left tail) of the con-
ditional distribution of Y given X = xg.
The basic idea to construct a random interval [A, (20), Bn~(z0)] satisfy-
ing (1) is to apply the order statistics method to observations close enough
to xzg. In the unconditional case, the order statistics method to construct
confidence interval is described in the introduction. To select the observa-
tions, a nearest neighbors approach is considered. More specifically, for some
(pseudo-)metric d on RP, let

(X§d7$0), }/vl(d,il‘o))7 e (Xﬁbd,ar())’ Y”gd,xo))

be the sample (Xi1,Y7),...,(X,,Y,) rearranged in order to have
d(X%d’xO),:zo) < ... < d(XT(Ld’xD),:zo). For k, € {1,...,n}, we denote
by Yl(c]lc,wo) < ... < Yéj’zg) the order statistics associated to the sample

Yl(d’xo), .. .,Yk(j’xo). For a preselected probability v € (0,1), we propose as

a confidence interval for Q(a, | zo) the following random interval

— |y (o) (d,z0)
CI'y,an(kna d7 IL‘(]) T |:Y£,Y(]£“an)7kna YR—y(]SmOén),kn 9 (3)

where we recall that

—_

»C'y(knyan) ‘= Inax {] S {17 cee 7kn}§ Fbeta(amkn —J+ 1,j) < —

2

—_
+
2

R+ (kp, o) := min

JE€E {L---akn}; Fbeta(an;kn_j"i_l,j) > 2}



The confidence interval CL, o, (kn, d, x¢) is defined as in the unconditional case
except that only the k,, nearest neighbors random variables Yl(d’xo), e Yk(j’xo)
are used.

It remains to prove that the coverage probability of this interval tends
to v as the sample size increases. The accuracy of the confidence inter-
val CL, o, (kn,d, xo) depends on the smoothness of the function x — S[Q(c |

x0) | z]. For a € (0,1) and ¢ > 0, we introduce the quantity

o= sy (SRl 1){

d(z,20)<( @

which is the largest deviation of the ratio S[Q(« | z¢) | z]/S[Q(a | zo) | o]
from 1 when x belongs to the ball of center zp and radius (. Note that
this quantity is classically considered when dealing with conditional distribu-
tion, see for instance Daouia et al. [4]. In the following result, the conditions
required for the convergence of the coverage probability of (3) to v are estab-
lished.

Theorem 1 Let v € (0,1) and xg € X. Assume that k, — oo and let hy,
such that ]P’(d(X(dIO) z9) < hy) = 1. For a sequence of level o,, € (0,1)
satisfying (2), if S(- | o) is continuous and strictly decreasing,

In?(ky,)
2 . n
05 = P — — 0, (4)
and if
9 knon,
nn = 1—a w(a’mhn) - 07 (5>

then, P [CLy q, (kn,d, 20) 3 Q(an | )] =+ O (0,) + O (1) —

Note that, under the conditions of Theorem 1, other confidence intervals with
asymptotic coverage probability v can be proposed as for instance the one-
sided confidence intervals
(o) (d.z0)
CI Y,Qn (knad LU()) [Ygg,y 1(kn,am),kn )

d,x
and  CI) (k,,d, @) == (— ,Y;hoz(km%) .

The proof of Theorem 1 is based on the decomposition
d,x
P[Yﬁ(w(ki)’an)’kn > Qo | 20)] = (1 —7)/2 + Byn(Lo(kn, ) + Bon,

and on a similar one for P[Yéﬁﬁ?ﬁ ) S Q(ay, | xp)]. This decomposition
highlights two terms of error: Bi,(L(kn, o)) where for j € {1,...,k,}
Bl,n(j) = P[Y;(,Zf(]) > Q(O&n | -TO)] - Fbeta(an;kn - J + 17.7) and B2,n =

Foeta(an; kn — Ly(kn, an) + 1, Ly(kn, ) — (1 — ) /2. The first one is due to



the approximation of the distribution of the random variable S (Yj(i’nmo) | z0)

by a Beta distribution. We show in the proof of Theorem 1 that

jmax |B1,n(5)| = O(nn)-

Condition (5) ensures that By, (L, (kn,ay)) converges to 0. Note that this
condition entails that k, should be chosen not too large. In the unconditional
case, i.e., if X and Y are independent then n, = Bj ,(j) = 0 for all j and one
can take k, = n. Remark also that in the unconditional case, the accuracy of
the confidence interval does not depend on the underlying distribution.

The second term of error is related to the behavior of the distribution function
of a beta distribution. In Lemma 2, it is established that By, = O(é,) and
thus Ba,, — 0 under condition (4). If ¢ = 0, the rate of convergence of a, to 0
is limited by (4) (namely, o, > In*(k,)/k,). Similarly, when ¢ = 1, one can
construct an asymptotic confidence interval only if 1 —ay, > ln2(kn) /kn. Note
that condition (5) is more restrictive when «;,, — 1 than when o, — ¢ € [0, 1).
As shown in the simulation studies, the construction of confidence intervals in
the left tail can thus be more difficult than in the right tail. It also appears
that, as expected, the rate of convergence of the coverage probability can be
very slow for extreme conditional quantiles.

In the next result, a sequence h, such that P(d(X,gj’xo),mo) < hyp) = 1is

proposed when d is the Euclidean distance given for (z,y) € RP x RP by
de(z,y) = [(x = y) T (x — y)]'/2.

Proposition 1 Assume that the distribution of X admits fx as a probability
density function. If k,/(Inlnn) — oo and n/k, — oo then, for

2k, 1/p
fin = (fx(ﬂ«"o) n) ’

one has P(de(X]gdﬁ’xO),xo) < hp) =1 for n large enough.

n

It thus appears that for a given value of k,, the radius h,, increases with
the dimension p. As a consequence, when p becomes large, some of the k,
nearest neighbors can be located far away from the point of interest and the
confidence interval can perform very badly. This phenomenon is well known
as the “curse of dimensionality”. In Section 3, a procedure to overcome this
difficulty is proposed.

2.2 Illustration on simulated data

Let us take a look at the finite sample performance of the confidence inter-
val introduced in the previous section. Using the observations of a sample
{(X1,Y1),...,(Xn,Yn)} drawn from a random pair (X,Y’), our objective is



to construct a 7y-confidence interval for the conditional quantile Q(a, | zo).
In the estimation procedure, the nearest neighbors are selected with the clas-
sical Euclidean distance d.. Two models for the distribution of (X,Y") are
considered:

— Model 1: The p components of the random vector X are independent
and uniformly distributed on [—5,5]. The conditional survival function
of Y given X is given for y > 0 by

Sy | X) = (1 N yC(X)>—1/T(X) 7

where ¢ and 7 are positive functions defined for all x € RP by c(z) =
l|z|l1 and 7(z) = ¢(x)€(go(z)). The function £ : R — (0,00) is defined
by £(2) := 522/36 + 1/4. Note that Model 1 is not well defined when
X = 0 since in this case S(y | 0) =1 for all y.

In this model, the conditional distribution of Y given that X = x is a Burr
distribution. Such a distribution is said to be heavy-tailed since for all ¢ > 0
and z € X,

i S 1) 1/eqo@)

y=oo S(y | x)
The function £ o gg is referred to as the conditional extreme value index. It
controls the right tail heaviness of the conditional distribution. This model
is investigated with different values for the dimension p of the covariate and
different functions gg : RP — R. More specifically, 4 settings are considered:

(S1) p=1 with for z € R, go(x) = =,
(S2) p =2 with for 2 € R?, go(z) = (1,2) " 2/V/5,
(S3) p =4 with for z € R*, go(z) = (0,1,2,0)"z/v/5,
(S4) p =8 with for z € R8, go(z) = (0,1,2,0,0,0,1,1)Tz/V/7.
— Model 2: The p components of the random vector X are independent

and uniformly distributed on [—5,5]. The conditional survival function
of Y given X is given for y > 0 by

S(y | X) :=exp <_y1/5(go(X>)> 7

where € : R — (0,00) is defined by &(z) := 522/36 + 1/4.

The conditional distribution of Y given that X = =z in Model 2 is a
conditional Weibull type distribution, see for instance Gardes and Girard [12]
or Gardes et al. [13] and £(go(x)) is referred to as the conditional Weibull-tail
index. As the conditional extreme value index, £(go(x)) controls the tail
heaviness of the conditional distribution. For p and gy, we consider the 4
settings (S1) to (S4).



To evaluate the performance of the confidence interval, we compute its cov-
erage probability P[CL, 4, (kn,de,20) 2 Q(an | xo)]. This probability is
approximated numerically by a Monte-Carlo procedure. More specifically,
N = 2 000 independent samples of size n were generated. For given values
of k, € {1,...,n} and v € (0,1), the confidence interval obtained with the
r-th replication is denoted CI({()% (kn,de,xg). The coverage probability is then
approximated by

Van

N
1
N Z_;HCI(T) (kmde,mo)(Q(O‘n | 20)).

This value is expected to be close to the preselected probability ~.

Selection of the number of nearest neighbors — We first take a
look at the influence of the number of nearest neighbors k,. In Figure 1, for a
sample of size n = 1000, the values of the coverage probabilities are represented
as a function of k, € {10,...,200} for Model 1 with the settings (S1), (S2)
and (S3) for go and p. Three different values for the conditional quantile level
are considered: a = 1-81In(n)/n ~ 0.9447, « = 1/2 and a = 1—ay 5, =~ 0.0553.
The point of interest x( is the vector with all its components equal to 1.
It appears that when the quantile level is close to 0 or 1, only few values of
k, provide a reasonable coverage probability. It is thus relevant to propose
a data driven procedure to select the value of k,,. The selected number of
nearest neighbors depends on the conditional quantile level ay,, the point of
interest g € RP, the nominal coverage probability v and the distance d used
to collect the nearest neighbors. First, let

C(k) := % (Yéif’(i?in),k + Yg?f)an)k)
be the random variable corresponding to the center of the confidence in-
terval CL, o, (kn,d,xz0). The basic idea to select a convenient number of
nearest neighbors is to take k is a stability region of the finite sequence
{C(no),...,C(n1)} where 1 < ng < ny; < n. More precisely, we are searching
for the value

kel .= argmin Var(C(i)).

i€{no,...,n1}

), is unknown
in practice. We propose the following method to obtain an estimator of k,(fel).
Let a € (0,1) and denote by |-| the floor function. For i € {ng,...,n1}, the

variance of C'(7) is estimated by the local estimator

Of course, the variance of C(7), and consequently the number l?:ffd

2
Vara(C(i) = —— 3 [ty - — 3 aw) .
[na] JEV() " LeV(i)

where V(i) C {ng,...,n1} is the set of the | na| nearest neighbors of 7. Finally,

for a given 1 > 0, we propose to take the following number of nearest neighbors:

Eﬁfel) :=min{i € {ng,...,n1}; \//a\rn(C’(z)) <n}, (6)

9



with the convention min{@} = ng. Note that when n = 0, £S5 is the argu-

ment of the minimum of the sequence {\/7a\rn(ng), e ,Va\rn(nl)}. The role
of n is to obtain a value of Agfd) less sensitive to the fluctuations of the
sequence {\7a\rn(n0), ... ,@n(nl)}. To sum up, the setting parameters re-
quired to compute (6) are the integers ny and n; delimiting the possible val-
ues for k,, the value of a to compute the variance local estimator and the
value of 1. Throughout the simulation study, these parameters are fixed to
no = [0.05n/p|, n1 = 200, a = 0.006 and 7n to the first quartile of the se-
quence {\//a}n(no), e 7\//5%(711)}.

In Figure 1, one can check that for the conditional median (o, = 1/2) the
coverage probability obtained with the selected value of k,, is close to the best
attainable coverage probability. The choice of k,, is much more difficult for
the extreme conditional quantiles of level close to 0 or 1. Note that for the
settings (S1) and (S2), the coverage probabilities are clearly better in the right
tail than in the left one. This fact can partially be explained by the condi-
tion (5) in Theorem 1 since the factor k,a, /(1 — av,) approaches 0 faster when
ay, goes to 0 than when «a,, goes to 1. However, for p and go as in (S3), the
coverage probabilities are better in the left tail. Indeed, in this situation, the
quantity w(ay, hy) is very close to 0 when «, is close to 1, counteracting the
bad effect of the factor k,au, /(1 — ay,).

Influence of the sample size — To illustrate the influence of the sample
size on the confidence intervals, we generate samples from Model 1 with dif-
ferent sample sizes n € {100, 200, . ..,2000}. The number of nearest neighbors
are given by (6). In Figure 2, the values of the coverage probabilities are rep-
resented as a function of n. Three conditional quantiles levels are considered:
an = 1 — [n73/1%1n(n)]3/14 (left tail), a,, = 1/2 (conditional median) and
an = [n73/1%1n(n)]3 /14 (right tail). The point of interest is the vector of ones.
Concerning the choice of p and go in Model 1, the settings (S1) and (S3) are
investigated.

When p = 1, the coverage probability for the conditional median (a,, = 1/2) is
correct for any value of the sample size between 100 and 2000. For a conditional
quantile in the right tail, i.e., for a level close to 0, the coverage probability
converges to the preselected value . This is no longer the case when the level
is close to 1. This phenomenon can be explained by the difficulty to choose
a correct number k,, of nearest neighbors, see Figure 1 and the corresponding
discussion.

When p = 4 and o, = [n73/1%1In(n)]?/14 — 0, the coverage probability does
not converge to . This is not a surprising fact in view of the data sparsity
in the right tail of the distribution. For the conditional median, it seems that
the coverage probability getting worse when n increases. This can perhaps be
explained by a bad choice of k,,, see Figure 1. Finally, a better behavior is
observed for a conditional quantile close to 1 and a large value of n.

10



Influence of the point of interest ry — We generate a sample
of size n = 1000 from Model 1 and we construct confidence intervals
for the conditional quantile Q(a | x¢) with zo = (¢,...,t)T € RP, t €
{—45/9,-35/9,...,45/9} and o € {1 — B;1/2; 8}, B = [n=3/101n(n)]?/14 ~
0.047. For p and gg, we consider the two settings (S7) and (S3). In Figure 3,
the values of the coverage probabilities are represented as a function of xg.

It appears that the coverage probability deteriorates when xg get closer to the
boundary of the support, i.e., when t get closer to —5 or 5. This boundary
effect is a classical source of bias for local estimators as for instance the density
kernel estimator. The coverage probability is also poor when ¢t is close to 0.
Indeed, in this case, zg is close to 0 and, as mentioned before, Model 1 is not
defined when the covariate X is equal to 0.

Influence of the covariate dimension — Our goal here is to assess
the finite sample performance of the confidence interval for different values of
the covariate dimension. The point of interest x( is the vector with all its
components equal to 1 and the sample size is n = 1000. Three different levels
for the conditional quantile Q(ay, | xo) are considered: oy = 1 —81In(n)/n ~
0.945 (left tail), ag = 1/2 (conditional median) and a3 = 8In(n)/n ~ 0.055
(right tail). The values of the coverage probabilities are gathered in Table 1
for Model 1 and Table 2 for Model 2.

For the conditional median, the coverage probability is quite close to v and
the accuracy of the confidence interval is not affected by the dimension p
of the covariate. For a right tail extreme conditional quantile, the coverage
probability is close to the nominal one when p = 1, but the precision of the
confidence interval is strongly deteriorated when p increases. As discussed
before, this is an expected consequence of the data sparsity around xy when
p increases. Finally, for a left tail extreme conditional quantile, the accuracy
mostly depends on the function gg. As mentioned before, a bad performance
in the left tail can be explained by the factor k,cu, /(1 — av,) in condition (5).
However, for some functions g, the quantity w(auy,, hy,) is very close to 0 leading
to good coverage probabilities.

3 Selection of the nearest neighbors for

large-dimensional covariates

Without any further assumptions, the classical Euclidean distance is the nat-
ural distance to use in order to select the nearest neighbors. Unfortunately,
due to the data sparsity when p is large, this distance selects observations that
can be located far away from the point of interest xg. The obtained confidence
intervals can then perform very badly in particular for conditional quantiles
in the tail of the distribution. This phenomenon has been illustrated in the
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previous section. We propose below a data driven procedure to choose a more
convenient distance for the selection of the nearest neighbors located in the
right tail of the distribution. Our data driven procedure is based on a tail di-
mension reduction model presented in the next section. The method described
below is devoted to the right tail but it can be easily adapted to the left tail.

3.1 Dimension reduction model

In the literature dedicated to dimension reduction, it is commonly assumed
that there exists a function gy : R — R such that X_1I'Y | go(X) or equiv-
alently such that the conditional distribution of Y given X is equal to the
conditional distribution of Y given go(X). The dimension of the covariate is
thus reduced since X can be replaced by go(X) without loss of information.
In this case, to select the nearest neighbors, it seems preferable to use the
pseudo-distance dy defined for all (z,y) € RP xRP by dy(z,y) := |go(x) —go(y)|
instead of the Euclidean distance in RP. Recall that our goal is to select near-
est neighbors located in the right tail of the conditional distribution. The
classical condition X II'Y | go(X) is thus relaxed by assuming that Y is tail
conditionally independent of X given go(X), see Gardes [9]. More specifically,
we assume that

(TCI) the right endpoint of the conditional distribution of ¥ given X = x is
infinite for all z € X and that there exists a function ¢, : R — R such

that, as y — oo,
PY >y | X] asu.

o@(X) -
1

The notation “% stands for the almost surely uniform convergence !, see
for instance Lukacs [22] or Rambaud [24, Proposition 1|. Roughly speaking
under (TCI), inference on extreme conditional quantiles of Y given X can
be achieved only by using the information brought by the reduced covari-
ate go(X). The appropriate distance to select the nearest neighbors is thus
the distance dj.

Note that if there exist ¢ : R — R, ¢ # Id and §o : RP — R such that
go = ¢ o go then if gg satisfies (T'CI) same holds for the function gg. To ensure
that go is the only function satisfying (TCI), we must assume that gy € G
where G is a set of functions satisfying the following property:

(P) for all g : RP — R € G, there are no functions ¢ : R — R (with ¢ # Id)
and g : RP — R € G such that g = ¢ o g.

Let up, = (1,...,1)7 € RP. A classical set satisfying (P) is the set of linear

functions given by

Gr, = {g:Rp—HR; glz) = bz be@p}, (7)

A stochastic process (Z,, y € R) converges almost surely uniformly to 1 as y — oo (in symbol
a.s.u.

Z, —='1) if for all € > 0, there exits A such that for all y > A, P[|Z, — 1| <¢] = 1.
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with ©, := {b € R? withb'b = 1 and b'u, > 0}. Note that this set is
the one considered in Gardes [10]. One can also consider sets of non-linear
functions (see Section 3.3 for an example). The function go satisfying (TCI)
is unknown and has to be estimated. This is done in the next section. Note
that in Gardes [10], an estimator has been proposed but the procedure is
computationally expensive and can be used only for a linear function go € Gr..

3.2 Estimation of g

To explain our estimation procedure, let us first assume that the function ¢,
involved in (TCI) is such that for all y € R

arg max g, (z) = 2%, (8)
z€R

where z* does not depend on y. Since under (TCI), P[Y > y | X]| = ¢, (g90(X))
for y large enough, condition (8) entails that the largest observations of Y are
more likely to be observed when go(X) is close to z*. In other word, given
that Y is large, the dispersion of go(X) around z* must be small. One way
to quantify such a dispersion is to consider a Gini-type dispersion measure
given for a large threshold y € R by E[|go(X) — go(X™)| | min(Y,Y™) > y]
where (X*,Y™) is an independent copy of (X,Y’). This measure is estimated
by replacing the expectation by its empirical counterpart and by taking for the
threshold y the order statistic Y,,_ |3, |, where (Bn) is a sequence tending to 0
as the sample size increases. An estimator of gg is then obtained by solving

[nBn]—1
e ] ? ;0 |9(X @) = 9(X()] (9)

where X(i) is the concomitant of the order statistic Y,,_;,. This estimation
procedure is only reliable if (8) holds. This quite restrictive condition can
be weakened if for each g € G we assume the existence of H € N\ {0} non-
overlapping intervals S 4, . .., Su 4 covering the support of g(X) and such that
forall he {1,...,H}

argmax oy (z) = 2z, ;- (10)

2€8p,4

Hence, as explained above, for each h € {1,..., H}, the Gini-type dispersion
measure

Bhge(y) = E [lgo(X) — go(X™)| [ min(Y,Y™) > y; (90(X), 9o(X*)) € Si g, ]
is expected to be small for a large threshold y. Let

[nBn]—1

nhg = Y TIs, (9(X)),

1=0
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and, if ny, 4 # 0, let

[nBn]—1
~ 1
Eng(Bn) == PO > 9(X @) — 9(X ()| Ts,, (9(X))s, , (9(X(5)),
h,g  4,j=0

be the estimator of the Gini-type measure Ej 4(u) obtained by replacing the
expectation by its empirical counterpart and y by the order statistic Y,,_ |3, | n-
An estimator of gy can be defined as the solution of

arg min Z Eh,g(ﬂn), (11)

9€9g hEJHyg

where Jy 4 :={h € {1,...,H}; ny4 > 0} is the set of indices h € {1,..., H}
for which the R? subset Sp, x (Y~ nBn|n» 00) is non-empty. The obtained
estimator of gg can be significantly improved by adding to (11) a penalty
term in order to minimize the number card(Jg,4) of non-empty sets S 4 X%
(Yo~ nBn).n> 00). Our final estimator of go is thus defined by

Gno = argmin{ Y Ep(Bn) + Acard(Jug) o (12)
9€9 | hedu,

for some penalty coefficient A > 0. In practice, g, o is computed by taking the
non-overlapping intervals Sy, 4 := [Eh,l,g, Eh,g] where {Ah,g is the (h/H)—sample
quantile of {g(X;), i =1,...,n}. When H is large enough, one can reasonably
assume that (10) is satisfied. The setting parameters of our procedure of
estimation are the sequence f3,, the number H of intervals and finally the
penalty coefficient A. In the simulation study below, these parameters are set
to B, =5/(3y/n), A =1 and H = 20. A more theoretical justification of (12)
is provided in Appendix B.

3.3 Illustration on simulated data

Let (X1,Y1),...,(Xn,Yy) be n independent copies of a random vector (X,Y)
where X is a RP-valued random variable with p > 1 and Y is a R-valued
random variable. The goal of this section is to assess the finite sample per-
formance of the confidence interval for the conditional quantiles of Y given
X = xo when the dimension p is large. Assuming that condition (TCI) holds
for some function gy, we propose the following two step procedure for the
construction of the confidence interval.

i) Estimate the function go by gn,0 = go given in (12);

ii) Select the nearest neighbors with the estimated distance defined for
(z,y) € R? by do(z,y) = |go(x) — go(y)| and construct the confidence
interval (3).
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We recall that the estimator of gy is only adapted to the right tail of the
conditional distribution. We thus focus on extreme conditional quantiles with
a close to 0. Throughout this simulation study, the point of interest zq is the
vector of ones and the 3 following models are considered for the distribution
of the random vector (X,Y):

— Model 1: as defined in Section 2.2.

For the value of the dimension p and for the function gg, 4 different settings
are investigated: (S2), (S3), (S4) and

(S5) p = 4 with for z € R%, go(x) = |(1,0,0,1) " 22|*/2/16, where the compo-
nents of 22 are the square of the components of z.

It can be shown that Model 1 satisfies condition (TCI) with ¢, (2) = y~1/¢().
— Model 2: as defined in Section 2.2,

with the same choices for p and for the function gy as before. Of course,
condition (TCI) also holds for Model 2 with ¢, (z) = exp(—y~/¢3)).

— Model 3: The p components of the random vector X are independent
and distributed as a normal random variable with mean 1/2 and standard
deviation 1/3. The conditional quantile of Y given X is, for o € (0,1)

cxa\xv—-ﬁn(lia)}éﬂmwn[l+sxgwm>mp(—;)]1,

with for z € R,

1 3 exp(2z) —1
- ) i Sl
=+ s (1),
and &2(z) = exp (b min{2; (2)+}}, (-)+ being the notation for the positive
part function.

For the dimension p and the functions gy and ¢; involved in this model, the
following choices are considered:

0)"z/2,
1,0,0,1)Tz/2,
1,0,0,1,1,1,0,0)Tz/2,
0,1,0,1)Tz/2.

(S3) setting (S2) for p and g and g;(x

(53

) (
(S}) setting (Sy) for p and g and g;
) (

(55

For all z € X and t > 0,

x

)
setting (S3) for p and go and g;
) x

(z) = (1,
(z) = (1,
(z) = (1,
(x) = (

setting (S5) for p and gy and ¢ (=

and thus the conditional distribution in Model 3 is heavy tailed with condi-
tional extreme value index & (go(x)). Again, one can show that for this model,
condition (TCI) is satisfied with ¢, (z) =y~ /&),
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i) Estimation of gy — Let us first take a look at the finite sample per-
formance of the estimator of the function g defined in (12). The optimiza-
tion problem is solved by using a coordinate search method, see Hooke and
Jeeves [18] and Appendix C for more details. For the settings (S1) to (S4),
the function go is linear i.e., go(x) = bj x for x € RP. In this case, the min-
imization (12) is achieved over the set G = G, given in (7). For the setting
(Ss5), go(z) = |bd #2|'/? and the minimization is achieved over the set

GNL = {g :RP — RP; g(x) = |bTm2]1/2; be @p} ,

with ©, := {b € RP with bTb =1 and b"u, > 0}. In all cases, the function go
only depends on a vector by € RP and the minimization (12) is in fine achieved
over the set ©,. We denote by 30 the obtained estimator of by. The distance
dp is then estimated by

-~

do(z,y) = [go(x) — g0 (y)!,

where, for the settings (S1) to (S4), go(z) = /b:)rx and, for the setting (S5),
Go(x) = [bg ?|'/2.

Our estimator of by is compared to the one obtained with another dimension re-
duction approach: the Slice Inverse Regression (SIR) method, see Li [21]. The
assumption behind SIR is the existence of a direction bgrr € RP such that the
projection bgj rX captures all the information on Y. In other word, the condi-
tional distribution of Y given X is supposed to be the same as the conditional
distribution of Y given b—ls—[RX. The estimator BSIR of bgrr is the eigen vector
associated to the largest eigen value of the matrix 1T where ¥ is the sample
covariance matrix of X and T is the sample version of Cov(E(Y | X)). The SIR
method is implemented in R, see https://cran.rproject.org/package=dr.
Roughly speaking, ?);II rX is the linear combination providing the best avail-
able information on Y. A natural idea is then to select the nearest neighbors
with the data driven pseudo-distance

C/Z\SIR($7 y) = ‘BEIR(fU - Z/)’ :

To measure the performance of by and bg;r as estimators of by, we use the
criterion

5(b,bo) == (b—bo) " (b—by),

where b is either 30 or ESIR- We replicate N = 2 000 times the original
sample of size n = 1000 in order to compute the empirical mean and standard
deviation of this criterion. The results are gathered in Tables 3 to 5. For the 3
models, the estimator 30 obtained by our approach is more accurate than the
SIR estimator /b\sm. For Model 1 and Model 3, the linear combination boT X
captures the information on the tail distribution of Y but not on the whole
distribution. This can explains the difficulty for SIR to estimate the vector bg.
For Model 2, the conditional distribution of Y given X is the same as the
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one of Y given bg—X. Despite of this, the performance of SIR is very poor.
This is due to the fact that in this case, E(Y | X) is a symmetric function
of by X and it is well known, see e.g., Cook and Weisberg [3], that SIR fails to
recover the true direction by in this case. Finally, SIR is clearly not adapted
to setting (S5) since go is a non linear function in this case.

ii) Behavior of the confidence interval — Our goal is to assess the
finite sample performance of the confidence interval for Q(c, | o) defined
in (3) when the estimated distance do is used to select the nearest neighbors.
First, we are interested in the influence of the number k,, of nearest neighbors
on the coverage probability. For a sample of size n = 1000 generated from
Model 1 with settings (S2) to (S5), the coverage probabilities are represented
as a function of k, € {10,...,200} in Figure 4. The k,, nearest neighbors are
selected with 3 different distances: our data driven distance c%, the ideal but
unknown distance dy and the Euclidean distance. The conditional quantile
level is fixed to a = 81n(n)/n ~ 0.055. It appears that the choice of &, is re-
ally less crucial when one use the distances c?g or dy. We can also check again
that the selection of k, by the procedure described in Section 2.2 provides
confidence intervals with a coverage probability close to 7.

Let us now look at the influence of the sample size n. We generate sam-
ples from Model 1 with n € {100,...,2000} and under setting (S3). The
coverage probabilities for the conditional quantile Q(a, | xo) with a, =
[n=3/11n(n)]?/14 are represented on Figure 5 as a function of n. The esti-
mated distance c?o and the Euclidean distance are considered for the selection
of the nearest neighbors. As expected, when the distance c?o is used, the cov-
erage probability converges to v as the sample size increases. This is not the
case for the FEuclidean distance.

Finally, in Tables 6 to 8, we compare the coverage probabilities obtained un-
der the 3 models and the 4 different settings for p and gg. The value of
the sample size is fixed to n = 1000 and the conditional quantile level to
a = 81In(n)/n ~ 0.055. The nearest neighbors are selected with 4 distances:
(;l\o, c/l\SIR, dp and the Euclidean distance d.. For settings (S2) to (S4), re-
placing the Euclidean distance by the estimated distance c/l\o leads to a sig-
nificant improvement in the coverage probability. Note that for setting (S5),
the estimation of the non linear function gy is more challenging, especially in
Model 1, but the obtained coverage probability remains better than the one
obtained with the Euclidean distance. Of course the best results are obtained
for the unknown distance dg but they are generally close to the ones obtained
with the estimated distance c/l\o. Finally, the coverage probabilities obtained
by using the distance a?s 1r are far from the preselected probability v except
for Model 3, setting (S2). This was expected in view of the results presented
in paragraph i).
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4 Chicago air pollution data set

The Chicago air pollution data set, available on the R package NMMAPS Data
Lite, gathers the daily concentrations of different pollutants (ozone (Os),
particular matter with diameter smaller than 10 microns or 25 microns (PMy
or PMys), sulphur dioxide (SOg2), nitrogen dioxide (NOg), carbon monoxide
(CO), etc.) and some meteorology and mortality variables. The data were
collected in Chicago from 1987 to 2000 during n = 4841 days. This data set
has been studied by several authors in a dimension reduction context (e.g.,
Scrucca [26] and Xia [29]) and, in an extreme value context, by Gardes [10].
We are interested in the conditional distribution of Y given X = x¢ where Y
corresponds to the centered and normalized concentration of Og (in parts per
billion) and X is the covariate vector of dimension p = 4 corresponding to
the centered and normalized daily maximum concentrations of PMyg, SOq,
NOgz and CO. As in Gardes [10], we assume that condition (T'CI) holds with
go(z) = bJ x for z € R*.

The first step is the estimation of the vector by € R%. Two estimators are
considered: by as defined in (12) and the SIR estimator bgrr. The obtained
estimated vector are:

~

by = (0.198,—0.155,0.963,0.093)"
and bg;p = (0.327,—0.085,0.910,—0.238) " .

These two vectors are quite different but both of them show that the
covariate NO2 bring the most important information on large values of ozone

concentration. This point has also been noted by Scrucca [26] or Gardes [10].

We construct the confidence interval for Q(a | zp) given in (3). For
the selection of the nearest neighbors, two distances are investigated:
do(z,y) = \?)?(x —y)| and dsrr(z,y) = \/b;rIR(x —y)|. About the point of

interest o, two situations are investigated. For 7 € (0,1), let a4 (7),

xSOQ(T), xSJO? (7) and x§°(7) be the sample quantiles of order 1 — 7 of the
values of PMg, SO2, NOg and CO.

Situation 1 — zo = (z§™°(0.5), 23°2(0.5), 2} °2(0.5),2§°(0.5))T.  This
value of zy is quite close to a situation observed in Chicago during the
period 1987-2000 with moderate values of the four primary pollutants.
Situation 2 — ¢ = (:UOPMm(O.5),x802(0.25),:I;ONOQ(O.O5),:BSO(O.O5))T corre-
sponding to large values for NOg and CO.

The quantile level « is taken between 8ln(n)/n =~ 0.014 and
641n(n)/n ~ 0.112. The number of nearest neighbors is chosen by the
data driven procedure (6). For instance for @ = 8In(n)/n and under
situation 2, the number of nearest neighbors is 242. The value 0.014 for the
quantile level is thus close to 0 in that sense that 242 x 0.014 =~ 3.39. Keep in
mind that condition (4) in Theorem 1 entails that kja, — oo. The confidence
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intervals with preselected probability v = 0.9 are represented on Figure 6
as a function of a for the 2 values of xy and by using the two distances
c/i\o and JSIR. It appears that for a close to 0, the confidence intervals
obtained with (/i\() and JSIR are different. This difference is more important
for situation 2 corresponding to large values for NOs and CO. When the
distance c?o is used, the length of the confidence interval increases when
the quantile level o decreases. This is an expected behavior of confidence
interval for extreme conditional quantiles. This is no longer the case when
the distance Jsm is considered. Since our method is dedicated to right tail of
the distribution and in view of the results presented in the simulation study,
the use of c?o is preferable. Note also that, as pointed out in Gardes [10] or
Han et al. [17], very important ozone concentrations are more likely to be
observed for large concentrations of NOy and CO.

Finally, the confidence intervals obtained with the distance C/l\() are represented
on Figure 7 as a function of /I';UFX along with the concentrations Y of ozone.
Two quantile levels are consider: «, = 0.02 and «, = 0.05. Be aware that
what is represented in Figure 7 are the point wise confidence intervals and not
the confidence bands for the function z — Q(«, | x), see the discussion in the
next section.

5 Concluding remarks

As illustrated in the simulation study presented in Section 2.2, the construction
of confidence intervals for extreme conditional quantiles with large-dimensional
covariates is a difficult task. The main contribution of this paper is to propose
a method to construct confidence intervals in such situations. First, based on
the condition (TCI) introduced in Gardes [10], we reduce the dimension of the
covariate. This dimension reduction method is dedicated to the right tail of
the conditional distribution. Second, a nearest neighbors version of the or-
der statistics approach is used to obtain the confidence intervals. The nearest
neighbors are selected with a distance based on the reduced covariate rather
than the classical Euclidean distance. The results obtained on simulated data
show that the dimension reduction step improve substantially the performance
of the confidence intervals when the quantile level is close to 0. This work can
be continued in at least two directions.

1) Condition (4) in Theorem 1 entails that kpa, (1 — o) — 00. As a conse-
quence, oy, cannot tend to 0 or 1 too fast and in particular, the conditional
quantile must be located inside the range of the k,, nearest neighbors. In this
situation, the endpoints of the confidence interval are order statistics that can
be seen as nonparametric estimators of the conditional quantiles Q(ov, 1, | o)
and Q(an,r | o) with oy, 1, = 1—=L (kn, an)/kn and ap g = 1 =Ry (kn, ) /.
For an extreme conditional quantile Q(ay, | zo) located outside the data range,
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i.e., when k,an (1 —ay) — ¢ € [0,00), the endpoints of the confidence interval
can no longer be order statistics. In such a case, a possible solution to con-
struct confidence intervals is to assume that the conditional distribution of Y
given X = zg belongs to a given maximum domain of attraction. The end-
points of the confidence intervals can then be obtained by extrapolating the
conditional quantiles Q (a1, | o) and Q(an,r | o) outside the data range.
Extrapolated estimators can be found for instance in Daouia et al. [4]. The
main difficulty is to establish the convergence of the coverage probability to -;
this is a work in progress.

2) In this paper, we focus on point wise confidence intervals since zg is fixed.
It would also be interesting to obtain confidence bands for extreme conditional
quantiles. Here the problem is to find a collection {(A4, ,(x), Bn,(2)), v € X'}
of random variables such that

lim P{[A,~(z), Bny(x)] 2 Qo | x), for all z € X} =1,

n—oo

or equivalently

lim P {max (Q(aowm | ) — Bp~(2)) < 0; gg}(l (Ap~(z) — Qo | ) > O} = 7.

n—o0 reX

Proving such a convergence result is a difficult mathematical problem. As a
departure points, one can try to adapt some elements of the proof of Theorem 1
in Gardes and Stupfler [15] where a uniform consistency result is proven in an
extreme value framework.

6 Proofs

6.1 Preliminaries results

In this section we give two useful results on Beta distribution. The probability
density function of a Beta distribution with parameters a and b is given by

fbeta(x; a, b) = mxa_l(l - x)b_l]l[OJ} (.%'),

where I' is the gamma function.
Lemma 1 For allm € N\ {0} and o € (0,1),

argmax feta(@;m —j +1,j) = m — [mal.
]e{lv7m}

Furthermore, if my, € N\{0} and o, € (0,1) are sequences such that m, — oo
and mp(an A (1 — ayp)) = 00 as n — oo, then for all sequence €, such that

1—a,
20 |
MpQin
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and for oy = an(1 + Tey), there exist 0 < ¢1 < cp such that for n large
enough,

1 1/2
<M> max Sup  foeta(Qn,r;mn —Jj +1,7) € [c1, ca).
mMn je{lv"'vmn} TE[—l,l]

Proof — For m € N\ {0} and a € (0, 1), let

m!
J = Dim — j)!

It is easy to check that for all j € {1,...,m — 1},

aj = foeta(@;m —j+1,j) = ( am_j(l - a)j_l-

ajy1 - m—jl—a«

a; g «
Hence, aj11/a; > 1 if and only if j < m(1 — «), proving the first part of the
Lemma. To prove the second part, we start with
- Inax sup fbeta(an,ﬂ mp —J + l,j)
Je{l,...mn} T€[-1,1]

= sup foeta (Qnr; [MnQnr| +1,my — [mpan - ]) .
T€[-1,1]

In order to study the factor

My

(Lmnn ) (mn — [mnan 7] — 1)1

appearing in the expression of fyeta (Qn 75 [Mnnr| + 1, mp — My, +]), we
use the Stirling’s bounds given for all 7 € N\ {0} by v2mr"t1/2e™" <l <
7 +1/2e1-7 (see for instance Feller [8, Paragraph 2.9]).

First, taking » = m,, leads to

vV 27rm71/2+m"e*m" <m,! < m}/ﬂm"el*m". (13)

Next, using the Stirling’s bounds with r = [mpa, ;| yields to v2ms, <
(mponr])! < e x s, with

(mnan,T)Lmnan’TJ+1/2 | Mo, 7| 1/2+|mnom,r |
Sy 1= .
" el.mnan,'rJ mnanﬂ'
It is easy to check that for all 7 € [—1,1],
1— 1 < Lmnan,rj <1,
mnan(l - 5n) mnanﬂ.

and [mpou, | < mpoy(l+€y). As a consequence, one has for all 7 € [—1,1]

and for n large enough that,

1/24mpan(l+en) 1/24|mnon, |
1 (i 1 < [ M 7 <1
2e mpom (1 — ep) My Ol 7
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Note that the first inequality is due to the fact that

-1

1 1/24mpan(l+en)
) e,

(1‘mnan<l—an>

since by assumption mya, — oo and €, — 0. We finally get that for n large
enough and all 7 € [—1,1],

\/;(mnan 7.)1/2+ Lm’ﬂa’ﬂq‘rj (mnan 7_)1/2+ LmnO{n,TJ
9 .

eLmnan’Tj—i-l S (\-mnan’TJ)' S el_mnan,TJ—l

(14)

Finally, the Stirling’s bounds applied to r = m,, — |mpap -] — 1 leads to
V21ty, < (my — [ mpan, ] —1)! <ext, with

emnf Lmnan,‘rj -1

. (mn(l _ O[n’T))m"_l-m”a"’TJ_l/Q my, — Lmnan,fJ 1 Mmp—|Mpan,+]—1/2
e mn(l — Op T) ‘

)

Remark that for all 7 € [-1,1],

- 1 < mp, — |mpop | —1 <1
My (1 — oy — anep) My (1 — anr)

Furthermore, since by assumption

(1041165”)2 =0 (mn(laian» = o(1),

one has for n large enough that

Qn€ l—«a
l—an—anen:(l—an)<1—1f£n>2 2”.

As a consequence, we get

1 1 < My — [Mpoy .| — 1 <1
2mp (1 — ap) mp (1 — ap7)

Since

1 Mmp—|Mmnan,+]—1/2
> — e_1/2,

(“zmna—an)

we obtain the inequality

<1

1 My, — [Mpoy | — 1
mpy

Mmp—|Mnan,+]—1/2
2el/2 — (1—anr) >

leading to

g (mn(l _ Oéan))mn—Lmnan,TJ—l/Q

5 emn_Lmnan,TJ—l/Q S (mn - LmnaanJ - 1)‘

(mn (1 — anﬁ))mnﬂmnan,fj—l/z

eMn— [mpon,r]—2

<
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Gathering (13), (14) and (15) yields to

S (o >>1/2

e3 1— oy,

< fbeta (an,T; Lmnan,fJ +1,m, — Lmnan,‘rJ)

1/2
25 <m> -

Finally, since for all 7 € [-1,1], |ap+/an — 1] <&, = 0 and [(1 — oy 7)/(1 —
an) — 1| <apen/(1—ap) =0, an(l —an)/2 < an (1 —aps) < 2a,(1 —ay)
and the proof is complete by letting c; := /7/2e~! and ¢y := 4e. [ |

IN

Lemma 2 Let m,, and a, € (0,1) be two sequences such that m, — oo and

In?(m,,)

2 .
O i= M (1 — ay,)

n

— 0, (16)

as n — o0o. For all vy € (0,1), one has 1 < Ly (mp, an) < Ry(my, o) < my.

Furthermore,
1—
Foeta(on; My — Loy(mMap, o) 4+ 1, Ly (M, i) = Tfy + O (6n) (17)
1—
and Fbeta(an; mn _R’y(mna Oén) +1, Rw(mm an)) =1- T7 +0 (511) . (18>

Proof — Remark that since m,, — oo, condition (16) entails that m,, (ay A(1—
ay,)) — oo. Hence, since the function j — Fyeta(a;my, — 7+ 1,7) is increasing
for all « € (0,1)

j:Ilna}gn Fbeta(an;n -7+ 17]) = Fbeta(an§ 17mn) =1- (1 - an)mn — 1,

as n — oo and, using the inequality In(z) < z — 1 that holds for all = € [0, 1]

];{ninm Fbeta(am n—j+ 1,j) = Fbeta(an;mm 1) = anm"

= exp[my, In(ay,)] < exp[—m,(1 — ay,)] — 0.

Hence, for n large enough,

. ) ) 1-
{] € {1,...,mn}; Fbeta(an;mn -7+ 17]) < 2’}/} ?é Q),

and
. . . 1—v
J 6{17“-amn}§ Fbeta(an§mn_]+l7]) > 1_T #@

This conclude the first part of the proof.
We now prove (17). The proof of (18) is similar and is thus omitted. The
definition of L, (my, ay) ensures that

1 _
0< ?’Y - Fbeta(an; my — [M/(mna an) +1, ﬁ'y(mna an)) < Dn(ﬁw(mnv an))
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where Dy, (my) := 1 — Fyeta(an;1,my) and for j =1,...,m, — 1,
Dn(]) = Fbeta(an;mn 75,7+ 1) - Fbeta(ammn —J+ 17j)-

Hence to prove (17) it suffices to show that

, In(m,,)
D,(j)=0 . 19

e, Dnld) ([mnanu - anﬂw) 19)
First, Dy, (my,) = (1 — ay,)™. Using the inequality (1 —u)¢ < exp(—¢u) that
holds for all w € (0,1) and £ > 0 and the fact that 1 — a, € (0,1), we get that

1/2 1/2

exp(—mp o) (mpay)
In(my,)

Dy (my) [mnan (1 — ay)]

— 0,

In(my,)

as n — 0o. We thus have shown that

Dy (mn) = o0 < (1) > . (20)

[mpon (1 — an)]1/2

Now, let Uy, ..., Uy, be m, independent standard uniform random variables
and let Uy, < ... < Up,,m, be the corresponding order statistics. It is well
known that for all j € {1,...,m,}, the order statistic Uj,,, follows a beta
distribution with parameters j and m, —j + 1. Hence, for all j =2,...,m,

Dyp(mp —j+1) = PlUj—1m, < an] = PlUjm, < o)
< P [Uj,mn <a,+ max (Ujm, — Ujl,mn):|
J=2,....,mp

- P[Uj,mn S Oén].

Let

and A, := { A
j=
It is easy to check that

Dn(mn -7+ 1) < P |:{Uj,mn < ap,+ max (Uj,mn — Uj—l,mn)} ﬁAn:|

J=2,...,mn

< DWY(m, —j+1)+P(4,), (21)

— PlUjm, < an]+P(4,)

with

In(my,)

DM (my —j+1) =P [Uj,mn < ap+2 ] — PUjm, < o).

mn

Using the mean value theorem, for all j = 2,...,m,, there exists 6,, ; € (0,1)

such that
In(my,)

In(my,)

n

D (my — j+1) =2

n

fbeta <an+20n,j ;jvmn_j+1> .

n
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Under (16), the second part of Lemma 1 entails that

, In(my,)
DW(m, —j+1)= . 22
]:IZI’la?fn” " (m I ) © <[mnan(1 - an)]1/2> ( )

It remains now to deal with the probability P(A,). Let E1, ..., Ey,, +1 be inde-
pendent standard exponential random variables. From Rényi’s representation
theorem,

— E; In(my,)
P(A,) =P J > 2 .
(4n) (mm [ R )

Let Ty, 41 := (E1+ ...+ Ep,41)/(my, + 1). From the law of large numbers,
Trn1 =2 1 and thus, for all € (0,1/4), there exists N,, € N'\ {0} such that
for all n > N, P(T},,+1 > 1—n) = 1. As a consequence, for n > N,

my + 1) In(m,,

(my + 1) In(my,) 201
My, o

]P’(Zn) = P <{Emn_17mn_1 > 2

S P <Emn—1,mn—1 > 2(1 - 77)

Since for n € (0,1/4),

mrt=o (™ )

we have shown that

P(4,) = O < () > . (23)

[mpan (1 — O‘n)]l/Q

By gathering (20), (21), (22) and (23) we get (19) and the proof is complete.
|

Fori=1,...,n, let V; := S(¥; | X;) and V;") .= §(v;("0) | x{70)),

Lemma 3 i) The random variables Vi, ..., V,, are independent standard uni-
form random wvariables. Furthermore, they are independent from Xq,...,X,.
ii) The random variables Vl(mO), e Vn(x(’) are independent standard uniform
random variables.

Proof — i) Since the random pairs {(X;,Y;), ¢ = 1,...,n} are independent
copies of (X,Y), the random variables Vi, ..., V,, are n independent copies of
V =8(Y | X). Now, for all ¢t € [0, 1], denoting by fx the probability density
function of X,

PV <) = [BIS(Y[0) < 0] X =alfx(e)de = [ SIQU ) | al fx(a)do =,
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and thus V is a standard uniform random variable. To prove that the random
variables V7, ..., V,, are independent form X1, ..., X,, it suffices to prove that
X and V are independent. Let A € B(RP) and t € [0, 1],

PUV <t} 0 {X € 4} = [PY 2 Q[ @)} v € A} | X = alfx(o)ds

= t/HA(J:)fX(x)da: =tP[X € 4],

proving the independence.
ii) Let (t1,...,tn) € [0,1]™. Let X, be the set of the permutations of {1,...,n}.
One has

PV <tdn. . n {1V < g1

= > PH{Vowy < trs o Vo < ta} N {1 Xy — 2ol < - < (1 Xy — 0ll}]
O’EEn

From i), since the standard uniform random variables Vi, ...,V are indepen-
dent form Xy,...,X,,

PV <tdn. . n{VE) <)

= Z P [Vo(l) <ti,..., Vcr(n) < tn] P [HXcr(l) - x[)” <. = ”Xa(n) - xﬁ”]
O'GEn

= titn Y P Xoqy — 2ol < S 1 XKo@ —2oll] =t ta,
oEX,

and the proof is complete. [ |

6.2 Proofs of main results

Proof of Theorem 1 — Using the notations introduced in Lemma 3, we start
with

i
P[Y}Si:) <Qan [xo)] = P [Z L(Q(an|z0),00) ") < &, —j]
=1

kn,
= @)y 1. _
P [; H(—OO,S[Q(QMQ:O)‘XZ_(’”O)D(‘/z ) = kn j]

Let ¢, := wl/Q(an, hn; o). Since for all i =1,... ky,
an(1 —en) < S[Q(an | 20) | X)) < an(1+ ),

one has that

k’VL
P [Z I oo an(i4ea) (V™) < o —j] < PV} < Qo | o))

kn,
< P [Z ]I(*Oovan(lf&m)) (‘/Z(IO)) < kn _]] .
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Remarking that from Lemma 3, ii)

kn
P ZH(*ooyan(liEn))(Vi(IO)) = Fn = j] = F [Vk(fg)j-&-Lkn > ap(l+en)
i=1
= Fbeta(an(l + En); kpn — J+ 17j)7
where for all @ > 0 and b > 0, Feta(-; a,b) = 1 — Fyeta(+; a,b), one has

Freta(on(l+en)ikn —j+1,5) < PV < Q(an | 20)]

< Fbeta(an(l - En);kn -7+ 17])
(

Using the mean value theorem, for all j = 1,...,k,, there exists Tn:;-) € (0,1)
and qu’_j) € (0,1) such that
Ro(7, 5 20) < BV < Q(an | 0)) — Foetalawni kn = +1,4) < Ru(r50),

where Rn(ﬂ%);mo) = Fanén foeta(an(l £ T,Sf;)en;kn —Jj+ 1,7)). Hence,

Lemma 1 leads to

(z0) - knam, 1/2
]P)[}/j,kz < Q(an ‘ x())] = Fbeta(an; kn —J+ 17j) +0O | en (1 — > )
uniformly on j =1,..., k,. We conclude the proof by applying Lemma 2 with
My, = kn,. [ ]

Proof of Proposition 1 — Let

3 Ty (de(Xi0))
=1

be the number of covariates in the ball of center xy and radius h, =
(2kn/[nfx (20)])Y/P. To prove Proposition 1, it suffices to show that for n
large enough, P[N,, > k,] = 1. From Dony and Einmahl |6, Corollary 2.1]
(see also Gardes et al. |14, Lemma 2|), since nhl,/[Inlnn] — oo, one as
N, /(nhh) 2% fx(x0). Hence, for n large enough,

Np _ fx(wo)|
P {nh’ﬁ > 5 ] =1

The end of the proof is straightforward. [ |
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Appendix A: Tables and figures

Table 1: Values of the coverage probabilities for Model 1 with different settings.

p| v | Settings | a; ~0.945 | ap = 1/2 | a3 =~ 0.055
0.9 0.3130 0.8770 0.9125
1 (S1)
0.95 0.3300 0.9320 0.9410
0.9 0.0900 0.8700 0.8040
2 (S2)
0.95 0.1265 0.9385 0.8530
0.9 0.8675 0.7865 0.6265
4 (S3)
0.95 0.9110 0.8670 0.6975
0.9 0.7045 0.9115 0.5215
8 (Sa)
0.95 0.7330 0.9550 0.6095

Table 2: Values of the coverage probabilities for Model 2 with different settings.

p| v | Settings | a; ~0.945 | ap = 1/2 | a3 =~ 0.055
0.9 0.9300 0.9270 0.9350
1 (S1)
0.95 0.9525 0.9640 0.9630
0.9 0.7140 0.9280 0.8310
2 (S2)
0.95 0.7985 0.9630 0.8930
0.9 0.2885 0.9245 0.6430
4 (S3)
0.95 0.3565 0.9640 0.7200
0.9 0.3070 0.8805 0.6230
8 (S4)
0.95 0.3785 0.9400 0.7190
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Table 3: For Model 1, values of the emplrlcal mean and emplrlcal standard devia-
tion (into brackets) of the criterion 5(b bo) for b= by and b = bg;.

p | Settings | 6(bo, bo) | 6(bsir, bo)
0.0163 0.8239
20 (52)
(0.0233) | (0.7690)
0.0265 1.4173
41 (S3)
(0.0235) | (0.8272)
0.1047 1.3996
41 (55)
(0.0905) | (0.7996)
0.0595 1.9960
8| (S4)
(0.0412) | (0.7113)

Table 4: For Model 2, values of the emplrlcal mean and emplrlcal standard devia-
tion (into brackets) of the criterion 0 (b bo) for b= bo and b = bSIR

p | Settings | 6(bo, bo) | 6(bsir, bo)
0.0113 0.8491
21 (5)
(0.0161) | (0.7659)
0.0213 1.4474
41 (S3)
(0.0189) | (0.8163)
0.0869 1.3904
41 (55)
(0.0793) | (0.8045)
0.0763 1.7531
8| (S4)
(0.1918) | (0.0959)
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Table 5: For Model 3, values of the emplrlcal mean and emplrlcal standard devia-
tion (into brackets) of the criterion 5(b bo) for b= by and b = bg;.

p | Settings | 6(bo, bo) | 6(bsir, bo)
0.1293 0.3404
2| (Sy)
(0.2071) | (0.1012)
0.269 1.4690
41 (S3)
(0.3925) | (0.1597)
0.4637 1.6310
41 (55)
(0.5193) | (0.1455)
0.4501 1.7002
81 (Si1)
(0.3996) | (0.1203)

Table 6: For Model 1, values of the coverage probabilities for n = 1000 and a =
81n(n)/n ~ 0.055.

~

P Settings Y do C/Z\S]R dg de
0.9 | 0.8805 | 0.2675 | 0.9255 | 0.8040
21 (Sy)
0.95 | 0.9210 | 0.2980 | 0.9550 | 0.8530
0.9 | 0.8665 | 0.0545 | 0.9235 | 0.6225
41 (S)
0.95 | 0.9060 | 0.0680 | 0.9510 | 0.6975
0.9 | 0.7965 | 0.0000 | 0.8910 | 0.2470
41 (S5)
0.95 | 0.8370 | 0.0000 | 0.9065 | 0.2990
0.9 | 0.8895 | 0.1385 | 0.9345 | 0.5215
8| (S4)
0.95 | 0.9260 | 0.1755 | 0.9615 | 0.6095
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Table 7: For Model 2, values of the coverage probabilities for n = 1000 and a =
81n(n)/n ~ 0.055.

p | Settings | (?0 jgm do d.
0.9 | 0.9205 | 0.4160 | 0.9275 | 0.8310
2 (S2)
0.95 | 0.9445 | 0.4660 | 0.9530 | 0.8930
0.9 | 0.8910 | 0.2190 | 0.9280 | 0.6430
41 (S3)
0.95 | 0.9310 | 0.2810 | 0.9515 | 0.7200
0.9 | 0.8550 | 0.0330 | 0.8820 | 0.4940
41 (Ss)
0.95 | 0.8840 | 0.0515 | 0.9030 | 0.5775
0.9 | 0.9025 | 0.2655 | 0.9385 | 0.6230
8| (S4)
0.95 | 0.9270 | 0.2950 | 0.9615 | 0.7190

Table 8: For Model 3, values of the coverage probabilities for n = 1000 and a =
81n(n)/n ~ 0.055.

p | Settings | v c?o jSIR do d,
. 0.9 | 0.8400 | 0.8135 | 0.9129 | 0.7960

20 (53)
0.95 | 0.8735 | 0.8520 | 0.9395 | 0.8095
. 0.9 | 0.7510 | 0.4480 | 0.9030 | 0.5265

41 (53)
0.95 | 0.7890 | 0.4880 | 0.9340 | 0.5430
. 0.9 | 0.8110 | 0.5000 | 0.9305 | 0.6235

4 (55)
0.95 | 0.8460 | 0.5645 | 0.9545 | 0.6375
0.9 | 0.8840 | 0.7050 | 0.9330 | 0.6550

8| (51)
0.95 | 0.9055 | 0.7485 | 0.9505 | 0.6555
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Figure 1: Simulated data. For Model 1, coverage probabilities as a function of k,
with « ~ 0.9447 (left panels), & = 1/2 (middle panels) and a = 0.0553 (right
panels). Choice of p and go: top panels: setting (S7), center panels: setting (Sz),
bottom panels: setting (S3). The horizontal full line is the nominal probability
~v = 0.9 and the dashed horizontal line represents the coverage probability obtained
with the selected value of k,.
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Figure 2: Simulated data. For Model 1, coverage probabilities as a function of
the sample size n with o, = 1 — [n73/1In(n)]?/14 (dotted line), a,, = 1/2 (dashed
line) and a,, = [n7%1%In(n)]3/14 (full line). Left panel: setting (S;), right panel:
setting (S3). The horizontal full line is the nominal probability v = 0.9.
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Figure 3: Simulated data. For Model 1, coverage probabilities as a function of z
with o, = 1 — [n7%/1%1n(n)]?/14 (dotted line), a,, = 1/2 (dashed line) and «,, =
[n=3/1%1n(n)]3/14 (full line). The sample size is n = 1000. Left panel: setting (S),
right panel: setting (S3). The horizontal full line is the nominal probability v = 0.9.
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Figure 4: Simulated data. For Model 1, values of the coverage probabilities as a
function of k, with n = 1000 and «,, = 8In(n)/n ~ 0.055. The distances used for
the nearest neighbors selection are the Euclidean distance (Full line), the estimated
distance dy (dashed line) and dy (dotted line). Top panels: settings (S) and (Ss),
bottom panels: settings (S4) and (S5). The horizontal full line is the nominal prob-
ability v = 0.9 and the dashed horizontal line represents the coverage probability
obtained with the selected value of k,.
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Figure 5: Simulated data. For Model 1 with setting (S3), values of the coverage
probabilities as a function of the sample size n with a,, = [n7*/'%1In(n)]?/14. The
nearest neighbors are selected with the estimated distance do (full line) and the
Euclidean distance (dashed line). The horizontal full line is the nominal probability
v =0.9.
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Figure 6: Real data. Confidence intervals for Q(« | o) with nominal probability v =
0.9 as a function of o € [0.014,0.112]. The nearest neighbors are selected with do
(full line) and c?s 1r (dashed line). The left panel corresponds to situation 1 and the
right panel to situation 2.
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Figure 7: Real data. Confidence intervals for Q(a | X) (in red) with nominal
probablhty v = 0.9 as a function of b0 X. The nearest neighbors are selected with
do. The points are the values of Y versus yX The left panel corresponds to
a = 0.02 and the right panel to a = 0.05.
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Appendix B: Theoretical justification of g,

B1 — Main results

In this section, we give a theoretical justification for the expression of the
estimator of gy defined in (12). The proofs of the results given in Section Bl
are postponed to Section B2. Let us first introduce the following additional
condition on the function ¢, involved in (TCI). In what follows, we denote by
AXp the support of go(X) where gg satisfies condition (TCI).

(H1) The function ¢, is continuous. Furthermore, there exist J € N\ {0}, a
collection Iy, ..., Iy of non-overlapping intervals covering Xy and yy € R,
such that for all y > yo and j € {1,...,J}, the function ¢, admits on I;
a unique local maximum point zj such that zj is an interior point of I;.

This condition entails that for y large enough, the function ¢, admits a finite
number of local maximum points. Assuming that (H1) holds, the following
condition on the non-overlapping intervals S 4,...,Sp 4 is required.

(H2) There exists Hy € N\ {0} such that for all H > Hy and j € {1,...,J},
H o
Z;k S U Sh,go
h=1
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where I is the interior of the interval I.

Hence, under (H1) and (H2) and for a sufficiently large number of intervals
Sh.go> the J local maximum points of ¢, belong to the interior of an interval
Sh,go- A supplementary condition on the distribution of (X, Y’) is also required.
Let C C X such that P(X € C) > 0. For all y and ¢t € (0,1), let py(- | C) be the
survival function of S(y | X) given X € C (py(t |C) :=P[S(y | X) >t | X €
C]). The associated quantile function is denoted by ¢y(- | C) := inf{t; py(t |
o)<}

(H3) For all (n,d) € (0,1)?,

qy(nC)

=0.
y=oo gy(dn | C)

Condition (H3) entails that the observations of go(X) given that Y > y and
go(X) € C are located, for y large enough, on a small probability. More
specifically, we have the following result.

Lemma 4 Let gy be a function satisfying condition (TCI). For a given inter-
val Iy C R such that P(X € gy*(In)) > 0, assume that condition (H3) holds
for Co := gy *(Io) then, for all e € (0,1),

Plgo(X) € By | X €Co] <¢
and le Plgo(X) € By | {X € Co} N{Y >y} =1,
y—00

where By . == {z € Ip; py(z) > qy(e/2]Co)}.

Condition (H3) is satisfied for instance by conditional heavy-tailed distribu-
tions defined for all z € X by S(y | z) := y~ Y@ L(y | x), where 7 is a
positive function and for all x € X', L(- | x) is a slowly varying function. This
is the object of the following result.

Lemma 5 Let us consider the random vector (X,Y') such that for y > 0 and
r€X CRP, Sy |z) =y Y@ L(y, x), where v is a positive function defined
on X and for all x € X, L(- | z) is a slowly varying function. Let C C X
with P(X € C) > 0. If the cumulative distribution of v(X) given X € C is

continuous and if
: In L(y, z)
lim sup ————=
Y= geC In Yy

then condition (H3) holds.

=0 (24)

We are now in position to provide a theoretical justification of (12). As in
Section 3.2, we denote by Ej, 4, (y) the Gini-type measure

E [lg0(X) — go(X™)| | min(Y,Y™) > y; (90(X), 90(X¥)) € Sh ] »

where (X*,Y™) is an independent copy of (X,Y).
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Proposition 2 Assume that there exists a function gy satisfying condi-
tion (TCI) and such that go(X) admits a density function fo. If there ex-
ists m > 0 such that fo(x) > m for all x € Xy, if condition (H3) holds for all
C= go_l(I) where I C Xy is an interval then, for allv > 0, one has under (H1)
and (H2) that

lim Y Epg(y) =0 and lim card(Juy(v)) < J, (25)

Y—00 Y—00
hejH,y (U)

where Jry(v) :={h e {1,...,H}; P(go(X) € Shgo | Y >y) > v}.

The result given by (25) appears clearly as a theoretical justification of our
estimation procedure.

B2 — Proofs of the results

Proof of Lemma 4 — To not overload the equations, we write in the rest of
the proof py(- | Co) =: py,0(-). The corresponding quantile function is denoted
qy,0(-) = inf{t; pyo(t) <-}. Note also that {X € Co} = {go(X) € Ip}.

Let us prove first that P(go(X) € By | go(X) € Ip) < e. We start with

P({90(X) € By} N{g0(X) € Io})

= ({50102 quen 2 lTE  n(rea).

From (TCI), for all 6 > 0, there exists yo such that for all y > yo,

S| X)
Lo0s X))

almost surely. Hence, for y > ypo,

<143, (26)

P{Sy | X) = (1+0)gy0(e/2)} N{X € Co})
P({90(X) € By} N{go(X) € Io})

<
< PSS [ X) = (1 =0d)gyo(e/2)} n{X €Co}).

Since py o is the survival function of S(y | X) given X € Cy, we have for y > yp,
Py (1 +0)gy0(e/2)) <Plgo(X) € By | 90(X) € o] < pyo((1—8)gy0(e/2))-
Now, since (H2) holds with Cp, there exists y; such that for y > y,

qy,0(€) 5 and 0E/4)
ole/2) <0 e

Hence, gy 0(¢) < (1—6)gy,0(¢/2) and by applying the non-increasing and right-

>1+9.

continuous function py o, one has that € > p, o ((1 + 9)gy,0(¢/2)). In the same
way, €/4 < pyo ((140)gy0(e/2)). As a consequence, for y > max(yo, y1),

e/4 < Plgo(X) € By | go(X) € Iy] <,

42



proving the first part of the lemma. Now, let us prove that m,(g) := P(go(X) €
By: | {90(X) € Ip} N{Y > y}) converges to 1 as y — oo. It suffices to prove
that 7, (e) /7y (e) — 00 as y — oo where Ty(e) = 1 — my(e). First, denoting by
BZSE = Iy \ By the complement of the set By . in Iy,

T = ! T x r)dr

Using (26) and the fact that ¢y (go(z)) < gy,0(c/2) for g(z) € Bgs, one has for

y > max(yo, y1) that

(1+0)(1—¢/4)
VS BY S y | o) € 1) 07

Next using similar arguments and the fact that B, .o C By,

1
WO 2 TSRO ST [ e @) | ) fx(@)ds
(1—-10)e/8
PV >y q0(X) € 1) /Y
The proof is then complete by using condition (H2). [

Proof of Lemma 5 — For all y and ¢ € (0,1), let us introduce the set
Ay(t) :={x € X;S(y | ) > t}. One has

-1
Ay(t) = {:L‘GX; v(z) > ( Inf +ln£(y,x)> }

_@ Iny

Condition (24) entails that for all § > 0, there exists ys such that for all y > ys,
A, (t) € Ay(t) C Af(t) with

-1
A;t(t) = {ac eX; v(z) > (_llnt :|:5> }

ny

Hence, denoting by G the survival function of 7(X) given that X € C, one has

for all y and ¢t € (0,1)
Int -1
—— 44 . 2
( y ) ] 27

nt N7 Lo <e
Iny =Dy -

Let G be the generalized inverse of G. For (n,d) € (0,1)2, replacing ¢

by y~ V¢ =0 in the first inequality leads to p,(y~ /¢ @=9 | ¢) > ap.

Applying the function gy(- | C) (the inverse of p,(- | C)) conducts us to the

G

inequality v~/ G" (dn)-5 < gy(dn | C). Similarly, using the second inequality
in (27), one has for n € (0,1) that y=%/& M+ > ¢ (n| C). Gathering these
inequalities yields

a(dn | C) _ 1/G-(dn)-1/G (m)+2s
Sy :
Qy(n ‘ C)
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This inequality is true for all § > 0. Since G is continuous, one can take

<0< (amm ~aem)

to conclude the proof. [ |

Proof of Proposition 2 — Let j € {1,...,J} where J is defined in condi-
tion (H1) and for y € R let

Ej(y) = E [|go(X) — go(X™)| | min(Y,Y™) > y; (90(X), 90(X™)) € I7],
The first step of the proof consists in showing that

yango E;(y) = 0. (28)
Let us introduce the following measurable sets: A, := {Y > y}; Ay :={V* >
y}; Bj == {go(X) € I;} and B} = {go(X™) € I;}, where (X*,Y™) is an
independent copy of (X,Y). For all ¢ > 0, let By, = {z € I;; ¢,(z) >
qy(e/2 | C;)} where C; := gy *(I;). Finally, let Bj ¢ := {go(X) € By.}. Before
proving (28), let us give some results on the previous defined sets. From

Lemma 4,
P[Bje | Bj] <e, (29)
and

y]LH;O P[BjE | B;nN Ay] =1 (30)

Since on [}, ¢, admits a unique maximum point zj* in the interior of I;, B, .
is an interval included in I; and containing z7. Since fo(z) > m for all z € A,
conditions (29) conducts to

m X I(By,) < fo(x)dx < eP(B;j).
By
As a consequence,

eP(B;))

P [|go<x> 2l <

BLE} =1. (31)

We are now in position to prove (28). For y € R,

L E[|go(X) — QO(X*)’HBij;mAymA;;]
W= [P(4, 1 B)P |

Remarking that |go(X) — go(X™)| = go(X) + go(X™*) — 2min(go(X), go(X™)),
one has

2
Ei(y) = ——————[T1, — To,l, 32
0= A, e T T ()
where
Ty := P(BjﬂAy)E[go(X)HBijy
and Tny = E[min(go(X),go(X*))]IBjﬁBjﬂAyﬁAz]'
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Let us first focus on the term T4 ,. We start with

Ty = P(B; N Ay) [E(g0(X)Ts, ca,) + Elgo(X)Ts, yrus,)]

where Bj ¢ = I; \ Bj . From (31), and since Bj e C By,

P(B,
Bn(X)Ie,ern) < (54 T2 ) BB 4)
P(B,
< P(B;NAy) (ZZP(Bj,e | BjnAy) + 2 T(nj)> :

From (30), for all € > 0, there exists y1. € R such that for all y > y .,
1—e <PBjec|BjnNA,) <1+e. Furthermore, since By is a closed interval,
there exists ¢; > 0 such that |2]| < ¢; and thus, 27P(Bje | BiNAy) < z] +ec;.
Hence,

. eP(B;
Bl ()T, era,) < P50 (55 2+ 00 ) (3
Moreover, for all y > y1 .

E(QO(X)]IBj&ﬁAy) < Cj]P’[BLg_t N .Ay] = Cj]P)[Bj N Ay]]P)[Bj&E ‘ Bj N Ay]
< ¢jeP[B; N A (34)

Gathering (33) and (34) yield to
TLy < []P(Bj N Ay)]2 |:Z]* + € <26j + P(Tlngj)>:| (35)

for all y > y1.. Let us now focus on the term 75,. We start with the

decomposition Ty, = T: 2(1y) + 2T2(2 + TQ(?;) where

1 M. * |
T = E [min(g0(X), go(X )5, crss ., as ]

2 [ . N 1
7L = E [min(g0(X), go(X "), cr: 14,05 ] -

and

3 [ . 1
T{5) = B [min(go(X), go(X "), s 14,05 -

First, from (31) and since Bj ¢ C B,

) > (—P(B)> P(Bje N Ay

J m

Vv

[P(Bje N A (zﬁp(@e |B;nA,) — @P(Bj)> _

m

Using the same arguments than those leading to (33), we obtain

2y m

7 > [P(B; N Ay)J? <z; —ecj — dP(Bj)) : (36)
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Now, using (29), one has for y > y1 .,

) > <BJemA>P< t A
= —cj[ (B; 0 A)PP(Bjc | B; 0 A)P(B, g | BN A,)
> cie[P(B) nA)P (37)

Finally, from (31), one has for y > y; .

T > —¢j[P(Bje N AP = —¢;[P(B; N A,)J2. (38)

Collecting (36), (37) and (38) yield to

P(B;
Toy > [P(B; N Ay)]? (zj 5 (m]) i+ cj52> . (39)
for all e > 0 and y > y; .. Gathering (32), (35) and (39) conduct to

P(B.:
Ej(y) <2 (cj + 2(5]) - cja> ,

proving (28) since € can be chosen arbitrarily small.

Let us show now that card(Jmy(v)) < J as y — oo. Conditions (Hl) and (H2)
entail that there exist Aj, ..., kY such that forall j € {1,...,J}, 2] € Sh* g0 C
I;. Furthermore, taking

e< jEFLi?,J}P(go(X) € Snx g0)»
conditions (29) and (30) entail that for all v > 0, there exists y2 € R such that
for all y > yo and h ¢ {h},..., %},

P(QO(X) € Sh,go | Ay) <wv

showing that card(Jm,y(v)) < J.
Finally, mimicking the proof of (28), it is easy to check that Ej 4, (y) — 0 as
y — oo forall h € {h},...,hY} D Tuy(v). |

Appendix C: Coordinate search method

We present here the coordinate search algorithm to solve the minimization
problem:

¢
i 2,

where ® : R? — R can be any complicated function. Let D := [I,, —I)] be
the p x 2p matrix where I, is the p x p identity matrix. For ¢ € {1,...,2p},
we denote by D; the ith column of D.
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Initialization — Let xj € RP be an initial guess of the solution. The setting
parameters of the algorithm are: ag > 0, 0 < o < g and ¢ € (0,1). Let
k e N.

Step k — If ap < oy then STOP. Else,
o if

O(z;) < min @ (xf + apD;)
i=1,..,2p

then z7 | =z} and ag41 = Cag. Go to Step k + 1.

o if
®(x;) > min D (x) + axD;)
i=1,...,.2p
then agq = ¢ tag, and
xyq = argmin {®(x); = € {z} + . D1,..., x5 + apDop}}.

Go to Step k + 1.
This algorithm is used to solve (12). Recall that in Section 3.3, the set of

function G is a set of parametric functions with parameter b € ©,, C RP. For
any b € R? let
T
u'b
b = 71) S @ y
wTh(6T0) 2 T
be the corresponding vector in ©,. Denoting by g; the function belonging to
G with parameter b € ©,, the solution of (12) is obtained by applying the
coordinate search method to the function ® defined for all b € RP by

®(b) == Y Eng,(Bn) + Acard(Jug,)-

JH,gb

In this paper, the setting parameters of the algorithm are fixed to ag = 5,
ator = 0.05 and ¢ = 1/2.
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