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a b s t r a c t 

In the current era of “information everywhere”, extracting knowledge from a great amount of data is in- 

creasingly acknowledged as a promising channel for providing relevant insights to decision makers. One

key issue encountered may be the poor quality of the raw data, particularly due to the high missingness,

that may affect the quality and the relevance of the results’ interpretation. Automating the exploration of

the underlying data with powerful methods, allowing to handle missingness and then perform a learn- 

ing process to discover relevant knowledge, can then be considered as a successful strategy for systems’

monitoring. Within the context of water quality analysis, the aim of the present study is to propose a ro- 

bust method for selecting the best algorithm to combine with MICE (Multivariate Imputations by Chained

Equations) in order to handle multiple relationships between a high amount of features of interest (more

than 200) concerned with a high rate of missingness (more than 80%). The main contribution is to im- 

prove MICE, taking advantage of the ability of Machine Learning algorithms to address complex relation- 

ships among a large number of parameters. The competing methods that are implemented are Random

Forest (RF), Boosted Regression Trees (BRT), K- Nearest Neighbors (KNN) and Support Vector Regression

(SVR). The obtained results show that the hybridization of MICE with SVR, KNN, RF and BRT performs

better than the original MICE taken alone. Furthermore, MICE-SVR gives a good trade-off in terms of

performance and computing time.

1

 

o  

i  

i  

t  

O  

s  

a  

T  

e

 

t  

c  

q  

c  

r  

t  

l  

d

 

i  

t  

r
j

p

. Introduction

The proliferation of sensing devices has increased the ability of

rganizations to acquire various and great amount of data, allow-

ng them to implement real-time monitoring of their systems. This

s generally based on the analyses of complex relationships be-

ween several factors of interest, such as in water quality analysis.

nline monitoring has indeed offered the development of decision

ystems that are able to accelerate decision-making and anticipate

ctions to prevent undesired events or to eradicate critical issues.

o achieve such a goal, it is required to pre-process the raw data,

specially when some values are missing on a certain level. 
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Missing data is a recurring phenomenon in real-world applica-

ions ( Sterne et al., 2009; Yang, Liu, Zeng, & Xie, 2019 ). It may oc-

ur due to sensor failures, bad or non-existing strategy for data ac-

uisition, budget issues, lack of response from a participant in the

ase of survey or various other reasons. If the complete data are

epresentative of the studied phenomenon, this missing informa-

ion is negligible, otherwise the results may be incorrect and may

ead to wrong interpretations. For example, anomalies could go un-

etected if they happen during a non-monitored period of time. 

There are two ways of dealing with missing data: deletion or

mputation ( Buhi, 2008 ). Deletion means discarding the observa-

ions or the variables with missing data, which is called complete-

ase analysis, while imputation consists in reconstructing the miss-

ng values. Because of its simplicity, deletion is usually the default

ethod used in practice. However, there are many cases in various

elds in which this method showed some limitations. Indeed, it

ecreases the sample size and may lead to a loss of substantial in-

ormation. In Clark and Altman (2003) for instance, the number of
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observations dropped from 1189 to 518 (43% of the original data)

in an ovarian cancer dataset, which led to biased interpretation. 

Another deletion method is pairwise deletion through which

only non-missing values are used for analyses, for instance in cor-

relations scores calculation where the method fails when the two

correlated variables are not filled at the same time. Instead of dis-

carding an observation or a variable concerned with missing value,

it is preferable to estimate accurately those missing values in order

to provide relevant interpretations. 

Quoting White and co-authors, “awareness has grown of the

need to go beyond complete-analysis” and some major improve-

ments of the simplistic methods have been proposed in the liter-

ature, since Rubin’s innovative proposal for approaching missing-

ness ( White, Royston, & Wood, 2010 ). Among others, Rubin, who

is the author of Multiple Imputation (MI), defined a conceptual

framework for characterizing missing data that allows to distin-

guish various types and to determine when missing data can be

ignored ( Little & Rubin, 1987; Rubin, 1976 ). The major insight of

the proposed imputation method is that it addresses uncertainty

and complexity of the data structure, allowing to go beyond delet-

ing or discarding data. 

Following Rubin, van Buuren introduced the Multiple Imputa-

tions by Chained Equations (MICE), a MI technique that requires

fewer assumptions on missingness and also handles relationships

between variables ( van Buuren & Groothuis-Oudshoorn, 2011 ).

However, original MICE considers only linear relationships and has

been successfully applied to dataset with at most 70% of missing-

ness. It may therefore fail in other cases such as in water quality

data as considered in the present study, which are characterized by

a high rate of missingness and a great amount of factors of inter-

est that are not necessarily linearly related. This suggests the need

of an alternative method to improve the imputation mechanism in

order to provide relevant interpretation of the results, which is the

purpose of this work. 

The rest of the paper is organized as follows: the main imputa-

tion methods available in the literature are reviewed in Section 2 ,

followed by the presentation of a method to improve MICE for

multiple data imputation in Section 3 . An application of the pro-

posed method on experimental dataset, along with associated re-

sults, are described in Section 4 while the last section contains the

conclusion and perspectives of the present work. 

2. Related work

In order to choose an appropriate method for handling missing

data, the underlying cause of the missingness has to be investi-

gated. Indeed, as mentionned in Buhi (2008) , each method only

works under certain assumptions, namely complete randomness,

conditional randomness or systematic reasons. 

2.1. Missingness patterns 

The conceptual framework allowing to take into account certain

assumptions, as noted above, has been defined by Rubin (1976) .

There are three types of missing data, depending on the missing

mechanism : (1) Missing completely at Random (MCAR), (2) Miss-

ing at Random (MAR) and (3) Missing Not at Random (MNAR). 

Let R be the locations of the missing data in a dataset X =
(X obs , X miss ) , and ψ the parameters of the missing data model;

where X obs and X miss are respectively the observed and the miss-

ing values. MCAR, MAR and MNAR patterns are formally defined

as follows ( van Buuren, 2018 ): 

• Data are MCAR if the probability of missingness is independent

of both the observed variables and the variables with missing
values. This is the case, for example, when people forget to an-

swer a question in a survey. Formally, 

P (R = 0 | X obs , X miss , ψ) = P (R = 0 | ψ) (1)

• Data are MAR if the probability of missingness is due entirely to

the observed variables and is independent of the unseen data.

In other words, the missingness is a function of some other ob-

served variables in the dataset (for example, people of one sex

are less likely to disclose their weight):

P (R = 0 | X obs , X miss , ψ) = P (R = 0 | X obs , ψ) (2)

Therefore, MAR data are a good candidate for data imputation

based on observed variables ( Buhi, 2008 ).

• Data are MNAR if the missing value is related to the actual val-

ues (for example, people who weigh more are most likely to

not disclose their weight):

P (R = 0 | X obs , X miss , ψ) (3)

depends on all three elements.

When data are MNAR, the missingness process is called non-

gnorable , meaning that the cause of the missingness must be in-

luded in the model, whereas MAR and MCAR data missingness

rocesses are called ignorable . Following the assumptions behind

hese three patterns, several methods have been provided in the

iterature for solving appropriately the missingness. 

.2. Single imputation methods 

Methods that compute one single value per missing data are

eferred as single imputation methods. The most common single

mputation methods are mean, median or mode imputation, con-

isting in replacing the missing value with the mean, median or

ode of the associated variable ( Buhi, 2008 ). In this case, the miss-

ng value is easy to compute, but the method ignores the corre-

ation among the variables and underestimates the standard de-

iation. If the variable containing missing values is categorical, a

imple option is to create a new category for the missing val-

es. This method is suitable for MNAR data, i.e. when the miss-

ngness is correlated to the values of the missing data. When a

ariable of the incomplete dataset is a periodic time series, a more

laborated single imputation technique is to apply a linear inter-

olation or an Autoregressive Integrated Moving Average (ARIMA)

odel to fill in the missing values ( Shao, Meng, & Sun, 2016 ). Al-

hough those two techniques are simple, the first one is not effi-

ient when the missing gap is large, and the second one requires

 periodic time series. Another technique involves predicting the

alues from the observed variables. For example, K-nearest neigh-

ors (KNN) replaces the missing value with a linear combination

f the K nearest non-missing observations ( Jordanov, Petrov, &

etrozziello, 2018; Tutz & Ramzan, 2015 ). To use this algorithm, it

s necessary to choose the optimal K and define a distance mea-

urement between two observations. A local similarity imputation

ased on Fast Clustering was proposed in Zhao, Chen, Yang, Hu,

nd Obaidat (2018) . The authors partition the incomplete data with

 fast clustering method (Stacked Autoencoder-based), then fill the

issing data within each cluster using a KNN algorithm. The ob-

ained results showed that the proposed method outperformed

ther local similarity-based methods. Shao and co-authors applied

wo Single Layer Feed Forward Neural Networks (Extreme Learn-

ng Machine and Radial Basis Function Network) on a periodic soil

oisture time series ( Shao et al., 2016 ). This method performed

etter predictions than a linear interpolation and ARIMA in infill-

ng missing segments. However, it requires parameter tuning in or-

er to be performing. 



Table 1

Advantages and Drawbacks of the reported single imputation methods.

Method Advantages Drawbacks

Mean Easy to implement - Underestimates standard deviation

- Ignores relationships between variables

Add a category Easy to implement Only works with categorical and MNAR data

Linear Interpolation Takes time into account Does not work when the missing gap is large

ARIMA Takes time into account Requires a periodic time series

Linear Regression Takes into account relationships between variables - Underestimates the variance

- Ignores non linear relationships between variables

Stochastic linear regression Takes into account relationships between variables Ignores non linear relationships between variables

KNN Takes into account relationships between variables Requires parameter tuning

ANN Takes into account the time factor Requires parameter tuning

Fig. 1. Overview of the multiple imputation method.

 

m  

a  

m  

n

2

 

a  

t  

m  

t  

p

2

 

l  

p  

f  

w  

c  

b  

v  

s  

a  

M  

w  

r  

fl  

a  

i  

a  

i  

i  

o  

t  

M  

a  

t  

H  

t  

2  

a  

t  

i  

M  

r  

,----------------------, 
0 missing data 

e filled data 

V1 

obs1 • 
obs2 0 
obs3 • 

... ... 

V2 ... 

0 ... 

• ... 

0 ... 

... ... 

/ 
---+ 

multiple 
imputations 

r----------------------
V1 V2 ... 

obs1 (1) 
V12 

... 

obs2 (1) 
V21 • ... 

obs3 • (1) 
V32 

... 

... ... ... .. . 

V1 V2 ... 

obs1 • (2) 
V12 

... 

obs2 (2) 
V21 • ... 

obs3 • (2) 
V32 

... 

.. . ... ... ... 
v(k) imputed data during the 

,, k-th imputation process 

,~I __ 
I----------------------

Imputed data 

,----------------------i 

---+ 

/ 
imputations 

obs1 

obs2 

obs3 

... 

V1 V2 ... 

• V12 ... 

V21 • ... 

• V32 ... 

... ... .. . 
aggregated value 

Vij of an imputed data 

~----------------------
analyses and Pooled results 
results pooling ...._ _______ _ 

I 
A brief summary of these implementations of single imputation

ethods is presented in Table 1 that provides the main drawbacks

nd advantages. A well-known limitation that they have in com-

on is that once a missing value is imputed, it is treated as a

on-missing value. 

.3. Multiple imputation methods 

In order to solve the limitations of single imputation, some

uthors have proposed to take into account the uncertainty of

he imputed values ( Little & Rubin, 1987; Neter, Maynes, & Ra-

anathan, 1965 ). In that purpose, Rubin has developed the Mul-

iple Imputation (MI) method, which combines several single im-

utations ( Little & Rubin, 1987 ), as described in the following. 

.3.1. Principles of multiple imputation 

The principles of MI are illustrated in Fig. 1 , based on the fol-

owing main steps: (1) imputation phase where m datasets are

roduced by drawing them from a distribution, which can be dif-

erent for each variable ( van Buuren, 2018 ), (2) analysis phase in

hich the m datasets are analyzed, and (3) pooling phase that

ombines the m datasets to produce a final result, for example

y calculating the mean of the imputed values for each missing

alue. The m datasets can be generated in parallel using parametric
tatistical theory and assuming a joint model for all the vari-

bles ( van Buuren, 2007; Rubin & Schafer, 1990 ), such as in

ultiple imputAtions of incoMplEte muLtIvariate dAta (AMELIA),

hich uses expectation-maximization with a bootstrapping algo-

ithm ( Honaker, King, & Blackwell, 2011 ). Such approach lacks

exibility and may lead to bias ( van Buuren, 2007 ). The other

lternative is to generate the m datasets until a stop criterion

s met: in Hong and Wu (2011) for instance, the authors iter-

tively used association rules to successfully estimate the miss-

ng values. Although the studied dataset had a high missing rate,

t was relatively small (there were only three variables). Some

ther examples of the sequential methods are Sequential Impu-

ation for Missing Value (IMPSEQ) ( Betrie, Sadiq, Tesfamariam, &

orin, 2014 ), a covariance-based imputation method and MICE,

 series of linear regressions that consider a different distribu-

ion for each variable ( van Buuren, 2007; Raghunathan, Lepkowski,

oewyk, & Solenberger, 2001 ). Betrie and co-authors have found

hat the two sequential methods outperform AMELIA ( Betrie et al.,

014 ). In Stekhoven and Buhlmann (2011) , the authors introduced

 MI method called MissForest, which is similar to MICE, except

hat it uses Random Forest instead of Linear Regression in the

mputation step. As MissForest yielded a better performance than

ICE, that result is encouraging towards tweaking the MICE algo-

ithm, which is the object of the present work. A brief summary of



Fig. 2. Overview of the MICE algorithm.

Table 2

Advantages and Drawbacks of the reported MI methods.

Method Advantages Drawbacks

AMELIA Can be applied to categorical, ordinal or continuous data Assumes a joint model for all the variables

MI using decision rules Works well when the missing-value rate is high Not adapted to data with a large number of variables

IMPSEQ Time complexity - Lack of robustness toward outliers

- Does not take into account nonlinear relationships between variables

MICE Flexibility - Does not take into account non-linear relationships between variables

- Theoretical justification needed

MissForest - Adapted to high dimensional datasets Computation time issue

- Takes into account linear relationships between variables
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the advantages and drawbacks of the methods presented above is

given in Table 2 , while the original MICE principles are described

in the following. 

2.3.2. Main principles of MICE 

The main steps of MICE are summarized in Fig. 2 and detailed

in Algorithm 1 . MICE algorithm implementation was based on a

method described in Azur, Stuart, Frangakis, and Leaf (2011) . It

assumes that missing data are of MAR type. The first step is to

initialize the missing values to the mean of each column. Then

the missing values of the first variable are reset to “missing”. Af-

ter that, a regression model is fitted on the subset of the dataset

where the value of this variable is present. Finally, the obtained

model is used to fill in the value and update the dataset. This

process is repeated for each variable until all the missing data

are estimated. The whole process, first step excluded, is reiter-

ated n _ cycles times until the estimated data converge. In the lit-

erature, it is advised to increase the number of cycles in function

of the size of the dataset and the missingness ratio ( Graham, Ol-

chowski, & Gilreath, 2007 ). Although MICE has been proved effi-

cient in the literature, the trade-off between computational cost

and performance becomes imbalanced when dealing with large

datasets and/or datasets with a high missingness rate. Indeed, the

number of imputed datasets has to be increased, and so does the

computational time. Furthermore, a high missingness rate implies

high uncertainty. Another key issue is that this form of the algo-

rithm is based on linear regression, which may not reflect the ac-

tual relationships between the variables of the current study. To

address these issues, an improved version of MICE is proposed and

described in the following. 
. The proposed method to improve MICE

As noted above, the dataset concerned with water quality con-

idered in this study has a very high missing rate (82%). Besides,

here is a great amount of variables (more than 200) in which each

s concerned with at least one missing value. The methods men-

ioned above, including the most performing, have been applied in

 less constrained context and therefore, can fail to provide good

esults in the specific case of the dataset considered in this pa-

er. It is then proposed to take advantage of the ability of Machine

earning algorithms for handling such issues in order to improve

ICE. The two main ideas are: (1) define a set of competing meth-

ds, and then (2) replace the Linear Regression in the original MICE

y each of these methods in order to select the most performing

hat fits the context of the present study. 

The competing methods have been chosen among the most per-

orming supervised learning algorithms in the literature, namely

andom Forest(RF), Boosted Regression Trees (BRT), and Sup-

ort Vector Regression (SVR). Besides, K-Nearest Neighbors (KNN),

hich is commonly used to solve missingness, has also been se-

ected. 

The main steps of the proposed method are illustrated in Fig. 3 .

1. The first phase of the original MICE is initialized (step 1).

2. A competing method is then chosen, followed by a mechanism

for optimally setting its hyperparameters (step 2).

3. Next, phase (II) of the original MICE is modified by replacing

Linear Regression with the chosen method, and then launched

in a loop that goes a number of times corresponding to the pre-

defined number of cycles (step 3).



Fig. 3. The proposed method for model selection to improve MICE.

Algorithm 1 MICE. 

Input: 

• X incomplete data matrix of size n _ obs × n _ f eatures
• n _ cycles number of cycles

Output: 

• Completed data matrix of size n _ obs − n _ f eatures

X f ull := mean_impute( X) 

for i := 1 to n _ cycles do 

for j := 1 to n _ f eatures do 

y j := X j /* the j − th column */ 

X ( j) := X \ X j
m ⊂ { 1 , n } = { i | X j ! = NaN} /* m denotes the indices where

X j is not missing */ 

regressor := linear_regressor() 

regressor.fit( X m 

( j)
, y m 

j 
) /* the model is fitted on the subset of 

the dataset where X j is not missing */ 

y ¬ m 

( j)
:= regressor.predict( X ¬ m 

( j)
) /* ¬ m denotes the indices 

where X j is missing */ 

end for 

end for 

return X f ull 
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4. After convergence, performance indicators for the current

method are computed (step 4).

5. When all the competing methods have been processed accord-

ing to the four previous steps, a selection mechanism takes

place by comparing their performance indicators (step 5).

6. Finally, the best method is applied to solve the missingness

(step 6).

Due to the high missingness rate, the optimal choice of the hy-

erparameters (as considered in step 2) is based on a modified ver-

ion of the studied dataset constructed according to the following

rocedure: 

• For each variable, a triangular distribution is simulated with

different parameters (min, mode, max). If a variable always has

the same value, then that value is replicated in each observa-

tion. The triangular distribution has been used because it pro-
vides a simple representation of the real distribution of the

dataset and allows more flexibility by taking into account the

uncertainty of the values. 
• The data are scaled so that the units of the variables do not

play any role.
• The observations are shuffled and the missingness distribution

of the real dataset is reproduced in order to mimic the real

problem as accurately as possible.

Two main performance indicators have been used for the com-

arison (as realized in step 5), namely processing time and Mean

quared Error (MSE). 

.1. Theoretical background of the competing methods 

.1.1. Random Forest 

Random Forest is an ensemble method based on fully grown re-

ression trees. The objective is to build several weak learners (the

egression trees) in parallel in order to produce a strong regressor.

he main steps are as follows: 

1. The observations are sampled with replacement (bootstrap ag-

gregating).

2. A set of variables is selected randomly.

3. The tree is built upon the observations from step (1) and the

variables from step (2).

4. The final prediction is made by averaging over the predictions

of all decision trees.

In this algorithm, one of the most relevant hyperparameters to

et in order to make the model perform well is the number of

rees. 

.1.2. Boosted Regression Trees 

Similarly to the Random Forest algorithm, BRT is an ensem-

le method based on regression trees. Gradient boosting is used

o train the weak learners (shallow regression trees) sequentially.

n this algorithm, a higher focus is set on observations that have

igher errors on the previous tree and a gradient descent is used

o minimize the loss function (least squared errors) at each step. 

Let y i be the target value and f ( x i ) its predictor. 

The objective function is given as in Eq. (4) : 

 (y, f ) = 

n∑

i =1

l(y i , f (x i )) (4)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

s  

f  

f  

t  

a

4

4

 

t  

W  

d  

t  

a  

t  

i  

a  

r  

k  

t  

r  

a

 

i  

o  

i  

n

 

s  

v  

a  

f

4

 

a  

o  

p

 

t  

}.":'.~· ... ~:-.•~·-.'"'<: .... ~· · ~. ,- ., .... 

l}:I~\}f.::~I~:'. -~""....1. __ .J. __ _L_~*+~~;;;;;;,~ 
\. -~ : .:· • ~··:._.. '1"-.:, .:· 

/(;!?~t/\':, ' . 
..:. .. .,, ~ · :, • ·.:,- -~·• . .. active charcoa 

- '• ,· 

.. .:~,; . ~N 
where l(y i , f (x i )) := (y i − f (x i )) 
2 . 

The algoritm goes as follows: 

f 0 is the trivial tree, it returns the mean value of Y . 

For k := 1 to m : 

• Calculate the negative gradient −�l(y i , f (x i )) , which corre-

sponds to the residual for i = 1 to n .
• Fit a regression tree h k for the residuals.
• Create a model f k = f k −1 + νγk h k , where γ is the step

magnitude, found by searching arg min γ
∑ n 

i =1 l(y i , ( f k −1 (x i )) +
νγ h k (x i ) , and ν is the learning rate.

Return f m 

.

For this algorithm, the number of trees m , as well as the learn-

ing rate ν , are the hyperparameters that need to be set by the user

in order for the method to perform well. 

3.1.3. K-Nearest Neighbors 

Let X and y be the training data, X 

∗ a new observation and y ∗

the associated value to predict. The KNN algorithm goes through

the following steps: 

1. Calculate the distance between X 

∗ and each of the observations

of the training set;

2. Take the y values of the K closest observations y i 1 , y i 2 , . . . , y ik ;

3. Assign to y ∗ a linear combination of these values (usually the

mean).

Three hyperparameters have to be defined properly so that the

algorithm performs well: the distance, the number of neighbors K

and the type of aggregation of the neighbors values. 

3.1.4. Support Vector Regression 

Let X, y be a training data. The objective of SVR is to find a

function f such that the deviation of f (.) from the real values y

is at most ε ( Smola & Schölkopf, 2004 ). If the problem has no

solution, slack variables ξ i , ξ i 
∗ are introduced to tolerate part of

the error. First, let’s consider the case where f is linear, i.e. f (x ) =
w.x + b. f is then the solution of the following optimization prob-

lem ( Eq. (5) ):

Minimize 
1 

2 

|| w || 2 + C 

n∑

i =1

(ξi + ξ ∗
i ) 

s.t. y i − < w, x i > −b ≤ ε + ξi

< w, x i > + b − y i ≤ ε + ξ ∗
i 

ξi , ξ
∗
i ≥ 0 (5)

where C > 0 is the trade-off between the flatness of f and the

amount of tolerated deviations larger than ε, and < , > is a scalar

product. By using the dual representation of the problem based

on Lagrange multipliers, we finally get: f (x ) = sum 

n 
i =1 

(αi + α∗
i 
) <

x i , x > + b where αi are the Lagrangian multipliers. If the adequate

f is not linear, we can map the data into a high dimensional space

where the function f becomes linear ( Fig. 4 ). Instead of searching
Fig. 4. Mapping to the feature space in SVR.
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or the expression of φ, a function k called a kernel function, which

atisfies k (x, x ) = < φ(x ) , φ(x ) > is used. The existence of such a

unction is proved by the Mercer’s theorem. ε, C and the kernel

unctions are the Support Vector Regression (SVR) hyperparame-

ers that need to be selected properly for the performance of the

lgorithm. 

. Application and results

.1. The context of the study 

The incomplete dataset used in this paper is taken from a wa-

er sample analysis made at Oursbelille, in the Adour plain, South-

est of France, from 1991 to 2017. The operational principle of this

rinking water collection point is described in Fig. 5 . First, the wa-

er is pumped, its nitrate rate is measured and is conveyed to large

erial tanks in order to be treated by active charcoal. Then, the

reated water is stored in a water tank. In a third step, some sens-

ng devices are then used to monitor some quality indicators, such

s the pH. In a fourth step, on demand, the stored water is chlo-

inated, before being dragged to another underground well, few

ilometers away from the pumping well. From this second storage

ank, water is distributed to the citizens of the Adour region. The

egion benefits of an oceanic climate, with a rainy winter and an

verage temperature ranging from 4 to 19 ◦ C. 

The acquired data contain 148 observations of 411 water qual-

ty indicators, with an overall missingness of 82%. Fig. 6 a is an

verview of the dataset, where some of the measured water qual-

ty indicators are displayed, while Fig. 6 b summarizes the missing-

ess distribution per variable in the dataset. 

Only the variables that are measured at least 5 times are con-

idered, which reduces the dataset to 257 variables (52% of the 411

ariables). It is noted that the removed variables do not restrict the

nalysis since they are not among the common hyperparameters

or water quality assessment found in the literature. 

.2. Settings and assumptions of the implementation 

Based on the presentation of the three missingness patterns,

nd the nature of the studied dataset (as described in the previ-

us subsection), we can assume that our study is within the MAR

attern. 

Moreover, the proposed method depends on several factors: (a)

he number of cycles to perform the imputations, (b) the num-
Fig. 5. Operational principle of the drinking water well of Oursbelille.

mping 
lick 

nslng 
nltoring 

! 

Storage 
for public 

distribution 



(a) Overview of the dataset. (b) Number of missing values per variable.

Fig. 6. Description of the dataset.
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Table 3

Candidate values of the hyperparameters for each Machine

Learning method.

Algorithm Hyperparameter Candidate values

RF n_trees {10, 15, 20, 50, 100}

BRT m {30, 50, 100, 150}

ν {0.01, 0.1, 0.5}

KNN K {2, 3, 4}

d {euclidean, manhattan}

y ∗ {uniform, weighted}

SVR ε {0.01, 0.1}

C {0.01, 0.1, 1, 10, 100}

kernel {rbf, poly, sigmoid}

γ {1e-3, 0.01, 0.1, 1}
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Fig. 7. Variation of MSE to choose the hyperparameters in BRT.
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er of values defined for each hyperparameter, (c) the size of the

ataset, (d) the number of variables of interest, and (e) the com-

lexity of the ML algorithm itself. For these reasons, in order to

btain relevant results in a reasonable running time, and by oppo-

ition to what is commonly used in literature, only one value for

he number of cycles (i.e. 10 cycles) is considered in this work. 

The implementation of the proposed method was performed by

sing Python programming language, on a computer with the fol-

owing main features: 

• Operating System: Windows 10;
• RAM: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz;
• Processor: 8.00 Go.

The corresponding results are described and discussed in the

ollowing. 

.3. Implementation of the proposed method 

The main steps of the proposed method have been imple-

ented according to the following explanations. 

• Step 1. The first phase of the original MICE, that is mean impu-

tation, is launched (initialization step).
• Step 2. The next step concerns the hyperparameter tuning of

the Machine Learning algorithms. There is no analytical solu-

tion that allows to find the optimal values. Therefore, to do so,

a cross-validation is performed using the modified dataset, and

a mean squared error (MSE) is measured. The optimal hyper-

parameters are therefore those that have the lowest MSE. Note

that only a limited number of candidate values have been taken

into account because adding more would drastically affect the

algorithmic complexity.

The competing methods are MICE, MICE combined with RF

(MICE-RF), MICE combined with BRT (MICE-BRT), KNN (MICE-

KNN) and MICE combined with SVR (MICE-SVR).

The candidate values for the hyperparameters of the four Ma-

chine Learning algorithms (KNN, RF, BRT, SVR) are detailed in

Table 3 . For KNN, let us notice that since the studied dataset

contains variables with only five non missing values, the num-

ber of neighbors is at most 4.
• Step 3. Phase (II) of the original MICE is modified by replacing

Linear Regression with one of the competing algorithms, each

with its optimal hyperparameters (as obtained in step 2).
• Step 4. The performance indicators, namely MSE and processing

time, are computed for each algorithm.
• Step 5. The method that performed best in terms of MSE, and

with a reasonable computing time, is then selected.
• Step 6. Finally, the winning method is used to solve the miss-

ingness.
The main results of this implementation are presented and dis-

ussed in the next subsection. 

.4. Results and discussion 

In the following, only steps 2, 4 and 5, which contain the main

esults of the implementation, are presented. 

• Step 2: Hyperparameter tuning.

andom Forest . In this algorithm, the performance increases pro-

ortionally to the number of trees. However, it becomes rapidly

ime consuming. The objective is to find the smallest value for

hich the performance is good enough. Although it is not the op-

imal value, the number of trees is set to 15 in order to reduce the



(a) Choice of K and the linear combination. (b) Choice of K and the distance.

Fig. 8. Variation of MSE to choose the hyperparameters in KNN.

(a) Choice of ε and the kernel function. (b) Choice of C and ε.

Fig. 9. Variation of MSE to choose the hyperparameters in SVR.

Table 4

Performance indicator (MSE) of

the main RF hyperparameter.

n_trees MSE

10 0.5159

15 0.4943

20 0.4850

50 0.4691

100 0.4653

 

 

 

 

 

 

 

 

 

 

 

Table 5

Performance indicator scores.

MICE MICE-SVR MICE-4NN MICE-RF MICE-BRT

Processing time 6.87 5.29 8.25 65.18 32.59

MSE 1.09e24 0.44 0.58 0.55 0.54
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computation time. Furthermore, the error does not decrease a lot

between 15 and 100 estimators (see Table 4 ). 

Boosted Regression Trees. Similarly to the previous algorithm, the

best trade-off between computing time and performance is sought.

It is noted that the number of trees is higher, because shallow trees

are built in BRT instead of fully grown ones in RF. 

Fig. 7 represents MSE in function of the learning rate ν , where

the labels represent the number of trees. According to these re-

sults, the optimal hyperparameters for this study are ν = 0 . 01 and

m = 150 . For computational time sake, hyperparameters with a

slightly higher mean squared error (only a difference of 0.001) are

chosen: ν = 0 . 1 and m = 30 . 

K-Nearest Neighbors . For this algorithm, the hyperparameters to

tune are the number of neighbors K , the distance d and the linear

combination method of the neighbors value y ∗. In this study, the

euclidean distance is chosen, K = 4 , and y ∗ is the weighted mean

of the KNN. Their choice is illustrated in Fig. 8 . Indeed, MSE score

is lower for these values.

Support Vector Regression . For this algorithm, ε, C , the kernel func-

tion and the parameter γ associated to the kernel function need
o be tuned. In Fig. 9 , it is seen that the MSE is generally lowest

or the polynomial kernel, and for ε = 0 . 1 . The lowest MSE score

s obtained with ε = 0 . 01 , C = 1 , kernel = poly and the associated

= 0 . 01 . 

• Step 4: Computing the performance indicators

The results summarized in Table 5 show that MICE-SVR is the

most performing method regarding both processing time (5.29

seconds) and MSE (0.44).

The processing time was significantly high while combining

MICE with RF and BRT. Indeed, all three methods, MICE, RF, and

BRT are already computationally expensive by themselves. With

a number of estimators set to 15 for Random Forest, a number

of cycles set to 10 for MICE and 251 variables to fill, MICE-RF

computes 15 × 10 × 251 = 37651 fully grown regression trees.

Similarly, MICE-BRT computes 43500 shallow regression trees.

MICE performed the worst because in terms of MSE in the cur-

rent implementation of the algorithm. Indeed, all the variables

were used as predictors in the regression, whereas an interme-

diate variable selection step would have been appropriate. It

also proves that the relationship between the variables are not

linear.

MICE-KNN is a little less performing than the other combina-

tions of MICE with Machine Learning algorithms. This is due to

the fact that the closest resembling observations are logically

those that are closer in time. However, these values are not
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systematically filled and the closest neighbors are only searched

among non-missing observations for a given variable. 
• Step 5: Selection of the most performing method.

MICE-SVR performed best in both criteria, it is therefore the

best performing competing method in this particular case.

The proposed methodology can handle datasets with a high

issingness rate, and is also suitable for high-dimensional data.

t is a flexible method that can take into account complex non-

inear relationships between variables (if the competing methods

re non-linear). It makes it possible to automate the selection of

he best method to solve missingness, which reduces the amount

f work of the data analyst, who can focus on tasks with higher

dded value, aiming at extracting knowledge. However, a few lim-

tations are worth noting, particularly concerning the number of

ycles preset to 10, and the relatively low number of potential hy-

erparameters values (that does not allow a rigorous sensitivity

nalysis of these hyperparameters). Furthermore, these parameters

re tuned using an artificial dataset which has been constructed

y modifying the real one. All these limitations are mainly due to

lgorithmic complexity, which constitutes by itself a challenge as

ell as a great scientific issue. 

. Conclusion and perspectives

It is widely acknowledged that data-driven methods provide

owerful algorithms to analyze any issue that is of interest for

ecision-makers. However, performing such analyses with incom-

lete data may not be helpful to take reliable decisions. In this pa-

er, a methodology for selecting the best algorithms to address the

ssue of data imputation, in the context of water quality assess-

ent, has been proposed. A benchmark of four of the most pow-

rful and commonly used ML algorithms has been performed for

hat purpose (Random Forest, Booted Regression Trees, K-Nearest

eighbors, Support Vector Regression). The results showed that

ICE-SVR is the best in that it converges faster than the three oth-

rs, and provides the best performance (notably in terms of pre-

iction average error). It can then be applied to high missingness

ataset, including data for water quality assessment that are often

ncomplete, as in the case of Adour (south-west of France) consid-

red in the present study. 

Based on the weaknesses of the proposed method, as men-

ioned in the discussion of the results, the following improvements

re planned for further studies: (1) deeper automate the mecha-

ism of the model selection by setting fuzzy rules in an inference

ngine that will aggregate all the performance indicators in a sin-

le indicator; (2) improve, for each competing method, the opti-

al choice of the hyperparameters using evolutionary algorithms

n order to speed up the computing time and increase the number

f values for each hyperparameter; (3) automate the choice of the

umber of cycles needed for the convergence of the imputations

y taking into account the size of the data and its missingness rate;

4) introduce the temporal dimension within the imputation pro-

ess.
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