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Interfacially driven transport theory: a way to unify Marangoni 
and Osmotic flows 

Patrice Bacchin, *a, Kirill S. Glavatskiy b, Vincent Gerbaud  a

We show that the solvent behaviour in both diffusio-osmosis and Marangoni flow can be derived from a simple model of 

colloid-interface interactions. We demonstrate that the direction of the flow is regulated by a single value of the attractive 

parameter covering the purely repulsive and attractive – repulsive interaction cases. The proposed universality between 

diffusio-osmosis and Marangoni flow is extended further to include diffusio-phoresis. In particular, an object immersed to a 

colloidal solution moves towards the low concentration of the colloidal particles in the case of colloid-interface repulsion 

and towards the high concentration of the colloidal particles in the case of colloid-interface attraction. The approach 

combines the methods of fluid dynamics, molecular physics and transport phenomena and provides a tractable explanation 

of how the colloid-interface interactions affect the momentum balance and the transport phenomena (interfacially driven 

transport).  
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1. Introduction

One of the distinct features of multiphase flow is presence of an 

effective interface, that sets a boundary between adjacent 

phases. In particular, an interface separates fluid droplets 

flowing within another fluid, or solid colloidal particles flowing 

in a solution. Alternatively, interfaces are present between the 

membrane and feed/permeate in filtration process, between 

gas and liquid in the distillation process, or between the fluid 

and the wall in microfluidic devices. It has been known for long 

that in equilibrium the interface has its own thermodynamic 

properties, which affects the state of the system 1. In recent 

years it has been shown that this is also true in non-equilibrium 

conditions, which sets a new view point in a way that the 

properties of the interface may affect the flow 2-4. 

One of the key factors, which may influence the overall 

multiphase flow, is the variation of thermodynamic properties 

along the interface 5,6. Even in the case of an isotropic fluid, 

which does not have a preferential direction on the molecular 

scale, the flow itself introduces anisotropy in the system 7. In 

particular, the direction of the flow becomes the preferential 

direction for the fluid, so, on the molecular scale, fluid reveals 

some anisotropy. On the other hand, the presence of an 

interface breaks the fluid isotropy and one distinguishes two 

distinct directions along and perpendicular to the interface. 

Fluid flowing near the interface may induce some 

inhomogeneities in its properties, which feed back and modify 

the flow characteristics 8,9. 

It might be unusual to read in the title the terms “Marangoni 

flow”, and “osmosis” in a single context along with the term 

“diffusiophoresis” in this paper, as each one occurs in a 

physically different environment. In particular, diffusiophoresis 

occurs in a bulk fluid, diffusio-osmosis occurs in the presence of 

a solid-fluid interface, while Marangoni flow occurs in the 

presence of a fluid-fluid interface. This must not confuse the 

reader, however, since the nature of the interface is not the 

main factor which results in the observed phenomena. What is 

more important is the presence of an interface together with 

the existence of a concentration gradient 10.  

In this spirit, it would be instructive to extend the meaning of 

these terms as follows. Diffusio-osmosis is the fluid flow along 

an interface in the direction of the concentration gradient, 

while Marangoni is the fluid flow along an interface in the 

direction opposite to the concentration gradient. Thus, one 

does not care about the nature of the concentration gradient 

(whether it is created by the variation of the surface tension as 

required for the standard Marangoni flow, or by the adsorption 

ability of the wall, as required by the standard diffusion-

osmosis), neither about the nature of the interface (whether it 

is solid-fluid or fluid-fluid). Such a coarse-graining view is 

legitimate, since there exists a direct analogy between the 

chemical interactions occurring in the corresponding systems 10. 

One of the physical systems for which these phenomena may 

be of importance is a membrane. Membranes are used in 

various natural and industrial filtration processes 11-14 and are 

typically viewed as series of interconnected pores, separated by 

solid walls. Alternatively, the fluid flowing through these pores 

can be viewed as the flow around solid objects, which perturb 

the homogeneous flow. For a regular membrane structure, one 

can identify a “unit cell” of solid objects, which is repeated 

several times. The classical flow pattern is determined by the 

particular structure of the object and is the solution of a fluid 
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dynamics problem with corresponding boundary conditions. In 

membranes, fluid interactions with the membrane material are 

strong and have to be explicitly accounted. Microscopic details 

of colloidal interaction have been viewed important for the 

problems of colloidal diffusion in bulk fluids 15-16 (in terms of 

interactions with solvent), confined geometries 17 (in terms of 

particle-wall interactions), and in the asymmetric environment 
18. A recent development within the DLVO theory allows one to
include these interactions explicitly in the context of fluid

dynamics 19, in particular to the flow through membranes.

Here we extend this approach to study interfacially driven

transport. As we want to treat the interactions between a fluid

and objects explicitly, we deal essentially with a multiphase

flow, having the interface between the fluid and the objects.

The fluid is a two-component mixture of a solvent and a solute

or a dispersion of a solvent and colloids. Furthermore, we

consider the solid object made up of the membrane to be

regularly placed in a two-dimensional space with the help of

periodic boundary conditions. The problem of the flow through

a membrane is then reduced to the problem of the fluid flow

around a single solid object. We are interested in a relative

motion between the object and the fluid, which happens in

either of the two situations: the object is static while the fluid is

mobile, and the object is mobile while the fluid is static (Fig. 1).

In colloidal solutions, the relative motion between the object’s

interface and the colloidal solution (dispersion) can represent

two types of flows usually studied independently depending on

which component is fixed in space. One distinguishes a) the

solute-capillary flow induced by colloid concentration gradient

(like osmosis and Marangoni flows) or b) the diffusio-phoresis

of the object in a stagnant dispersion with a concentration

gradient. A concentration gradient along the interface of an

object results in a relative motion of the mixture with respect to

the interface.

Diffusio-phoresis refers to the motion of particles in a solution,

due to the concentration gradient of the solute. If the particles

are large enough, then the concentration gradient results in

significant changes of the solute concentration even across the

size of the particle. In other words, the gradient exists along the

particle-solution interface and drives the particle motion. A

typical result of diffusio-phoresis is the motion of particles in the

direction of the concentration gradient. If we change the

reference frame and keep the object fixed, allowing the solution

to flow around it, the phenomenon is typically called diffusio-

osmosis. In this case, the concentration gradient of the solute

induces the flow along the object’s surface, and we will refer to

it, in a generic way, as interfacially driven flow (or soluto-

capillary flow). Correspondingly, in diffusio-osmosis, the solute

will move against the direction of its concentration gradient.

Maragoni flow is the fluid motion along the interface between

two phases due to the gradient of the surface tension, which is

caused by the concentration gradient in a mixture. The fluid

moves in the direction of the concentration gradient, which is

opposite to the osmotic flow.

In order to observe such interfacial flows, the system has to

consist of at least three items: a two-component mixture and

Fig. 1: 2D sketch of a multiphase flow with the interface between an object (large circles) 

and a dispersion (mixture) composed of a solvent (empty space in the figure) and colloids 

(solute) (small circles).  

an object with an interface. The mixture may be a 

homogeneous solution or a colloidal dispersion of Brownian 

particles in the solvent, with a spatially varying solute 

concentration. The transport is driven by the gradient of the 

concentration along the interface of the object (a non-Brownian 

particle). In the following analysis, the objects are assimilated to 

the wall, which has a particular cylindrical shape in our work 

(Fig. 1). We will consider the objects to be fixed in space and we 

will investigate the flow patterns arising due to the 

concentration gradient of the solute (colloids) within the flow 

around the solid object. 

This system represents a macroscopic configuration of both 

diffusio-phoresis and Marangoni flow phenomena. Since 

Marangoni flow and diffusio-osmosis result in an opposite 

transport behaviour, it is interesting to understand, which 

aspects of interfacial interactions are responsible for this. In 

particular, in the case of diffusio-osmosis the object plays the 

role of the internal walls of a membrane, while the mixture 

plays the role of an aqueous solution or colloidal dispersion.  

Similarly, in the case of the Marangoni flow, the object provides 

a natural interface along which the gradient of the concentration 

is created. This model presents a unifying framework to study 

both of the aforementioned phenomena. 

The crucial aspect of modelling of this system is the interactions 

between the mixture and the object. In this paper, the colloids 

interact with the interface and thus reside in the vicinity of the 

interface. In the case of attraction, the colloids are trapped, but 

not immobilized, by an attractive well: they are free to flow 

along the interface as it happens at a fluid/fluid interface. 

Molecular interactions between the components mimic the 

chemical properties of a real interface, thus allowing us to 

investigate its role in the interfacial driven transport. As we will 

see further, the type of these interactions determine the flow 

regime. In particular, if the interactions between the object and 

the mixture are purely repulsive, the flow is in the diffusio-

osmotic regime. In contrast, if the interactions have an 

attractive part, the flow is in the Marangoni regime. Thus, 
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controlling the degree of the object interactions with the 

mixture, we can describe both phenomena.  

The paper is organized as follows. Section 2 introduces the 

thermodynamic approach to describe the mass transfer and the 

flow of the mixture around the object. The next section presents 

the results of the simulation for diffusio-osmotic and Marangoni 

flows. In the last section related to discussion we generalize 

these results to unify interfacially driven transport phenomena: 

diffusio-phoresis, Marangoni flows and diffusio-osmosis flows. 

2. Thermodynamics of interfacially driven
transport around an object

Consider a mixture of two components (solution or dispersion) 

with a constant density. The mass fraction 𝜙 of the first 

component (solute or colloid) varies in space. Furthermore, let 

𝜫𝑚  be the thermodynamic pressure, while 𝝉 is the viscous 

pressure tensor. The fluid flow is characterized by the Péclet 

number 𝑷𝒆, which is a dimensionless form of the mixture 

velocity 𝒖𝑚 = 𝜙𝒖𝑐 + (1 − 𝜙)𝒖𝑓 , which is the volume average 

of the solute (or colloids) velocity, 𝒖𝑐  and of the solvent velocity, 

𝒖𝑓. The Péclet number is then also equal to the sum of the 

solute diffusion flux  𝑱𝜙 and the solvent flux. The bold font of a 

variable indicates that it is a vectorial or tensorial quantity. 

2.1. Balance equations 

The fluid flow is described by the steady state balance 

equations. According to the previous development 19, the non-

dimensionalised set of equation to solve in stationary state is: 

𝛻 ∙ 𝑷𝒆 = 0 (1) 

𝛻 ∙ 𝑱𝝓 = 0 (2) 

𝛻 ∙ (𝜫𝑚 + 𝝉) = 0 (3) 

The first two equations are the mass conservation equations for 

the mixture and the solute (or colloid) respectively. The third 

equation is the incompressible Navier Stokes equation, with a 

hydrodynamic force term due to the overall pressure gradient, 

𝛻 ∙ 𝜫𝑚 , that applies on the mixture, and the viscous dissipation 

term 𝛻 ∙ 𝝉. Furthermore, the material time derivative and 

consequently the change of momentum due to convection 

proportional to v∙𝛻v are neglected, as we consider a flow 

regime with low Reynolds number.  

2.2. Equation of state 

From a thermodynamic perspective, we can distinguish 

different contributions to the thermodynamic pressure 

associated with molecular interactions between different 

components. In particular, for the three components (solvent 𝑓, 

solute (or colloid) 𝑐, object (or interface) 𝑖) we have five types 

of interactions: 𝑓𝑓, 𝑓𝑐, 𝑖𝑓, 𝑖𝑐, 𝑐𝑐 (𝑖𝑖 interactions are not 

considered, as the solid objects are placed far away from each 

other and immobile). 

In this paper, we follow the physical description of the 

Suspension Balance Model 19-21. In that model the first 

component in the mixture is a colloid while the second 

component is referred to as a fluid. In such a two-fluid model 

the thermodynamic equation of state differs from the one for a 

homogeneous solution. In particular, the overall mixture 

pressure gradient, 𝛻 ∙ 𝜫𝑚 , consists of three contributions: i) the 

gradient of fluid pressure (due to the fluid-fluid interactions), 

𝛻𝑝𝑓𝑓 , ii) the local force induced by colloid-object interactions, 

𝛻 ∙ 𝜫ic that applies on the colloid volume 𝜙, iii)  the fluid-object 

interactions, 𝛻 ∙ 𝜫if that holds for the fluid volume, 1 − 𝜙: 

𝛻 ∙ 𝜫𝑚 = 𝛻𝑝𝑓𝑓 + 𝜙𝛻 ∙ 𝜫𝑖𝑐 + (1 − 𝜙)𝛻 ∙ 𝜫𝑖𝑓 (4) 

The first term relates to an "internal" force due to variation of 

the fluid pressure while the two last ones relate to an 'external' 

force from the interface (the interface is an external object to 

the mixture) which acts on both colloid, 𝜙𝛻 ∙ 𝜫𝑖𝑐 , and the fluid 

(1 − 𝜙)𝛻 ∙ 𝜫𝑖𝑓. This thermodynamic equation for the pressure

gradient specifies the nature of the molecular interaction in the 

system. The pressure tensor 𝜫𝑚  is anisotropic (it is no longer a 

scalar quantity) close to the interface. 

It has to be noted that the osmotic pressure 𝜫𝑐𝑐 (that describes 

colloid-colloid interactions) does not contribute to the gradient 

of the thermodynamic pressure 𝜫𝑚. The reason for that is that 

the osmotic pressure does not affect the mixture’s momentum 

directly. As discussed in earlier works20,22, the osmotic pressure 

gradient induces a dissipative force on the colloidal particles, 

which puts a reaction force on the fluid. For the mixture, these 

two contributions cancel each other. The contribution of the 

osmotic pressure will be evident later in Equation (8) which 

describes the colloid diffusion flux  𝑱𝜙. In this paper, for the sake 

of simplicity and in order to unravel the mechanisms, the 

osmotic pressure will be calculated from the van’t Hoff law for 

an ideal dispersion: the colloid-colloid interactions being 

neglected, the diffusion coefficient remains independent of the 

colloid volume fraction. The ideal dispersion hypothesis is 

considered since we are interested in the effect of the colloid-

interface interactions on the fluid dynamics. The model then 

represents the flow of a rather dilute dispersion close to an 

interacting interface. Similarly, the colloid-fluid interactions 𝜫cf 

contribute to the irreversible behaviour of the mixture, which is 

discussed in the following section. 

The fluid dynamics approach to the problem considered would 

be to solve Equations (1) to (3) in specific geometries by 

introducing solid walls as boundary conditions with no-slipping 

conditions. In this paper, another approach is chosen: the 

equations are solved for the entire spatial domain, but with a 

local penalization method to account for the presence of solid 

walls. In Equation (4), a term 𝜫if is thus added to penalize the 

flow in the solid domain described by Equation (3). The term 𝜫if 

physically expresses the fluid-object interaction that forces the 

flow away from the interface. This way of writing the Equation 

(4) has the advantage of treating the wall interactions similarly:

the presence of the narrow channel in the flow is represented

through the interactions that the object interface exerts on the

solvent/fluid, 𝜫if, together with the interaction it exerts on the

solute/colloid, 𝜫ic 23-24. These interactions are a function of the

distance to the object, which is determined through a level set

method. The penalization for the solvent is a very stiff



exponential function that applies in a very thin interfacial layer 

close to the interface (Fig. 2). To be negligible, the interfacial 
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f ig. 2: a) 2D representation of the cylinder geometry in the case of colloid-interface 

repulsion (a,, = 0): the solid is represented in brown and the colloid-wall interaction, 

Ilic, magnitude wit h the colour map. b) Colloid - interface int eraction profile as a function 

of the distance to the cyl inder, d, for pure repulsion (a,. = 0) and several attraction

repulsion cases (a n > 0). 

layer for solvent-interface interactions is less than one tenth of 

the interfacial layer for solute-interface interactions. The 

interaction between the solute and the object are also 

represented by an exponentially decreasing funct ion similar to 

the one that could be obtained by the DLVO theory 19 • The scalar 

component of ll1c is: 

d d 

Il;c = (1 + ace) k e""T - att k e21 (5) 

where att is the attractive parameter. It has been defined to 
study the role of long-range attraction by combining a negative 

(attractive) and positive (repulsive) interaction. The decay 

length for the attraction is fixed at 2/ to describe a m inimum in 

interaction at long range. This term, the last one in Equation (5), 

corresponds to DLVO interaction profi le w ith a secondary 

minimum. The short-range repulsion is necessary to keep 

physical consistency w ith volume exclusion of the colloids by 

the object. 

2.3. Irreversible processes 

The thermodynamic contributions to the pressure considered in the 

previous subsect ion exist even in equilibrium, i.e. w hen the mixture 

is at rest . In contrast, irreversible contri butions are present due to 

the mixture motion. Among these irreversible contributions we 

dist inguish the d iffusive flux / 4>•, w hich is responsible for the relative 

motion of the colloids with respect to the fluid, as w ell as the viscous 

pressure tensor w hich is responsible for spatial variation of the 

mixture's velocity. 

The v iscous pressure tensor and the diffusive flux, which 

describe irrevers ible processes, are obtained from the following 
linear force-flux re lations of non-equilibrium thermodynamics: 

T = - µ(<j))(VPe + VPeT) 

/ 4, = - D(<j)) Vl/Jc 

(6) 

(7) 

where l/Jc is the chemical potentials of the colloids relative to 

the flu id. Here VPe and Vl/Jc are the driving forces of v iscous 

transport and mixing respectively. Furthermore,µ(</))> 0 and 
D(<p) > O are the viscosity coefficient and the d iffusion 

coefficient, which are the t ransport coefficients of the 
corresponding irreversible processes. Equations (6) and (7) have 

the simplest form of decoupled Newton's law and Fick's law 

when the temperature is constant. Furthermore, for constant 

viscosity and an incompressible flu id, the VPeT term becomes 

zero after taking the divergence in Equation (3). 

According to the Suspension Balance Model 19•21•25 the 

ir reversible process of mixing is governed by Stokes' law, so the 

colloidal particles which have the mobil ity m ( <j) ), experience a 
negative drag force which is proportional to the velocity 

d ifference between the collo idal particle and the mixture, 

namely, Fe = - (u c - Um) /m(<j)) . In the stationary state the 

drag forces acting on n = <j)/Vp particles of volume Vp per m3 

are balanced by the gradient of the thermodynamic pressure, 

nFc = V · llcc + <j) V · llic, so Equation (7) can be rewritten as 

where K(<j)) = 6nµam(<j)) > 0 is the settl ing hindrance 

coefficient, which is equal to 1 for d ilute d ispersion. 
The set of balance equations (1) to (3) w ith a thermodynamic 

viewpoint descr ibed by equations of state (4) and (5) and 

ir reversible process equations (6) to (8) is similar to the one 

obtained from a mechanical approach based on the suspension 
balance model 19,20• However, instead of aggregating all terms, 

here one d istinguishes the contributions from mechanistic 

balance equations and irrevers ible thermodynamics. This allows 

for more flexibi lity and better understanding of assumptions. 

For example, Newton's law equation (6) can be w ritten with a 

d ifferent functional form for the shear rate, a dependency of 

the viscosity coefficient on posit ion, a nonlinear expression or 

addit ional heat terms due to thermodynamic coupling w ith heat 

t ransfer. These effects could be investigated in future studies. 

2.4. Dimensionless variables 

In Table 1, the d imensionless var iables are defined as in the 

previous work 19 and their l inks w ith the d imensional variables 
are quantified. The non-dimensional velocity and the f lux are 

obtained by dividing the corresponding d imensional terms by 

the d iffusion force, so that, in particular, the advection term 
becomes a Peclet number in Equations (1) to (3). For the 

nondimensionalization, the d iffusion coefficient is considered 

to be of a dilute condit ion, D0 = m 0 k8 T, where m0 is the 

mobility of a d ilue solute having a volume, V,,. The 
corresponding Reynolds number is thus the Peclet number 

d iv ided by the Schmidt number, Sc. 

The spatial units are scaled with the characteristic length scale 

o = 2 · 10- 6 m (Fig.2). The set of data corresponds then to a 

d ispersion of colloidal part icles w ith the d iameter 10 nm around 
a cylinder object with a 400 nm diameter. Such a size ratio 

ensures that the dispersion is treated as a continuous medium 
and the Eulerian approach is correctly used. Under these 

conditions, the non-d imensional v iscosity is equal to 5.55 10·6 • 

The dependence of v iscosity on the volume fraction is not taken 

into account. 
For the interactions, the decay length l is taken to be equa l 

0.048 and the energy parameter k (which is equal to the 

maximum value of the energy at the wall), is fixed at 96.9. These 

values are defined to be close to those calculated for 10 nm 
spheres d ispersed in a 10·5 M solution w ith a zeta potential of 

80 mV for both particles and walls. The solute- interface energy 



map and interaction profi les obtained w ith Equation (5) are 

plotted in Fig. 2. The attractive-repuls ive cases (att > 0) display 

a d istinct minimum of ll1c- For the (att = 0 0) case, the 

minimum is barely distinguishable and we w ill observe later a 

behaviour al ike the pure repulsive interaction case. Equation (5) 

is also used to define the solvent/fluid interaction, n If, with a 
decay length taken at 0.01 to be small compa red to the decay 

length for the colloid/interface interaction. 
Other geometrical configurations (i.e. d ifferent ratios of the 

decay length, the cyl inder size and the interstitia l d istance 

between two cyl inders) represent membranes with d ifferent 

internal structures (e.g. with smaller pore size). The effect of the 

interfacially driven f low depends on these ratios, while the 

observed mechanisms remain the same. 

3. Results 

In this paper, the calculation is done for colloid -interface 
interaction defined for a pure repulsive case (att = 0) and for 

several attractive-repulsive cases (Utt > 0). The set of 

equations is solved with the partial d ifferential equation solver 
Fipy 26 (finite element volume) implemented on the Python 

platform Canopy (Enthought, Austin). Simulations are 

performed with periodic conditions on the top and bottom 
boundaries: this corresponds to the flow through an array of 

cylinders as depicted in Fig. 1. The non-d imensional hor izontal 

size of the box is 2, which corresponds to 2.10·6 m. Simulations 

presented in the next sections are realised in a solute 
concentration gradient. The concentration gradient is constant 

through the system w ith the volume fract ion equal to 0.01 on 

the left boundary and to O on the right boundary. The 

hydrodynamic and the mass transfer are calculated for d ifferent 

Peclet numbers and in the case of i) pure repulsion between the 

solute and the object (section 3.1) and ii) attraction-repulsion 

profile (section 3.2 to 3.4). 

3.1 Simulation of diffusio-osmosis and d iffusio-phoresis for object 

repealing colloids 

The goal of the simulation is to descr ibe the mobile flow of 

d iffusio-osmosis29 or diffusio-phoresis 27,28,30 around a circular 

static object in presence of a gradient in collo ids concentration. 

The solute - interface interaction is repulsive (att = 0) (Fig. 2). 
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Fig. 3: Peciet number as a function of the pressure drop, t.P, across the channel (full red 

line from advection-osmosis equilibrium [eOS) to pure diffusio-osmosis [pOSI}. The 

dotted line represents t he same data when only the solvent is filtered or in absence of 

colloid concentration gradient. 

W ithin the fixed concentration gradient the simulations 

descr ibe the mass f lux (the d iffusion from h igh to low 

concentration) and the f low induced by the interactions of the 

colloid at the interface, i.e. the diffusio-osmosis phenomena. 
The net in let flow (here a Peclet number) is fixed and the 

simulation describes the local flow around the sphere and 
allows the calculation of the p ressure gradient needed to 

ensure the net inlet flow. The simulations are performed in 

t ransient mode, but here only the steady state simulations are 

d iscussed 
The calculations allow determining the re lationship between 

the pressure drop due to the f low M and the f low at steady 

state. Fig. 3 plots the Peclet number as a function of the 

pressure drop. The red full curve on the right refers to 

simulations that are performed for negative Peclet numbers 

Pe < 0, corresponding to a f low opposite to the concentration 
gradient so as to stay in osmosis condit ions. Conversely, reverse 

osmosis condit ions are obtained for posit ive Peclet numbers 

and discussed in section 3.4. The pressure drop for pure water 
(dotted line) is proportional to the velocity as expected 31 • 

As shown in Fig. 3, the p ressure drop varies between two 
extremal values of osmosis, from the flow at equil ibrium (eOS) 

Table 1: The dimensionless quantities used to define the dynamic osmotic or Marangoni flow problem. The correspondence with the dimensional quantities is given for a colloid 

radius, a=l O-' m, a characteristic length scale for the geometry (Figure 2), {i =2.lct" m, a mixture viscosity,µ =10·3 Pa.s, and a temperature T=298 K 

Physical quantity Dimensionless quantity Physical relat.ionship Numerical relat.ionship 

0 
u,,. (m/s) = 1.09 · 10- s Pe Peclet number, Pe Pe = mokTu,,. 

Velocity, u,,. 
Reynolds number, Re u,,. (m/s) = 0.5 Re 

Re = IPe l/Sc 

Mass flux, ] ,; Mass flux, / 4-
0 

/ 4- = mokT Uc</> Uc (m/s) = 1.09 10-s / 4-/<I> 

V,,- li (Pa) = 982 n Pressures, p, t, li Pressures, p, T, n ll = -ll 
kT 

2a2 j1 
j1 (Pa · s) = 1.8 10s iloµ Vi.scosity, 'jl Viscosity,µ µ = 982µ0 

Mobility,m Settling hindrance coefficient, K K(</>) = m(<J>) 
mo 

m (k9- 1 • s) = 5.31109 K(4>) 



(when the net flow is zero, 𝑷𝒆 = 0) to the pure osmosis 

conditions (pOS) (where the pressure drop is zero, i.e. no 

external mechanical forces applied). The latter condition 

corresponds not only to the diffusio-osmosis case (flow of the 

liquid around a non-mobile object due to the concentration 

difference) but also to the diffusio-phoresis case (motion of the 

object in a stagnant fluid due to the concentration gradient). 

The velocity around 𝑷𝒆 = −3 0 in Fig. 3 can be considered as 

the maximum relative velocity between the object and the fluid: 

this is the fluid velocity if the object is immobile or, conversely, 

the object velocity when the fluid is at rest. 

Under equilibrium conditions (𝑷𝒆 = 0), the pressure drop is 

also equivalent to the drag force that one should apply on the 

object to keep it immobile. In the present case of colloid-object 

repulsion considered, the pressure drop is positive and around 

0.0013 in Fig. 3. The force due to osmosis is then positive and 

will induce a displacement of the object towards the low solute 

concentration (diffusio-phoresis)10-32. This value of the pressure 

drop in the equilibrium condition is equal to the product, 𝜎∆𝛱, 

where 𝜎 is the Staverman reflection coefficient. The simulation 

allows us then to determine the value of 𝜎 at 0.13 (recall that 

∆𝛱 = 0.01)  As previously discussed with an 1D approach 22, the 

reflection coefficient can be defined as, 𝜎 = 1 − Φ, where Φ is 

the partition coefficient that is related to the repulsive potential 

barrier between the object.  

These global flows are the consequences of local flow that are 

also provided by the simulations. Fig. 4 plots the x and y 

component of the local flow velocity and the stream lines 

around the objects for the two extreme conditions: for pure 

osmosis and advection-osmosis equilibrium.  

Fig. 4: Local flow at steady state  a) for the pure diffusio-osmosis case [pOS], P=0 and 

b) for the advection-osmosis equilibrium [eOS], 𝑷𝒆 = 0. The magnitude of x and y

velocities (represented by dimensionless local Péclet number) are displayed in the first

and second diagrams, the corresponding stream lines in the third one and the volume 

fraction in the fourth diagram. 

Figure 5: Péclet number as a function of the pressure drop, P, across the channel (full 

green line from advection Marangoni equilibrium eMF to pure diffusio-Marangoni flow 

pMF). The blue dotted line represents the same data when only the solvent is filtered or 

in absence of colloid concentration gradient. The full red line is taken from Fig. 3. 

During osmosis (Fig. 4a), the stream lines are nearly parallel, 

being deviated around the object and the flow is similar to a 

creeping flow. In the interstitial zone between cylinders, the 

velocity is rather constant and like a plug flow. When the 

osmotic flow is counter-balanced by the advection (𝑷𝒆 = 0) 

(Fig. 4b), the flow exhibits a secondary flow19, with a flow 

toward the left close to the object interface (because of diffusio-

osmosis directed toward high solute concentration) and a 

return flow to the right in the interstitial zone between 

cylinders. The net flow across the section is zero. 

It has to be noted that during pure osmosis (pOS) no net force 

is exerted on the object: the negative drag force exerted by the 

flow is compensated by the positive interfacial force (given by 

𝜙𝛻 ∙ 𝜫𝑖𝑐) due to the higher concentration on the left side. 

Unlike in the case of a forced convection flow, the object is then 

not compressed by the flow. This can have important 

consequences in processes and can explain the difference in 

behavior in process like forward osmosis (where the flow does 

not exert a compression on the membrane or on the 

accumulated cake) and reverse osmosis (where the flow 

compresses the membrane and the accumulated cake)33. 

3.2 Simulation of diffusio-marangoni and diffusio-phoresis for 

object attracting colloids  

Similar simulations can also be run with solute-interface 

attraction within a range near the interface, completed with a 

repulsion closer to the interface wall (Fig. 2b, 𝑎𝑡𝑡 > 0). The 

interaction profile now exhibits a negative attractive minimum. 

Fig. 5 presents the flow (Péclet number) as a function of the 

pressure drop for the solute – object interface attractive 

conditions (𝑎𝑡𝑡 = 0 02).  It should be noted that in this case  the 

results (full green curve) are displayed in the quadrant opposite 

to the osmosis results reproduced from Fig. 3 (full red curve) 

because of the flow inversion. Indeed, Fig. 5 exemplifies that 

our model is able to represent both osmosis and Marangoni 

phenomena. 
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In this case, the simulations predict that the presence of the 

attractive part of the colloid-interface potential changes the 

direction of the flow in the gradient of solute concentration. 

Indeed, contrary to the diffusio-osmosis discussed in the 

previous subsection and occurring in presence of solute- 

interface repulsion, the fluid is now driven toward the low 

solute concentration when 𝑷𝒆 > 0. This is due to the attractive 

term. It can be considered as a Marangoni flow and we will refer 

to it as the diffusio-Marangoni flow (which is sometimes also 

called solute-capillary or soluto-Marangoni flow in the 

literature). Indeed, the diffusio-Marangoni flow is directed 

toward the zone of low solute concentration that also 

represents the zone of higher surface tension for a solute, which 

has an affinity for the interface like a surfactant. 

The observed direction of the local flow is coherent with the 

classical thermodynamic approach. The nature of the colloid-

interface interactions changes the water pressure 24, the water 

activity 22 and the surface tension according to the solution 

theory 34. The interaction of colloids with the interface leads to 

an anisotropy in pressure close to the interface. This stress 

anisotropy normal to a free fluid surface leads to an interfacial 

(capillary) stress that leads to a surface tension, 𝛾. When the 

concentration of colloids interacting with repulsion (resp. 

attraction) with the interface increases, the water pressure and 

the water activity close to the interface decreases (resp. 

increases) and the surface tension increases (resp. decreases) 
22. Simulations presented in the paper satisfy the second law of
thermodynamics: the flow of water is always towards the low

water activity or towards the high surface tension i.e. in the

direction  of high  concentration of  the surfactant  (the generic

Fig. 6: Local flow at steady state a) diffusio-Marangoni case [pMF], with P = 0 and 𝑷𝒆 =

1 9. b) advection-marangoni equilibrium [eMF], with 𝑷𝒆 = 0 and P = –0.00225. The 

magnitude of x and y velocities (represented by dimensionless local Péclet number) are 

displayed in the first and second diagrams, the corresponding stream lines in the third 

one and the volume fraction in the fourth diagram. 

surfactant case corresponds to 𝑑𝛾/𝑑𝑐<0) and in the direction of 

low concentration for repelling colloids (where 𝑑𝛾/𝑑𝑐>0) 35  

Fig. 6 plots the x and y component of the local flow velocity and 

the stream lines around the spheres for the two extreme 

conditions encountered in the case of attractive – repulsive 

solute – interface interactions, namely diffusio-Marangoni 

(pMF) and advection-Marangoni equilibrium (eMF) conditions.  

The simulations have been performed for the same conditions 

as in the previous section, for the pressure drop ranging 

between the case of flow equilibrium (𝑷𝒆 = 0) and zero (net 

force of the object equal to zero). For the case ∆𝑃 = 0, the pure 

Marangoni Flow velocity is equal to 𝑷𝒆 = 1 9. When 𝑷𝒆 = 0, 

we observe the advection-Marangoni equilibrium.  

Secondary flows corresponding to these two extreme cases are 

displayed in Fig. 6 stream lines diagrams. Overall, the flow is  

more complex than the pure repulsive case  (section 3.1), 

mainly because the interaction profile presents here both a long 

range attraction and a short range repulsion. 

In the diffusio-Marangoni regime (Fig. 6a), the flow is in the 

opposite direction to the one observed when there is a 

repulsive solute – interface interaction only (Fig. 4a). The flow is 

then directed toward the zone of low solute concentration. The 

x velocity is almost always positive in the whole region. This flow 

is a solute-capillary Marangoni flow with a flow toward the zone 

where solute having an affinity with the interface are less 

concentrated (or zone of higher surface tension). 

The pattern for the x and y velocities looks like to the one 

obtained for a regular plug flow around a cylinder (as sketched 

for pure osmosis flow in Fig. 4a), but is inverted in sign. The main 

deviation to the plug flow is due to the repulsion at short 

distance that can superimpose local osmotic flow. 

At the Advection – Marangoni flow equilibrium condition (Fig. 

6b), there are three layers of fluid with alternate velocity in the 

interstitial zone between the objects from neighbouring unit 

cells. Close to the object wall, there exists a zone with a low 

negative velocity corresponding to a diffusio-osmotic flow, 

because of the short range repulsion. Then, because of the long 

range attraction, there is a zone of large positive fluid velocity 

(toward the low solute concentration) corresponding to the 

diffusio-Marangoni flow. Finally, there is a third layer with a 

negative back flow that ensures the zero flow condition at the 

equilibrium flow conditions that hold here. These fluid layers 

with alternate flow direction lead to the development of 

secondary flows. 

When analysing the pressure and the volume fraction field in 

these cases, we can note that the overall flows are mainly due 

to the distortion of the mass accumulation ring in the short 

range attraction zone around the circular object. 

3.3 Transition between osmosis and Marangoni flows: neutralized 

flow 

Varying the magnitude of the attractive term, we can 

investigate the transition between Marangoni and osmotic 

flows. Fig. 7 plots the variation of the Péclet number as a 

a) diffusio-Marangoni [pMF) b) advection-Marangoni equil. [eMF) 
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function of the pressure drop for intermediate value of the 

attraction term in the interaction potential. The parameter 𝑎𝑡𝑡  

Fig. 7: Variation of the Péclet number as a function of the pressure drop, P,  for different 

values of the attractive parameter, from 𝑎𝑡𝑡 = 0 (pure repulsion) to 𝑎𝑡𝑡 = 0 2 

(significant attraction). Labelled points represent some specific flow configuration, 

detailed in Fig. 4, 6, 8 and 9. 

is varied in Equation (5) from 0 (pure repulsion) to 0.2 (for 

significant attraction) and the corresponding interaction 

profiles and the values of the attractive well are shown in Fig. 

2b.  

Nearly neutral conditions (NE) can be obtained for an 

intermediate value of 𝑎𝑡𝑡 = 0 1. In these conditions, the 

Marangoni flow due to attraction compensates the osmotic 

flow due to repulsion and the flow is then close to the one 

obtained for pure water (blue line in absence of colloid) or for 

the flow of colloid that do not interact with the object. The flow 

map for the neutral case (𝑎𝑡𝑡 = 0 1) is shown in Figure 8. 

3.4 Reverse-Osmosis, Reverse-Marangoni and Inverted-Marangoni 

flows: generalizing examples 

In Fig. 7, when the Péclet is positive (resp. negative), the 

gradients of pressure and of concentration are in the same 

direction (resp. opposite): the flow is advecting high (resp. zero) 

colloid concentration toward the object. When the pressure 

drop ∆𝑃 is larger (resp. smaller) to the one for pure water ∆𝑃𝑤 , 

(blue  line),  the  interfacially  driven  transport  increases (resp. 

reduces) the drag force. Hence, four quadrants can be 

considered according to Péclet and pressure drop values: 

 In the top right quadrant 𝑷𝒆 > 0 and ∆𝑃 > ∆𝑃𝑤 , the

interfacially driven transport is contrary to the main flow that

is in the direction of low concentration: this corresponds

mainly to reverse osmosis (rOS).

 In the bottom right quadrant 𝑷𝒆 < 0 and ∆𝑃 > ∆𝑃𝑤 ,  the

interfacially driven transport goes along the main flow that is

in the direction of high concentration: it corresponds to an

osmotic flow (OS)toward high concentration.

 In the top left quadrant 𝑷𝒆 > 0 and ∆𝑃 < ∆𝑃𝑤  , the

interfacially driven transport goes along the main flow that is

in the direction of low concentration: it corresponds to a

Marangoni flow (MF) toward low concentration.

 In the bottom left quadrant 𝑷𝒆 < 0 and ∆𝑃 > ∆𝑃𝑤 , the

interfacially driven transport is opposite to the main flow

that is in the direction of low concentration:  it corresponds

to a reverse-Marangoni flow (rMF) to use the same 

terminology than for reverse-osmosis. 

Fig. 8: Local flow at steady state for the “neutralized Marangoni-osmotic” flow (NE) 

(𝑎𝑡𝑡 = 0 1) at 𝑷𝒆 = 0. The magnitude of x and y velocities (represented by 

dimensionless local Péclet number) are displayed in the first and second diagrams, the 

corresponding stream lines in the third one and the volume fraction in the fourth 

diagram. 

 The flow maps are shown in Figure 9. When repulsion is 

predominant (i.e. for 𝑎𝑡𝑡 ≤ 0 0  ), the interfacially driven 

transport is directed toward high colloid concentration and then 

can be related to the osmosis mechanism. For 𝑷𝒆 > 0 

(corresponding to reverse osmosis situation) the osmosis leads 

to an increase of the pressure drop compared to the one 

obtained for pure water. The additional pressure drop due to 

the osmosis, also called counter-osmotic pressure, increases 

when the magnitude of repulsion increases or when the Péclet 

number is higher. This is due to a more important accumulation 

in the upstream zone. When the flow is opposite to the 

concentration gradient (𝑷𝒆 < 0), the osmosis is in the direction 

of the flow and then contribute to a reduction of the pressure 

drop.  

When attraction between the object and the colloids become 

important, Marangoni flow (from high to low colloid 

concentration) predominates. When the Péclet is small and 

positive, the highest concentration is in the upstream zone and 

the Marangoni flow is in the same direction than the main flow 

(insert MF in Fig. 7 for 𝑷𝒆 = 1 and 𝑎𝑡𝑡 = 0 2). The Marangoni 

leads then to a reduction of the pressure drop. For larger Péclet 

number, it has to be noted that Marangoni flow can lead to 

pressure drop higher than the one obtained for pure water. This 

is because the direction of the Marangoni flow is changed by 

the flow: the sweeping out of the concentrated attracted zone 
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of colloids around the object by the flow. For such conditions 

(insert iMF in Fig. 7 for 𝑷𝒆 = 4 and 𝑎𝑡𝑡 = 0 2), the concentration 

in colloids is highest in the downstream zone and then leads to 

a Marangoni opposite to the flow. This is typically the case that 

is encountered when a bubble (than can be assimilated to the 

object we use in simulation) is rising up in a solution with 

surfactant (the surfactant can be associated to the colloids 

being attracted by the object). Because of the flow, surfactants 

are accumulated in the downstream zone of the bubble and 

lead to a Marangoni flow opposite to the rising velocity that, in 

turn, increases the drag force on the bubble 36.  

For negative Péclet number (insert rMF in Fig. 7 for 𝑷𝒆 = −3 

and 𝑎𝑡𝑡 = 0 2) i.e. when the flow is in the direction of the 

highest colloid concentration, the Marangoni flow is opposite to 

the main flow (this situation is called reverse-Marangoni in the 

Fig. 7 to use the same terminology than for reverse-osmosis). 

It has to be noted in Fig. 7 that for high negative flow 𝑷𝒆 ≪ 0, 

the flow behavior becomes close to the one obtained for a 

single-component fluid, i.e. without colloidal particles (water 

blue line in Fig. 7). This is mainly because the flow is sweeping 

out the colloid concentration gradient and brings a dispersion 

without colloids toward the object. The absence of significant 

colloid-interface interactions leads to a flow behaviour close to 

the one for pure fluid. Such a behaviour is not observed for large 

positive Péclet number. For these conditions, the flow is 

advecting high colloid concentration toward the object that 

lead either to specific osmotic or Marangoni flows, depending 

on the colloid – interface interactions. 

4 Unification of osmosis, Marangoni and diffusio-
phoresis phenomena 

Despite the fact that both Marangoni flow and diffusio-osmosis 

are considered to be phenomena related to interfacially driven 

transport, no unifying approach, which explains the mechanism 

of this relationship for simple non-polar fluids, is immediately 

obvious. This paper fills this gap, suggesting a tractable 

framework in which both Marangoni flow and diffusio-osmosis 

Fig. 9: 2D volume fraction (bottom line) and velocity maps (x velocity top line and y velocity middle line) for significant cases in the different quadrant (from left to right Inverted 

Marangoni Flow (iMF), Marangoni-flow (MF), Reverse Marangoni Flow (rMF), Osmosis (OS) and reverse osmosis (rOS) corresponding to flow conditions reported in Fig. 7). 
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Fig. 10: Interfacially driven transport induced by the interaction of colloids with an interface. Four mechanisms result from the interfacially driven transport according to the nature 

of the interactions (mainly repulsive or attractive) and to the mobilities of the fluid or the interface. 
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emerge naturally because of the variation of a single parameter. 

This parameter controls the character of the interactions 

between the colloidal particles dispersed in a fluid and a solid 

object along which the mixture flows, in other words the 

colloid-interface interactions. 

The proposed approach allows us to underpin the role of 

thermodynamic processes in the discussed phenomena. In 

particular, we distinguish the physico-chemical interactions, 

which contribute to the equilibrium equation of state and allow 

us to separate the colloid-interface interactions from the 

interactions between the other components. Furthermore, we 

distinguish the irreversible phenomena, which exist only when 

part of the mixture experience relative motion.  

In the proposed geometrical configuration, the main difference 

between the Marangoni flow and diffusio-osmosis is the 

direction of the flow. For Marangoni flow the mixture of a fluid 

and colloidal particles flows in the direction of the colloid 

concentration gradient, while for diffusio-osmosis the 

suspension flows in the direction opposite to the colloid 

concentration gradient. The model suggests that direction of 

the flow is controlled by the magnitude of the attractive part in 

the colloid-interface interaction potential. The latter is 

modelled in the context of the DLVO theory by the colloid-

interface part of the pressure contribution to the total 

thermodynamic pressure. In particular, diffusio-osmosis is 

observed if the colloid-interface interactions are purely 

repulsive. In contrast, Marangoni flow is observed if the colloid-

interface interaction potential has a large attractive term. At 

some magnitude of the attractive amplitude, the switching of 

the flow regime happens and we observe a sort of dynamic 

equilibrium that we called the neutral case: attractive and 

repulsive interactions neutralise each other and the net flow is 

close to the one obtained in absence of colloid-interface 

interactions (section 3.3).  

 The proposed universal description of diffusio-osmosis and 

Marangoni flow through a description of colloid-interface 

interactions may be extended further to include diffusio-

phoresis. When the interface is mobile in a stagnant fluid, by 

reciprocity, the interfacial driven transport induces the move of 

the interacting interface. This displacement is usually called 

diffusio-phoresis37-38. It is shown that the direction of the move 

in the colloid concentration gradient depends on the nature of 

the repulsion: the object goes toward low concentration in the 

case of colloid-interface repulsion and toward high 

concentration in the case of colloid-interface attraction. 

Overall, Fig. 10 summarizes how these four phenomena can be 

unified when considering the colloid-interface interactions. 

It is worth noting that the direction of diffusio-phoresis depends 

on the direction of the colloid concentration gradient: the 

object will go in the direction of the high concentration of solute 

for which it feels attraction (or in the direction of low 

concentration of solute that it repels). This could have 

important implication for active or bio-colloids that could adjust 

their surface properties to move differently in concentration 

gradient.  

 The model can then help to progress in these investigations by 

giving the possibility to investigate the local effects of the 

interfacially driven transport. In real life case, the solute and the 

interface combine multiple interactions: they interacts both 

with repulsive (leading to osmotic like flow) and attractive 

contributions (leading to Marangoni like flow). Furthermore, 

active solute can also display patchy interactions on their 

surface that can also lead to specific transport properties39. The 

theoretical model developed here can help to solve this kind of 

complex interplay. A better understanding of diffusio-phoresis 

could also lead to design processes using diffusio-phoresis 

mechanisms 40-41. The simulation could also be more realistic by 

integrating a dependence of the viscosity on the concentration 

and a non-ideality of the osmotic pressure to account for 

colloid-colloid interactions. 

Conclusions 

This paper serves several points. First, we have presented a 

model, which allows one to study Marangoni flow and diffusio-

osmosis as interfacial transport phenomena in a unified 

framework. Second, we have discovered a property, which is 

responsible for a change of the flow regime in these interfacial 

transport phenomena. Third, we have coupled the colloid-

interface interactions with the interfacial transport 

phenomena. These flows are described as the consequence of 

the colloid-interface interaction that are repulsive in the case of 

osmosis (the semi-permeable membrane repels the colloids) or 

attractive for Marangoni flow (the interface attract the 

surfactant). This paper helps to progress in understanding the 

role played by physico-chemical properties (surface 

interactions) on chemical physics (transport phenomena). 

From the thermodynamic perspective, the colloid-interface 

interactions are accounted by the particular equation of state. 

The modeling underlines how the colloid-interface interaction 

1) plays a role on the mass and momentum balance 2) generates

local transport phenomena (called interfacially driven

transport) 3) changes the relative transport of an object and a

fluid in a colloidal dispersion

The theoretical framework allows us to describe diffusio-

osmotic and Marangoni flows in the context of a unified

approach. These flows are described as the consequence of the

colloid-interface interaction that are repulsive in the case of

osmosis (the semi-permeable membrane repels the colloids) or

attractive for Marangoni flow (the interface attract the

surfactant).
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