N
N

N

HAL

open science

On the Cost of Acking in Data Stream Processing
Systems

Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller

» To cite this version:

Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller.
Processing Systems. 2019 19th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing (CCGRID), May 2019, Larnaca, Cyprus. 10.1109/CCGRID.2019.00047 . hal-02134654

HAL Id: hal-02134654
https://hal.science/hal-02134654
Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

On the Cost of Acking in Data Stream

https://hal.science/hal-02134654
https://hal.archives-ouvertes.fr

On the Cost of Acking in
Data Stream Processing Systems

Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller
Universite Cote d’Azur, CNRS, I3S
{alessio.pagliari, fabrice.huet, guillaume.urvoy-keller} @univ-cotedazur.fr

Abstract—The widespread use of social networks and appli-
cations such as IoT networks generates a continuous stream of
data that companies and researchers want to process, ideally
in real-time. Data stream processing systems (DSP) enable such
continuous data analysis by implementing the set of operations
to be performed on the stream as directed acyclic graph (DAG)
of tasks. While these DSP systems embed mechanisms to ensure
fault tolerance and message reliability, only few studies focus
on the impact of these mechanisms on the performance of
applications at runtime.

In this paper, we demonstrate the impact of the message
reliability mechanism on the performance of the application. We
use an experimental approach, using the Storm middleware, to
study an acknowledgment-based framework. We compare the
two standard schedulers available in Storm with applications
of various degrees of parallelism, over single and multi cluster
scenarios. We show that the acking layer may create an unfore-
seen bottleneck due to the acking tasks placement; a problem
which, to the best of our knowledge, has been overlooked in
the scientific and technical literature. We propose two strategies
for improving the acking tasks placement and demonstrate their
benefit in terms of throughput and latency.

Keywords-Data Stream Processing, Message Reliability, Apache
Storm, Acking Framework, Scheduling

I. INTRODUCTION

In the last years, we have observed a growing demand for
real-time processing of the continuous stream of data gen-
erated by, e.g., social or sensor networks [1]]. To address this
challenge, several Data Stream Processing (DSP) systems have
been developed, such as Storm [1], Heron [2]], Spark Streaming
[?], Flink [3]], Samza [4] and MillWheel [5]. These systems
strive to offer low latency and high throughput processing of
live streams of data.

Modern DSP engines are designed to apply complex pro-
cessing on data as a sequence of task to be executed [0].
Each task can be replicated and distributed over the cluster
to scale the application, increasing throughput capacity. The
task scheduling algorithm plays an important role to optimize
the task placement, trying to balance the computation load
and minimize the end-to-end latency. Following the distributed
paradigm, every DSP engine implements, in its own man-
ner, non-functional components which implements mechanism
such as monitoring, logging or message guaranteeing. Regard-
ing the latter, there are three message delivery paradigms: at-
most-once, at-least-once and exactly-once. Most middlewares
propose a way to perform exactly-once processing, while all
of them offer at-least-once. Message reliability can sometimes

hurt the application performance [7]] as enforcing delivery
guarantees on message can come at the price of a reduced
throughput or an increased processing latency.

Several works concentrate on the fault tolerant and relia-
bility aspect of stream processing applications (Section [II).
Every DSP engine proposes its own approach to the problem,
optimizing the offered delivery paradigm. A large set of efforts
focuses on improving fault tolerant checkpointing systems.
However, to the best of our knowledge, no work has ever
precisely analyzed the impact of message guaranteeing on the
performance of DSP applications, especially, acknowledgment
based systems.

In this paper we show how an ack-based framework offering
message delivery guarantee can have an uncontrolled impact
to the performance of a DSP application. We take advantage
of Storm’s open-source nature that allows us to fully analyze
the framework. Storm deploys the tasks of an application in
Java Virtual Machines (JVM) in the nodes of the cluster. We
study the strategies used to implement acking by the two
popular schedulers of Storm, namely the Even Scheduler and
the Resource-Aware Scheduler (RAS) [8]]. In both of them, the
acking mechanism is materialized as tasks to be deployed on
the cluster.

We show that the Resource-Aware Scheduler considers only
marginally the acker tasks (a.k.a. ackers) during placement,
resulting in degraded performance as compared to the Even
scheduler. We next design and implement two task placement
strategies for the RAS scheduler that take in account ackers
and optimize their placement. The first strategy balances the
acking load, collocating the ackers with other application
tasks. The second strategy places the ackers in dedicated
JVMs, separating them from the application tasks, alleviating
the load of the incoming message queues. We evaluate these
two solutions in single cluster and multi-cluster environments.

The main contributions of our work can be summarized as
follows:

o We demonstrate the impact of the middleware message

delivery system on the application performance.

o Focusing on the Storm case, we show that the acking
system generates a large share of the network traffic.
Moreover, the placement of ackers can significantly im-
pact the overall performance of the application.

o We present two ackers placement strategies that improve
the performances of the two standard schedulers.

The rest of the paper is organized as follows: related work is

presented in Section [[I} Then, in Section [III| we detail the knots
and bolts of Storm and its relevant components. In Section
we precisely define the problem we study. In Section [V] we
explain the two ackers placement strategies we propose, that
we evaluate against the legacy Storm schedulers in Section [V1}
Section concludes the paper.

II. RELATED WORK

A. Reliability and Fault Tolerance

Each DSP engine implements message processing guaran-
tee in its own way. Storm implements an upstream backup
through acknowledgment that keeps track of the messages
along the processing path [1f]; similarly to Storm, Heron [2]
and Moillwheel [5] implement an acknowledgement-based
upstream backup, however, in addition, both system use an
auxiliary checkpointing system to further improve message
reliability. Apache Flink provides a checkpointing mechanism
that continuously stores the state of the system [3]]; Spark
Streaming relies on Spark Resilient Distributed Dataset (RDD)
supports and the different guarantees provided by the external
data sources [9]; Samza adopts a changelog approach [4].

Fault tolerance of DSP is also a hot research topic [[10].
Most works concern checkpointing and snapshot techniques.
Zhuang et al. [11] propose a novel Optimal Checkpointing
Model for stream processing. This model proposes a dynamic
calculation of an optimal checkpointing interval, aiming to
obtain an optimal processing efficiency. A more workflow-
generic approach is taken by [12], where the authors tackle
the problem of corrupted data failures, so called silent errors.
They optimize the checkpointing overhead, for fail-stop errors,
by proposing different combinations of scheduling algorithms
and checkpointing techniques. Carbone et al. [13]] propose an
asynchronous snapshotting algorithm for stream processing
dataflows, where they minimize the space requirement of
snapshots.

Another popular solution is to perform replicas of the
application. A dynamic replication scheme is presented in [[14]]
that continuously monitors the system deciding the optimal
technique to apply for the workflow. Cardellini et al. [[15]], [[16]]
formulate an optimal DSP replication and placement model,
where they compute a number of replica for each task to
optimally scale the application. In [[I7] is presented a DSP
engine that implements a checkpointing system combined with
a partial replication of tasks, in order to reduce the cost of the
system recovery and the necessity of backup nodes.

Recent works are concentrating of upstream backup sys-
tems. Li et al. [[18]], [[19]] suggest a solution considering tasks-
failures. In their work they describe a task allocation strategy
that takes into account the impact of tasks recovery over the
cluster resources.

All these works propose novel solutions to fault tolerant
systems but none actually investigate the cost of their im-
plementation on real applications. In this paper we focus on
message reliability and on its impact over the application
performances at runtime.

B. Application Scheduling and Task placement

When talking about resource limitations, several works pro-
pose novel scheduling solutions directed to optimize resource
utilization and minimize communication latency, with partic-
ular attention over network communication load in relation to
task placement [20]. A large set of works has been done in
relation to Storm.

Similarly to R-Storm [8]], widely discussed in Section
two past works [21] and [22] propose different schedulers
pivoting around the concept of network distance. Both works
focus their solution on minimizing the network communica-
tion, implementing at the same time a monitoring system to
optimize at runtime the application’s resource utilization.

Cardellini et al. [23]], [24], try to extend the scheduling to a
wider Quality of Service (QoS) point of view, focusing on dis-
tributed scenarios like Fog Computing [25]. They implement
an online scheduler that considers latency, CPU utilization and
data traffic, trying to minimize the traffic between components
and optimize the system availability.

Eskandari et al. [26], [27] implement two online schedulers
based on graph theory. They consider network traffic and
resource allocation, with objective of minimizing data commu-
nication between tasks and optimize the resources allocation.
Both their solutions exploit graph partition methods to improve
the tasks ordering and placement of R-Storm.

Even if all the presented works, in diverse fashions, optimize
the application’s resource utilization, none of them directly
consider the acknowledgment framework of DSPs. This work
will show how a task-oriented acking system, such as the one
of Storm, can impact the system performances. Specifically,
we demonstrate how not only the application tasks have to be
optimally placed, but so should the tasks dedicated to acking.

III. BACKGROUND
A. Storm Overview

Storm is a distributed data stream processing system that
relies on ZooKeeper [28]] to manage the coordination between
all its components and the cluster resources. It implements
a master-slave design. The controller node, called Nimbus,
manages the status of the cluster. It is in charge of managing
new topologies to be scheduled, fault-tolerance and directly
communicates with ZooKeeper. The Supervisors are the slave
nodes where the tasks will be scheduled. Each supervisor
provides to Nimbus a set of Java Virtual Machines (JVM)
called workers. Each worker is assigned a communication port
and can contain several threads, known as executors. Runtime
examples of the Stom architecture are depicted in Figs. [Ib]
and

The topology is represented by a Directed Acyclic Graph
(DAG), where the components are the vertices and the edges
are the connections between components. The application
running on the cluster is made of two types of components.
Spouts represent data sources and inject streams of tuples
into the workflow. Bolts encapsulate simple operations to be
performed on input tuples. Each component has its own level

SUPERVISOR A

SUPERVISOR B SUPERVISOR A SUPERVISOR B

(&)

WORKER 1)

@Q@

)

WORKER 2\

Q@

®)

J
SLOT 3)
Parallelized Flow
O Component @ Component Connection N\ J

WORKER 1) WORKER 1} (SLOT 1)
OQ @OQ |)
SLoT z\ WORKER RIS SLOT 2)

Executors ~~Executors
N / N Y,
(SLOT 3)) WORKER 3} (SLOT 3))
N / \'@ . J

(a) Sample topology: one spout; two bolts
(split); one final bolt (join). The last compo-
nent has a parallelism level of 1, the others
of 2

3 total workers;

(b) Even Scheduling: placement example with
2 executors per worker

(c) RAS: placement example with a configu-
ration that allows 3 executors per woker; 3
workers used, 3 executors per worker

Fig. 1: Example of Storm application and different ways of scheduling

of parallelism and can span multiple workers and executors
to scale and distribute the application. Spouts and Bolts are
connected through different ways, called stream groupings
[29], as such as hash-based routing or tuple duplication.

A sample topology, composed of one spout and three bolts,
is shown in Fig. All components except bolt B3 have a
parallelism level of 2 which means they will take 2 executors
at runtime.

B. Acking Framework

The acking framework in Storm serves two functiong}
message reliability and backpressure. In the first case [30], to
ensure the at-least-once processing property, every tuple in the
workflow will be acked by each task. In case of failure, they
will be re-transmitted by the previous executor. In the second
case, each spout maintains the status of in-flight tuples and if
the number of tuples waiting to be acked exceeds a threshold,
the backpressure mechanism will be activated, slowing down
the spouts.

Storm uses special system tasks, called ackers, to manage
the status of the tuples, and designed to be lightweight [30].
The path of tuples in the DAG is depicted as a tree and the
ackers are able to update step-by-step the completion status
of each tuple running in the system, keeping track of eventual
tuple duplication and joins. These tasks are implemented as
any other executor [31] and process incoming tuples in a
similar manner. They can receive ack tuples from both spouts
and bolts. The Spouts use the INIT stream to indicate the
creation of a new tuple to the application workflow and the
Bolts use the ACK stream to ack the tuple along the tuple tree.

For every new tuple, a spout generates a random ID and
sends the XORed value to an acker chosen using an hash-
based function. Ackers keep a two-entry table which associates
a spout ID to the XORed value. Upon processing a tuple, a
bolt can anchor resulting tuples to the original one, creating a
tree-like relation. The root tuple will be fully acked only when
all its children will be. If after 30 seconds a tuple has not been

las of Storm version 1.2.x

acked, it is considered as failed. It will be retransmitted by the
last bolt which has acked it or the spout if it was lost at the
beginning.

The acking framework is also used to enforce a backpressure
mechanism which can be activated by setting an integer value
to the max.spout.pending configuration option. This
value is the maximal number of non-acked tuples allowed
before slowing down the emission rate. If not set (by default),
there is no ack-based backpressure.

C. Scheduling

After submitting a topology, Nimbus will take care of its
placement in the cluster applying a scheduling algorithm. The
initial versions of Storm were released with an Even scheduler,
which is still today the default option. Another scheduler,
called the Resource-Aware Scheduler (RAS) and based on [8]]
is also available.

Algorithm 1: Even Scheduler

1 slots «—sortFreeSlotsBy (slot#, supervisor) ;
2 n <min (requestedWorkers, availableSlots) ;
3 workers <—getFirstN (slots, n);

4 for e in topologyExecutors do
5 worker < getNext (workers) ;
assign € to worker;

1) Even scheduler: The Even scheduler is based on a
simple strategy as shown in Algorithm |1} It distributes the
tasks following a round robin manner on a set of workers. The
number of workers to use is specified by the user (default is
1). The topology executors are sorted by ID which by default
entails to spouts first, then first bolt, ...; traversing the DAG in
a breadth-first fashion. With this algorithm the executors are
balanced over the workers, and so is the computation, if tasks
have homogeneous CPU requirements.

For example, if a user requests 3 workers for the sample
topology (Fig.[Ia) on a cluster composed of 2 supervisors with
3 slots each, it will be scheduled as follows. First, the slots

will be sorted by worker and supervisor giving the following
list: (Worker 1/Sup A, Worker 1/Sup B,Worker 2/Sup A...).
The first 3 will be selected and the algorithm will then iterate
over the components. The first spout component will be placed
on 1/A, the second on 1/B... leading to the scheduling shown

in Fig. [T

Algorithm 2: Default RAS Strategy
1 components <—sortByInOutConn (topo)

2 for ¢ in components do

3 repeat

4 € +—getNextExecutor (C);

5 worker <—getBestWorker (C);

6 assign e to worker;

7 nghbrs <+—sortByInOutConn (C nghbrs);
8 for n in nghbrs do

9 e <+—getNextExecutor (n);

10 if e is not null then

11 worker <—getBestWorker (N);
12 assign e to worker;

13 until e in c;

2) Resource Aware Scheduler: The RAS aims at optimizing
the resource utilization on the nodes while minimizing the net-
work distance between tasks. In [8]], the authors have defined
the concept of network distance: inter-rack and inter-node
connection are the slowest due to the network link, intra-node
(i.e. inter-worker, through TCP) connection is faster, intra-
worker (using serialization) is the fastest. Placing tasks with
a higher connection level closer to each other should reduce
the communication load and thus the latency. Moreover, this
scheduler introduces the notion of memory and cpu resources
provided by the cluster. The first one is specified as the amount
of memory in megabytes. The second one, specified as cpu
units, represents the computational power of a node and is
normalized to 1 core = 100 cpu units. When submitting a
topology, a user can thus specify its resource requirements.

The RAS, allows the definition of external
scheduling strategies. The one in wuse by default is
the DefaultRsourceAwareStrategy, shown in

Algorithm |2} The strategy first starts by sorting components
by the sum of their input and outputs connections. Then, it
selects the first executor of the first component in the list
and assign it to a worker. Then it performs an ordering of
its neighbors and places one executor for each of them. The
loop is repeated until executors exhaustion. To select the
best fitting worker for an executor, the algorithm sorts them
by their network distance (racks or nodes) and the available
resources, giving priority to the location where some other
components of the same topology are already placed. At each
executor placement, the scheduler decrements the occupied
resources from executors, including ackers, are placed at the
end of the process, also considering available and requested
resources as specified in the default Storm configuration.
Applying the RAS scheduler to the sample topology of

Fig. [Ta] will lead to the deployment in Fig. First it will
compute the in-out degree of each components, taking into
account the parallelism level. Spout S has 0 in links and
2 out links on the schema. Each out-link of S connects to
components with a parallelism level of 2, the same as S. Hence,
the total number of out-links is 2 x 2 x 2 = 8. Bolt B1 has
2 in links from S, combined with its parallelism level this
gives 2 X 2 = 4 in links, and 2 X 1 = 2 out links. Once
sorted, S will be the first to be scheduled, and then it will be
its neighbors B1 and B2. Since the algorithm gives priority
to the smallest network distance, the components will all be
placed in Supervisor A, i.e. the same node.

IV. UNDERSTANDING THE IMPACT OF ACKING

In this section we show a wildly varying performance
observed in our experimentationf] (Fig. [2), given by the two
different Storm’s cheduling algorithms.

1.5M
616 K

tuples/s
tuples/s

— throughput —— throughput

time time

(a) Even Scheduler (b) RAS

Fig. 2: Storm tuples throughput

Both schedulers expose to the user some configuration
parameters which can be used to direct the deployment of
an application. The Even scheduler allows to set the number
of workers to use. Specifying large values will force the
spreading of tasks over multiple nodes of a cluster. With the
Resource-Aware scheduler, it is possible to define CPU and
memory requirements for every component [[8]. These values
will directly impact the number of nodes used by a topology.
Predicting the optimal values for these parameters is a non-
trivial challenge. Hence, both schedulers usually require a
tuning-up phase to find the most fitting values in order to
optimize the throughput and latency of an application.

Nevertheless, even with a meticulous tuning of these val-
ues it is possible to encounter further placement problems
caused by components out of user’s control. As mentioned
before (Section [[II-B), Storm implements message guarantee-
ing through special system executors, which have to be placed
by the scheduler. As shown in Section the resource-
aware scheduler tries to perform resource optimization with an
offline algorithm. It is based on user defined parameters for
both the cluster nodes and the topology components. Ackers’
requirements have a default value of 10 CPU units and 128MB
of memory. With some particular combination of user provided
parameters, the placement of the topology components may
precisely fit the used nodes, not leaving enough space for
the acker executors. This produces a final placement where

2the experimental setup is the same as described in Section

Dy 04 504 6P SPUSP >
noceo [EACAEACOEAED
[or e [o]

Dy 04 04 504 6P SPUSP >

1.0

0.8 0.8
s
OmEmn
0.68 0.68
EEEE < :
pomE || g
[r] 7 04" e
o B
1 EEE |
0.2 0.2
oo o
QCREY - [0 [[oe[or[ocos [oc] node1a- NHHHHHHI
o AEEOEEEE ||, -~ DODDO0O0EE ||,

(a) Even Scheduler: ackers bal-
anced over all nodes

(b) RAS: Majority of ackers co-
placed in node7

Fig. 3: CPU utilization of a Storm cluster: two different
schedulers

®
o

N o
=]

N
o

of processes waiting

0 1 N — I
> 5 100 10! 1e® A2 AX AD
06606“0‘520&{\0660‘5206%\0&{\06@ ‘526 6 c\ 6 6 (‘PX

o

(a) Even Scheduler: ackers balanced over all
nodes

®
o

o
=]

¥ + + +
* % % % . + 3 %
B R A R O e O
O~ (07 (07 (0™ (07 (07 0~ (O (\o Qoéﬁo (\o 6 o

N
o

N
=]

of processes waiting

(b) RAS: Majority of ackers co-placed in node7

Fig. 4: CPU load of a Storm cluster: two different schedulers

the ackers ends up in the last used node with still some free
space, or even in a new separated node. In this situation, all
ackers will be co-placed inside the same node, or even the
same worker.

This co-placement of ackers can cause a degradation of
performances because of the increased load they put on the
CPU. This can be observed by directly measuring the load on
each node as shown in figures Figs. [3] and [l When several
ackers are placed inside node 7 (Figs. [3b] and {ib), it increases
the number of processes competing for the CPU, increasing the
load, and thus slowing down the entire topology. Meanwhile,
a more balanced ackers distribution (Figs. [3a]and [4a) will even
the load and ultimately offer better performance.

This can also be observed at the middleware level. Each
executor has an incoming message queue called the distruptor

— 1000
£ 3
£401 | =
: = 750
= ‘ £ s00
c20 | | i c
3 I e : Ny 3 250
3, (ol dbbllell | 8 0
time

(a) Worker in a balanced schedul- (b) Worker in a overloaded node
ing

Fig. 5: Example of workers executors disruptor queues: so-
journ time

155 MB 255 MB

network traffic (Bytes/s)

0B

time

Fig. 6: Storm application network traffic using 7 char long
java string tuples

queue, as well as an output transfer queue common to the
worker where they are placed. When executors, i.e. ackers, are
co-placed inside the same worker, their queues share the same
memory space. When the load is well balanced, the tasks have
a good processing rate, quickly consuming from the queue
(Fig. 5a). However, if multiple ackers are co-placed inside the
same node worker, the tasks won’t be able to keep up with
the rate of incoming tuples. This will result in more congested
queues with highly variable sojourn times (Fig. [3b).

To enable message guaranteeing, Storm needs to generate
an acking message for each tuple processed by each task. As
a consequence, this mechanism can generate a lot of traffic.
Measuring network traffic — i.e. inter-worker and inter-node
TCP traffic — during the experiments, we observe (Fig. [6)
that in certain case the amount of traffic generated by the sole
acking mechanism can be more than half of the total traffic
produced by the running topology.

With large applications and a huge input rate, the number of
tuples to be acked will be critical, exacerbating the problems
described above. Even if the acker executors are designed
to be lightweight, the high load of acking messages to be
processed can over-exceed their capabilities, slowing down
the processing rate. As a consequence, the number of pending
tuples would increase and the back-pressure mechanism will
choke the spouts. Simultaneously, the number of tuples waiting
in the queue will build up, reaching the queue maximum and
increasing the risk for new incoming tuples to fail.

Even at a small scale, the placement of ackers could impact
the communication latency. If they are co-placed in a single
node, it increases the probabilities that the acking messages
travel through the network, instead of reaching directly a acker

in the same node (or, better, in the same worker). In such a
situation, the optimization performed by the RAS scheduler to
minimize the communication is at risk of being nullified by
the increased distance to ackers.

V. ACKERS-AWARE PLACEMENT

In this section, we propose two extensions to the RAS
scheduler that take into account ackers during tasks placement.
The default number of ackers in the default RAS is equal to 1.
This choice obviously leads to performance degradations with
increasing application load. A more efficient acking strategy
requires to: 1) set the number of ackers and 2) devise a strategy
to map ackers to workers.

For the first problem, we rely on the heuristic used in the
Even scheduler, which is to set a number of ackers equal to
the number of workers. However, this number is not known
in advance in the RAS scheduler, as opposed to the Even
scheduler where it is set by the user. In the RAS scheduler,
the number of workers is the result of the placement process
based on the requirements of the component tasks in terms
of CPU and RAM. To work around this issue, we use the
components requirements with the CPU capacity of the nodes
(resp. the JVM memory) to estimate the maximum number
of executors a node can contain (resp. maximum number of
executors per worker). We obtain the number of workers per
node and the total number of nodes required. This gives us
the total number of workers.

The second problem, mapping ackers to workers, can be
addressed using two different strategies that will be detailed
below. We decided to set to O their CPU and memory re-
quirements. This gives us all the needed flexibility for their
placement.

A. One-per-Worker Strategy

The One-per-Worker Strategy (OPW) focuses on balancing
the acking process computation load over the workers. On
large topology or large clusters, this translates into more
uniform load over all nodes. The idea is to replicate the
scheduling strategy of the Even Scheduler by placing one acker
per worker while preserving the RAS algorithm for the other
components.

The algorithm starts with an unmodified RAS placement
strategy for the components (Algorithm [2). During this first
phase, OPW gets the list of workers and during a second
phase, acker placement is performed. Ackers are assigned
in a round robin manner in each worker. The benefit of
this approach is that it combines the default scheduling of
RAS (minimized communication latency) and a better lead
distribution for ackers.

B. Isolated Queue Strategy

This second strategy, called Isolated Queue (IQ), isolates the
queues used by the ackers. The rational is to avoid competition
with other executors over the incoming queue. This mechanism
has the added benefit of reducing crashes due to incoming
queues using all the available memory.

SUPERVISOR A SUPERVISOR B
WORKER 1 SLOT 1
e J

)
ces)

[
—
E

SLOT 3}

[WORKER3}
[KEM} [

Fig. 7: IQ placement example with a configuration that allows
3 executors per worker; 4 workers used, 3 total ackers placed
on a dedicated worker

SLOT 4]

The IQ strategy deploys the same number of ackers as the
OPW strategy, i.e. one per worker. But instead of placing one
acker per worker, it groups them in a single worker. Listing
shows the algorithm executed after the RAS algorithm has
finished placing the other components. The IQ strategy first
obtains the nodes where the current topology assignment has
reserved some slots, and then creates one worker for each
node. The algorithm then cycles the nodes and the ackers
to be placed. If in the selected node, a dedicated worker is
not present it will create it and deploy a first acker in it. If
it already exists, it will co-place another acker in the same
worker.

Algorithm 3: 1Q: Isolated Queue Strategy

1 RAS assignment of topology executors to workers;
2 for a in AckersToBePlaced do

3 N <— getNextUsedNode ();

4 W < getAckerWorker (N);

5 if w is null then

6 L W < createAckerWorker (n);
7 assign a to w;

VI. EVALUATION
A. Experimental Setup

To evaluate the impact of our strategies over the application
throughput and average processing latency, we performed
several benchmarks comparing the Even, RAS, OPW and 1Q
schedulers. The tests have been performed on the Grid5000
testbed’] that allows us to reserve computing nodes in different
clusters. For our tests, we mainly used two clusters: the
first one, suno, is located in the Sophia region and its
node have two 4-cores Intel Xeon E5520 @2.27GHz with
32GB of memory. The second one, parapide, is in the
Rennes region and offers nodes with Intel Xeon X5570
@2.93GHz and 24GB of memory. Inside a cluster all nodes
are interconnected with 1Gbps links. The two sites are 850km
apart and connected with a 10 Gbps dark fiber with a measured
latency of 21ms.

3https://www.grid5000.fr/

https://www.grid5000.fr/

Based on the evaluation cluster adopted by [1]], we deployed
Storm 1.2.1 over 17 nodes: the Nimbus and the Zookeeper
server are co-placed in one node, the remaining 16 nodes host
the Supervisors. Each Supervisor consists of 20 available slots
with a maximum memory heap of 1024MB each. For the RAS,
OPW and IQ schedulers, the resources configurations in each
node are of 800 cpu units (two 4-cores cpus) and 327 68MB
(resp. 24576MB) of memory for suno (resp. parapide).

Based on the scenario previously described in Section [V}
where we find a cpu overload problem in Storm applications,
we focus our benchmarking on a CPU intensive application.
Word Count (Fig. is a canonical representative of this
family of applications, used likewise in the BigDataBench
suite [32] as a representative of social network analytics. Its

Ranker

Counter

Word Generator Merger

~

Wi
\17

\

@

-

\

w0
£
3
5
o
o
<

Fields Grouping

@ Spout
O Bolt

Fig. 8: Simple streaming Word Count topology

topology consists of four components. The Word Generators
(i.e. the spouts), continuously inject in the topology random
tuples obtained from a set of 1000 predefined words. The
Count bolts receive the generated words as input, through
a hash-based fieldsGrouping connection, and produce
pairs word, counter as output, where counter is an
incremental counter of the word’s occurrences. The Rankers
receive these pairs as input, also through a fieldGrouping
connection, and provide the ranking of the three most frequent
words every two seconds. The final step is accomplished by the
Merger. It is a single executor to which the Rankers connect
through a globalGrouping. It receives the rankings from
all the previous bolts and outputs the overall top three most
frequent words.

We set the resources requirements for the ackers as ex-
plained in Section and adjust the pending tuples value,
max.spout.pending (see Section [[II-B), to 5000. Acking
is enabled for every bolt. All components have the same
resource requirements in each tests.

B. Methodology

To perform a comprehensive evaluation, we test the topol-
ogy with two different levels of parallelism and with diverse
resource requirements. Based over past works, [1f], [33] and
only considering the topology components, i.e. excluding the
system executors, we define a large topology with a total
of 376 executors, and a small topology with a total of 26
executors . The large topology features 75 word generators,
150 counters, 150 rankers and 1 merger. The small topology
is configured with 5 word generators, 10 counters, 10 rankers

and 1 merger. We tune the different resources requirements
to generate various scenarios and to better compare the four
scheduling strategies.

We first benchmarked the application in a single cluster
scenario, where the CPU limitation is more visible. Then, we
moved to a multi-cluster scenario, so as to add a slower link
that can impact the application latency.

1) Large topology: The large topology has been investi-
gated with several configurations (Table [[) corresponding to
different network distances between tasks. The Even scheduler
has been tested with 13, 16 and 60 workers. Increasing the
number of workers increases the number of used nodes,
changing the communication distance between the executors.
The RAS, OPW and IQ schedulers have been tested with 5
different variants. Starting from a requirement per component
of 33 CPU units and 128MB, to spread the topology as much
as possible in the single cluster, down to a requirement of
27 CPU units and 32MB of memory, to consider the effects
of aggregating the tasks on a smaller number of nodes and
workers.

Scheduler CPU Units Mem (MB) Workers Nodes Ackers
n.d. n.d. 60 16 | 32 60
Even n.d. n.d. 16 16 16
n.d. n.d. 13 13 13
33 128 n.d.
30 128 58 15 60
RAS-Def 30 64 29 15 30
* 30 32 22 15 15
N 27 32 25 13 13
33 128 47 16 48
* 30 128 58 15 60
RAS-OPW 30 64 29 15 30
30 32 15 15 15
27 32 13 13 13
33 128 63 16 48
30 128 73 15 60
RAS-IQ 30 64 44 15 30
30 32 30 15 15
27 32 26 13 13

(") not enough resources to schedule (*) out of memory crash

TABLE I: Summary of tests run for the large topology.
Total executors: 376 + ackers

2) Small topology: The small topology has been tested with
a smaller set of configurations.

The Even scheduler has been tested with 16 and 13 workers.
With 16 workers we are able to spread the tasks as much
as possible over the available nodes, while with 13 workers,
we can observe the effect of node sharing. With the RAS
scheduler we have tested two different configurations. The
first one maximizes the spreading of the topology. Since there
is a total of 26 executors and 16 nodes with a capacity of
800 CPU units each, this can be achieved by requiring 400
CPU units for each component. This will result in 2 executors
per node, which is the best achievable configuration given the
number of available nodes. The second configuration places
three executors per node by setting the CPU requirements to
265 units.

For the multi-cluster scenario, we added 15 nodes on the
second cluster. The tests have been repeated with the same

Scheduler CPU Units Mem(MB) Workers Nodes Ackers
E n.d. n.d. 16 16 16
ven nd. n.d. 13 13 13
400 128 15 14 13
RAS-Def 265 128 10 9 9
400 128 13 13 13
RAS-OPW 265 128 9 9 9
400 128 26 13 13
RAS-IQ 265 128 18 9 9

TABLE II: Summary of tests run for the small topology.
Total executors: 26 + ackers

configurations used for the single-cluster case.

We focus our evaluation on two key data stream metrics:
application throughput and processing latency. Throughput is
obtained by summing the number of emitted tuples by every
spout executor over the duration of the experiments. Latency
is the average latency computed by Storm ackers. For a given
tuple, it is the time between its registration at an acker and the
completion of the acknowledgment tree. Hence it is a direct
estimator of the end-to-end processing time. Every test has
been run for 20 minutes and the first and last 5 minutes were
excluded from measurement to account for the warm-up and
shutdown phases. The results presented correspond to a steady
state of the topology.

C. Results

1) Single Cluster, Large Topology: In this scenario, the
Even scheduler (blue bars in Fig. [J) behaves as expected: in-
creasing the number of workers increases throughput (Fig. [9a))
but also processing latency (Fig. [0b). Indeed, increasing the
number of workers while keeping the number of executors per
node constant slightly increases the available memory for each
executor. This results in more space available for the buffering
queues. However, at the same time, a larger number of workers
increases communication latency between executors in the
same node, adding inter-worker communication.

In our experiments with the RAS scheduler, some config-
urations would run out of memory and crash (missing values
in Fig. Q2 and Fig. OB indicated by a cross). The only two
working configurations were the ones with a requirement of
30 CPU units (CU) and with 128 and 64MB of required
memory respectively. With a configuration of 33 CPU units
per component, we don’t have enough space in the cluster to
place all the components. Meanwhile, with the last two RAS
configurations (30CU 32MB and 27CU 32MB), as well as the
OPW strategy (30CU 128MB), we come across continuous
memory dump crashes which prevents us from considering
the results as valid. In all the failing scenarios, the cause is
related to the acker executors. The recurring crashing JVMs
are the ones containing only ackers, where we noticed that
some ackers fill very quickly (in the first 10 seconds of run)
the receiving queue and cause the worker to reach its memory
heap limit.

Considering the only two valuable results (red bars in

ez even BN ras B opw iq

7

A L1IMDON

Throughput
ey
o
o
~

200 K
o i i
A R I I mIII™™®™

ROy ARITRIRC” AVRUTRIRC” 4] 2\
o \’0;5(%%0%0000'\5 RS L RARINC

RO S S S S AR

(a) Throughput (higher is better)

bz even BN ras EBEE opw iq

e
o N u
S wu o

Latency (ms)
w ~
o wv

N
vl

//
.
%/

N

J T
I NI AN A S A
A \g)\"b \3\"\‘!;»\"!/06\)’5] \"L’\’Léb\)’bo’b '\'1’»\"‘!/060")\)’5
RAFRAC L RABHINS LRASRRNC
AR oS IARAOANT oA

A

(b) Latency (lower is better)

Fig. 9: Results of the large-scale topology in the single cluster
environment

Fig. P), we can observe the importance of a correct resource
requirements configuration. With 128MB of required memory,
we have an average of 8 executors per node. This number dou-
bles when we decrease the required memory down to 64MB.
The placement in the first case results in 4 workers per node
with 2 executors each, In the second case we have 2 workers
per node with 4 executors each. Compared to the former
case, we have a better distribution of ackers. This increases
intra-worker communication, hence reducing communication
latency by 82% and also improving the throughput by more
than 115%. As we can see, the impact of placement in the
first test (30CU 128MB in Fig. Pb) drastically increases the
completion latency to over 300ms in average.

Both OPW (in green on Fig.[9) and IQ (in yellow) improve
on the original RAS scheduler. Both strategies significantly
improve the throughput, catching up with the Even scheduler
performance.

Overall, while the OPW scheduler offers a good trade-off
in terms of throughput and latency as compared to the RAS
scheduler, the most meaningful improvements are observed
with the IQ strategy. This is especially true in the last three
configurations (30CU 64MB, 30CU 32MB, 27CU 32MB),
which considerably improve the latency of the default RAS
scheduler. At a similar throughput level, the 1Q strategy
reduces the latency by more than the 53% as compared to
the RAS scheduler, and by the 33% w.r.t. the Even scheduler.

even BN ras B2 opw iq even even B ras B opw iq
_140M 3.50 M __160M
w w
»1.20 M1 ©3.00M F e
—_ n —_
21.00M o 51.20M
2 800k g 250M 21.00M
o =2.00M £ 800K
3 600K E 3 D
< 2150M £ 600 K
3 400K S100m S 400K| 7
£ 200K Esoox £ 200K %
= 0 = i 0 7
0
N N\
N N
S S

(a) Throughput

(a) Throughput

EZZ2 even BN ras EZE opw iq

(a) Throughput

¥z even even BN ras BB opw iq

Latency (ms)
S o o

N

20

7

Latency (ms)
= =
o w

(O]

Ml H-_Ttt
AN

0 o o %
RN O
NN N

(b) Latency

(b) Latency
Fig. 10: Results of the small-scale topol- Fig. 11: Results of large-scale topology Fig. 12: Results of the small-scale topol-

ogy in the single cluster environment

In specific scenarios where latency is more relevant than
throughput, we can, for the best configuration, reduce latency
by 66%, at the cost of a 7% decrease of the throughput.

2) Single Cluster, Small Topology: Results with the small
topology are presented in Fig. [T0a] and Fig. [I0b] for the
throughput and latency respectively. We can observe that the
Even schedulers performs very well in this scenario for both
metrics. The RAS scheduler can achieve very good latency,
but at the expense of a lower throughput in some cases. In
addition, its performance varies in an unpredictable manner
depending on the CPU and RAM requirements used for the
tasks.

In contrast, the IQ and OPW schedulers achieve
stable performance irrespectively of the CPU and RAM
requirements. They achieve performance on par with the
Even scheduler, with slightly better results for OPW. A fair
comparison between the OPW and Even schedulers can be
done when both use the same number of physical nodes. As
can be seen from Table [[I] this is the case when comparing
the 13 workers case of the Even schedulers and the (400CU
128MB) case of the OPW scheduler. The performance are
almost similar in terms of throughput and latency for the two
schedulers in these two experiments.

Findings: overall, on a single cluster, our strategies
improve the performances of the default RAS in all scenarios.

in the multi-cluster environment

(b) Latency

ogy in the multi-cluster environment

Moreover, in the worst case it is on par with the Even
scheduler.

3) Multi Clusters, Large Topology: A key advantage of
the RAS scheduler, and also IQ and OPW, in a multi-cluster
scenario is that they will pack, as far as possible, the topology
in a single cluster. This is the case for the large topology
scenario and, as such, the results for the three resource aware
schedulers are the same as in the single scenario (Fig. [9).

The Even scheduler, in contrast, is greedy and will deploy
the topology over the two clusters, which causes the latency
to ramp up from 6 to about 80 ms. But this can also lead to an
increase in terms of throughput if it uses more physical nodes
as is the case in the 60 workers scenario of Fig. [ITa] where
the throughput is almost double.

4) Multi Cluster, Small Topology: In this scenario, the
Even scheduler clearly underperforms as compared to the
resource aware schedulers, as it again deploys the topology
over the two clusters. Also, the RAS scheduler again achieves
less stable results than the IQ and OPW schedulers due to
the balancing of the acking load they perform. This further
enables them to improve throughput as compared to the
original RAS scheduler while featuring similar latencies in
this scenario.

Findings: our proposal improves on both default RAS and
Even scheduler, when running on multiple clusters. The Even

scheduler can sometimes achieve better throughput at the cost
of using twice as many nodes.

VII. CONCLUSION

In this work, we have demonstrated how implementing
reliability in data stream systems can affect application per-
formance if not done with care. This is especially true in
acknowledgment-based systems, where the acking mechanism
induces a significant processing and network load.

We exemplify the case with the Storm middleware, con-
sidering its two standard schedulers, namely the Even and
the Resource Aware Scheduler (RAS). The RAS scheduler
was devised and is known to outperform the Even scheduler
in a multi-cluster scenario. We have demonstrated that its
relatively worse performance in single-cluster scenario is due
to its handling of the ackers components. We have improved
the RAS scheduler, with new ackers placement strategies —
OPW and IQ — that enable it to perform at least as well
as the Even scheduler in both scenarios with small or large
topologies. This means that it is possible to design a single
scheduler that offers consistent performance irrespectively of
the exact scenario.

Our work focused on the acknowledgment mechanism,
demonstrating its possible impact on application performance.
However, DSP frameworks usually provide other mechanisms
(logging, monitoring, etc) which also rely on system tasks. In
the same manner, they can have an impact on the processing
load. Thus, as future work, we intent to consider the non-
functional tasks as part of the application during the scheduling
process.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
¢rid5000.11).

The research leading to these results has received funding
from the European Commissions Horizon 2020 Framework
Programme for Research and Innovation (H2020), under grant
agreement #732339: PrEstoCloud.

REFERENCES

[1] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,” in
ACM SIGMOD, 2014.

[2] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in ACM SIGMOD, 2015.

[3] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., 2015.

[4] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream pro-
cessing at linkedin,” PVLDB, 2017.

[5] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-
tolerant stream processing at internet scale,” PVLDB, 2013.

[6] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Network and Computer Applications, 2018.

[7]

[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]
[21]
[22]
(23]
[24]

[25]

[26]

[27]

[28]
[29]

(30]

[32]

[33]

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng et al., “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” in
IEEE IPDPS, 2016.

B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in ACM Middleware, 2015.

G. Hesse and M. Lorenz, “Conceptual survey on data stream processing
systems,” in /[EEE ICPADS, 2015.

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernandez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al.,
“The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data pro-
cessing,” PVLDB, 2015.

Y. Zhuang, X. Wei, H. Li, Y. Wang, and X. He, “An optimal check-
pointing model with online oci adjustment for stream processing appli-
cations,” in /[EEE ICCCN, 2018.

L. Han, V. Le Fevre, L.-C. Canon, Y. Robert, and F. Vivien, “A generic
approach to scheduling and checkpointing workflows,” in ACM ICPP,
2018.

P. Carbone, G. Féra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight
asynchronous snapshots for distributed dataflows,” CoRR, 2015.

T. Heinze, M. Zia, R. Krahn, Z. Jerzak, and C. Fetzer, “An adaptive
replication scheme for elastic data stream processing systems,” in ACM
DEBS, 2015.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Joint operator
replication and placement optimization for distributed streaming appli-
cations,” in EAI VALUETOOLS, 2017.

——, “Optimal operator replication and placement for distributed stream
processing systems,” ACM SIGMETRICS, 2017.

L. Su and Y. Zhou, “Tolerating correlated failures in massively parallel
stream processing engines,” in /EEE ICDE, 2016.

H. Li, J. Wu, Z. Jiang, X. Li, X. Wei, and Y. Zhuang, “Integrated
recovery and task allocation for stream processing,” in /[EEE IPCCC,
2017.

H.-L. Li, J. Wu, Z. Jiang, X. Li, and X.-H. Wei, “A task allocation
method for stream processing with recovery latency constraint,” Com-
puter Science and Technology, 2018.

W. A. Aljoby, T. Z. Fu, and R. T. Ma, “Impacts of task placement and
bandwidth allocation on stream analytics,” in /EEE ICNP, 2017.

L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in storm,” in ACM DEBS, 2013.

J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in storm,” in JEEE ICDCS, 2014.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Distributed qos-
aware scheduling in storm,” in ACM DEBS, 2015.

——, “On qos-aware scheduling of data stream applications over fog
computing infrastructures,” in /[EEE ISCC, 2015.

F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big data and internet
of things. Springer, 2014.

L. Eskandari, Z. Huang, and D. Eyers, “P-scheduler: adaptive hierarchi-
cal scheduling in apache storm,” in ACM ACSW, 2016.

L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “T3-scheduler: A
topology and traffic aware two-level scheduler for stream processing
systems in a heterogeneous cluster,” Future Generation Comp. Syst.,
2018.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX ATC, 2010.
Storm. Concepts. [Online]. Available: |http://storm.apache.org/releases/
current/Concepts.html

Guaranteeing message processing. [Online]. Available: |http:
//storm.apache.org/releases/current/Guaranteeing-message- processing.
html

——. Acking framework implementation. [Online]. Available: http:
//storm.apache.org/releases/current/Acking- framework-implementation.
html

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “Bigdatabench: A big data benchmark suite
from internet services,” in IEEE HPCA, 2014.

T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed
stream data processing using deep reinforcement learning,” PVLDB,
2018.

https://www.grid5000.fr
https://www.grid5000.fr
http://storm.apache.org/releases/current/Concepts.html
http://storm.apache.org/releases/current/Concepts.html
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/current/Acking-framework-implementation.html
http://storm.apache.org/releases/current/Acking-framework-implementation.html
http://storm.apache.org/releases/current/Acking-framework-implementation.html

	Introduction
	Related Work
	Reliability and Fault Tolerance
	Application Scheduling and Task placement

	Background
	Storm Overview
	Acking Framework
	Scheduling
	Even scheduler
	Resource Aware Scheduler

	Understanding the Impact of Acking
	Ackers-Aware Placement
	One-per-Worker Strategy
	Isolated Queue Strategy

	Evaluation
	Experimental Setup
	Methodology
	Large topology
	Small topology

	Results
	Single Cluster, Large Topology
	Single Cluster, Small Topology
	Multi Clusters, Large Topology
	Multi Cluster, Small Topology

	Conclusion
	References

