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Abstract—The design of RC members with nontraditional
methods is demanding due to the large number of unknown
variables inherent in the design process. The complexity of the
RC beams design optimization problem has led to many over-
simplified models, so as current metaheuristic search algorithms
can deal with it efficiently. In this paper, the optimization design
model of RC beams has been introduced by new design variables,
while augmented some; accordingly enhanced the solving algo-
rithm. A new enhanced parameter-setting-free harmony search
algorithm has been proposed to solve the model. Furthermore,
the tackled optimization objectives were the minimization of cost,
weight and cost-weight simultaneously for designing regular or
high strength concrete beams.

Keywords—Reinforced concrete beams, Metaheuristic algo-
rithms, Harmony search, Multi-objective optimization

I. INTRODUCTION

Cost and weight minimization of products have been
always the interest of many industries; RC structures, in

the construction industry, is not an exception. The problem of
designing reinforced concrete structures gained its complexity
from the highly non-linear behavior of the constraints as well
as the involved design equations. Add to that, the nature of
the mixed discrete -continuous design variables involved in the
designed cross sections. Indeed, this type of problem is widely
known as sizing optimization problem with a fixed topology
(refer to [1] for more details).

The design of reinforced concrete structures using optimiza-
tion methods is relatively challenging compared to steel struc-
tures [2]. Providing designs that are fully detailed according to

1 � The corresponding author.

international manuals and recommendations, such as [3], [4],
[5], [6], for reinforced concrete structures, is always defying
the intelligence of metaheuristic algorithms and self-learning
techniques. Essentially, such problems are always associated
with a high number of dimensions (design variables).

Numerous publications handled the problem of designing
reinforced concrete members either by using rules-of-thumb
or the use of intelligent algorithms. Simplifications and as-
sumptions were always the core of any successfully conducted
optimization process.

One of the detailed studies in this branch was issued by Akin
and Saka [2]. That study manipulated the design of detailed
RC continuous beams per ACI318-05 code. The beam’s width
and depth had been used as independent design variables, rein-
forcement areas and the number of bars had been implemented
as well. Cutoff bars per each span and support had been
considered in the proposed model. The design was obtained by
using the traditional harmony search algorithm [7]. Ultimate
and serviceability states were included. Simplifications were
made in calculating the lengths of compression/tension bars
and hooks as well according to ACI315-02 detailing manual.

Another detailed paper published by Jahjouh et al. [8]
demonstrated the design of RC continuous beams in details
using a slightly modified Artificial Bee Colony (ABC) algo-
rithm. They used ACI318-08 standards, the American code,
in the design process. More independent design variables,
compared to [2], had been used in that paper and meticulous
bars detailing. Development lengths and anchorage, have been
calculated as per the design equations provided by ACI318-
08. Moreover, a classical concept of optimization has been
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considered to enhance the ABC algorithm which is the mod-
ification of some of the design variables while keeping the
others without modifications, and this is due to the complexity
of the problem.

In the last decade, the significance of Building Information
Modelling (BIM) software packages raised dramatically. In
[9], the authors optimized structural reinforcement in three
different folds using a BIM platform. In the first two folds, they
optimized the compression and tension rebars separately, while
the third one was used only for optimizing the distribution
of shear reinforcement. In that paper, fixed rectangular cross-
sections had been provided, as inputs, to optimize rebars for
beams and columns. Furthermore, BS8110 provisions, British
standards, had been used and the problem was solved using
the Hybrid Genetic Algorithm.

Govindaraj and Ramasamy [10], dealt with the problem
of designing RC continuous beams according to the Indian
Standards (IS code) using the Genetic Algorithm (GA) [11].
The only independent design variables were the depth and the
width of the beam, while the others were taken as dependent
variables.

Chutani and Singh [12] studied the design of RC structural
members such as beams and columns as per the Indian
Standard by using the enhanced Particle Swarm Optimization
(PSO) algorithm. The paper’s objective was to get the optimal
cost of these structures. RC beams had been designed assum-
ing that the independent design variables were the beam width
and depth; other design parameters were calculated accord-
ingly. Ultimate and serviceability limit states were considered
in the design process.

Alqedra et al. [13] used the GA to find the optimal cost of
the design of RC prestressed simple beams according to the
American standards (ACI318-05). The design variables were
namely: width of the beam, depth of the beam, number of
flexural bars, diameters of flexural bars, number of tendons,
and diameters of tendons, as well as the eccentricity of the
tendons. The shear design had not been taken into consid-
eration in that study. In 2006, both Kwok and Kong [14]
carried out the design of common RC structures. Among these
structures the design of RC prestressed beams used the GA.
The dimensions of the concrete prestressed box girder were the
design variables. Rules-of-thumb and simplifications from past
experiences had been included. The design was accomplished
by using the Hong Kong code of practice.

Many papers oversimplified the design problem of RC
beams [15], [16], [17], [18], [19]. For instance, the design of
doubly reinforced simply supported beams had been solved by
both Adsul and Bhalchandra [19]. Ultimate and serviceability
limit states had been considered using the GA according to the
Indian Standards. In that paper, the design parameters were
a bit different from other studies’. The beam width, tension
reinforcement, compression reinforcement, and nominal cover
were the independent design variables. In [15], the authors
used the Artificial Neural Network (ANN) to design simple
beams considering only the beam’s width and effective depth
as geometrical design variables and the number of bars besides
the diameters for detailing according to the ACI318-08 code,
while [18] used the GA for the design of simple RC beam

according to the Eurocode 2. In [16], [17] used Bats Algorithm
(BA) and Teaching-Learning-Based Optimization (TLBO) al-
gorithm, respectively, for the sectional design of both singly
and doubly reinforced beams according to the ACI318 design
code. The design variables in those papers were the beam
depth and width and compression/tension steel bars numbers
and diameters.

More publications about this topic have been revealed
in [20], where the authors reported the recent applications
of heuristic and metaheuristic algorithms in designing RC
structures.

Simplifications, in former studies, had always been used
for non-critical, less sensitive parameters, as an attempt to
reduce the total efforts required to solve a problem and to relax
the computational complexity. These simplifications promoted
the performance of state-of-the-art algorithms efficiently. In
this paper, the optimization problem complexity has risen;
new design variables have been introduced besides modifying
some. Two new design variables have been added to optimize
the location of the top and bottom flexural bars curtailments.
Overall, three main objectives have been minimized separately
or jointly in this paper under different design cases and
various complexities to cover a wider range of practical design
applications.

In the current work, based on harmony search [7], music-
inspired algorithm, a newly modified algorithm, has been
introduced as a solver for the beam’s model. Specifically
speaking, a slightly modified approach of the parameter-
setting-free harmony search (PSFHS) algorithm [21] has been
used.

In short, this paper solves a wider range of design cases
with different design situations, different boundary conditions,
and materials according to the Eurocode 2 design norm.
Moreover, it provides more detailed solutions with a modi-
fied self-adapting algorithm. This paper is organized into six
different sections. Sections I and II cover an introduction to
the relevant works and the used design norms respectively.
Section III describes the modified approach of harmony search
algorithm, while Section IV defines the mathematical relations
of the problem (optimization model). Section V provides
five different design cases with their detailed results. The
conclusions have been drawn in Section VI. Finally, three addi-
tional appendices have been added to cover the used flexural
reinforcement design equations, a small-scale benchmarking
and comprehensive results for the fourth case study.

II. DESIGN OF REINFORCED CONCRETE BEAMS PER
EUROCODE 2

In this paper, the design of reinforced concrete has been
addressed rigorously as per the Eurocode standards. The
designs of bending, shear, deflection and shrinkage have been
followed rigorously and calculated accordingly, refer to [22],
[23] for more details. In Appendix A, equivalent equations to
the strain compatibility approach, see [5], [6], [24], have been
provided for effortless and straightforward evaluation of the
bending capacity of a doubly reinforced section according to
the Eurocode provisions.
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III. MODIFIED PSFHS ALGORITHM

Harmony search (HS) algorithm is a novel metaheuristic
algorithm that was proposed first by Zong Woo Geem in 2001
(see [7]). The main inspiration behind this novel algorithm is
the musicians’ improvisation process. HS is a random-based
search algorithm rather than being a gradient-based one. Har-
mony search is a non-nature-inspired algorithm or basically
an artificially inspired algorithm (see [25] for definitions).

The main challenge, for metaheuristics, is always about
developing new robust algorithms that are capable of solv-
ing complicated problems with better accuracy. Nevertheless,
maintaining the number of iterations or time affordable and
computationally available is needed. Harmony search has
been successfully used in various applications related to sci-
entific and engineering problems [26], where it functioned
potentially better than many other well-known algorithms.
Harmony search algorithm has played a role in a plethora
of applications [27]; the pipe network design problem [28],
structural optimization [2], [29], and many other engineering
applications proving its robustness and superiority in continu-
ous and discrete design problems.

A. PSFHS algorithm mechanism

Slight modifications have been imposed on the original
parameter-setting-free harmony search algorithm as explained
in the coming subsections. Referring to [7], [21], [30], [31],
one can capture the main algorithm procedures and develop
a concrete understanding of its derived mechanism. In the
current work, the discussion will be focused on the proposed
modifications, while the detailed process can be found in
former pieces of literature.

In Section III-A1 and III-A2, the modifications will be
elaborated, while Algorithm 1 defines the main steps of the
described approach in this context.

1) Initialize harmony memory: As one of the population-
based algorithms, this stage is crucial for the overall behavior
of the algorithm. This step has been modified to get poten-
tially filtered design vectors (solution vectors) in the harmony
memory matrix [HM]. The initial [HM]HMS×N, random tuning
step [21], starts with a number of vectors equals to ξHMS×N,
where the symbol ξ is a positive integer multiplier. Afterward,
the initial matrix is ranked and the best HMS design vectors,
based on the fitness, can be chosen as the final [HM]. Another
sampling option is by using Latin Hypercube Sampling (LHS).
Using LHS will decrease the computational efforts and provide
potentially better populations [32].

2) Rehearsal and performance steps: Both the rehearsal
and performance steps are concretely dependent on HMCR
and PAR probabilities. The occurrence probabilities of HMCR
and PAR that were registered in successfully generated and
replaced solution vectors redefine the current ones, HMCR
and PAR, in the performance phase (refer to [21] for details).
Those two steps are the core of the algorithm where the
optimum balance between diversification and intensification
processes must be guaranteed. The modifications implied on
this part of the algorithm are the newly imposed limits on both
HMCR and PAR calculated values. The modified equations are

shown in (1) and (2). The process records are all maintained
in the operation type matrix [OTM] (see (3)). Equations (4)
and (5) record the histories of HMCR and PAR respectively.
Note that the maximum number of iterations, including both
the rehearsal and performance steps, is denoted by MaxItr for
the hereafter.

HMCRi
j =

Count(Oj =Memory)

HMS
,where

HMCRi
j ∈ [HMCRi, HMCRmax] (1)

PARi
j =

Count(Oj = Pitch)

HMS
,where

PARi
j ∈ [PARmin, PARi] (2)

Those introduced limits will guarantee that the PSFHS will
not block itself in any local minimum as well as lag the process
from reaching a local optimum before getting the chance to
inspect wider ranges of solution vectors leading to premature
convergence. Recommended ranges for both HMCR and PAR
are [0.70, 0.95] and [0.20, 0.50], respectively, as observed
from [28], [29], [33]. Accordingly, applying such limits can
considerably enhance the robustness of this method besides
decreasing the variation of the results for different consecutive
independent runs, i.e standard deviation. The new parameters
HMCRmax and PARmin have been introduced to bound the
improvisation probabilities working ranges for each design
variable. Consequently, HMCR and PAR probabilities will take
the advantage of dynamically detecting the behavior of each
design variable independently from others, while doing it in
the most suitable range. HMCRmax in this study is kept lower
than the value of 1.0 by about 1.0 to 5.0 %, so basically
HMCRmax ∈ [0.95, 0.99], while PARmin ∈ [0.05, 0.1].

Elaborately, approaches based on metaheuristic are capable
of finding good and sometimes optimal solutions to problem
instances of realistic size [34], [35], where using stochastic
combinatorial optimization always bears some uncertainty. In
contrast, allowing HMCR and PAR to reach values of 1.0
and 0.0, as can be observed in [21], clashes with the basic
definition of metaheuristic algorithms. In other words, the
diversification and the intensification processes are processes
to sense the solution domain and finding a good balance
between both processes [36], but not a process with guaranteed
and certain aspects. Allowing both probabilities of 1.0 and 0.0
means that the behavior and the distribution of the problem
are known to the algorithm at a certain point, which can be
considered and described as a gradient-based approach rather
than being a stochastic approach. Again, Algorithm 1, depicts a
pseudo code for the detailed steps of the proposed and slightly
modified approach of the PSFHS algorithm.

IV. FORMULATION OF THE RC DESIGN OPTIMIZATION
MODEL

A new optimization model has been proposed in this study
for designing RC beams. The number of independent design
variables has been increased, as well as a more rigorous ap-
proach has been used in evaluating objectives and constraints.
Figure 1 and Table I explain the design variables that have
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[OTM] =



O 1
1 = Random O 1

2 =Memory . . . O 1
N =Memory

O 2
1 = Pitch O 2

2 = Random . . . O 2
N = Pitch

... . . .
. . .

...

O HMS
1 = Pitch O HMS

2 = Random . . . O HMS
N =Memory


(3)

[HMCRH] =



HMCR 1
1 HMCR 1

2 . . . HMCR 1
N

HMCR 2
1 HMCR 2

2 . . . HMCR 2
N

... . . .
. . .

...

HMCR MaxItr
1 HMCR MaxItr

2 . . . HMCR MaxItr
N


(4)

[PARH] =



PAR 1
1 PAR 1

2 . . . PAR 1
N

PAR 2
1 PAR 2

2 . . . PAR 2
N

... . . .
. . .

...

PAR MaxItr
1 PAR MaxItr

2 . . . PAR MaxItr
N


(5)

been introduced in this paper, where the number of design
variables is expressed in terms of the number of spans per
beam Nspans.

The determination of design variables must occupy huge
solicitude depending on many interfered or mutually-exclusive
factors, for instance, the computational capacity, the robustness
of the solver or the algorithm used, the total run-time, the
variable sensitivity in the design problem and/or past experi-
ences. In this study, the only dependent design variable is the
distribution of the shear stirrups over spans; others have been
treated as independent design variables.

It is important to mention that the explained design, depen-
dent or independent, variables number can change according
to the type of the provided boundary conditions and whether
the problem is symmetric or not. Moreover, Fig. 2 explains
how each design vector is stored, manipulated and accessed
in the memory.

A. Design objective functions

Three objectives have been used in this study, namely cost
minimization, weight minimization and simultaneous cost and
weight minimization. The objective functions are shown in (6)
to (8). Refer to [37] to find other possible methods to deal with
multi-objectives problems.

Min. F cost( ~X) = CconcVconc + CstWst + CfAf (6)

Min. Fweight( ~X) =Wconc +Wst (7)

Min. F cost & weight( ~X) = ξ1Fcost( ~X) + ξ2Fweight( ~X) (8)

where,
~X: the proposed design vector (see Fig. 2);
Af : area of formwork [m2];

Cconc: concrete cost per [m3];
Cst: steel cost per [kN];
Cf : formwork cost per [m2];

Vconc: concrete volume [m3];
Wconc: concrete weight [kN];
Wst: steel weight [kN];
ξ1: weighting factor for the cost objective;
ξ2: weighting factor for the weight objective.
The dynamic penalization method has been used for

this constrained optimization problem. One preferable and
common model for evaluating the fitness of any design vector
is shown in (9).

Fitness( ~X) = F ( ~X)(1 + ω1PT )
ω2 (9)

where,
PT : sum of all violations (penalties) (see (15));
ω1 : penalty function constant;
ω2 : penalty function exponent.

B. Design constraints
The problem is constrained to ensure that the composed

solution vector has been chosen from a valid design pool
according to the design norms. In this paper, the main beam
constraints at the ultimate limit state (ULS) are the bending
capacity, maximum shear force (for ductile shear failure), the
maximum number of layers (spacings), and minimum and
maximum area steel provided for both compression and ten-
sion steels. Considering the serviceability limit state (SLS), the
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b

h

ds

P
P

N  ,
ct dctN  ,

pt dpt

N  ,
cb dcb

N  ,
pb dpb

MP,max

MN,max

MN,max

MP,max

P
N

Fig. 1. Description of the model’s design variables

b      h     N      ...     N     d       ...    d ... 

N       ...    N     d       ...    d      N      d   ... 

N       ...    N     d       ...    d      d      P      N  

                             cb                           cb          cb                           cb    

                                                  1                                                        NSpans                 1                                                        NSpans

        1               2                 3                 ...          NSpans+2    NSpans+3          ...         2NSpans+2

2NSpans+3         ...        3NSpans+2  3NSpans+3         ...        4NSpans+2  4NSpans+3  4NSpans+4

4NSpans+5         ...         5NSpans+5  5NSpans+6        ...        6NSpans+6  6NSpans+7  6NSpans+8 6NSpans+9

1                                                           NSpans               1                                                          NSpans

pb                          pb          pb                          pb           ct             ct

1                                                       NSpans+1              1                                                        NSpans+1               

pt                            pt          pt                           pt            s            p               p         

Cross section

Bottom continuous rebars

Bottom curtailment rebars

Top continuous rebars

Top curtailment rebars

Shear rebar (stirrups)

Curtailments percentage

Fig. 2. Design vectors’ template in the computer’s memory

deflection of the beam due to long-term creep and shrinkage
has been checked. For safeguarding against cracks, minimum
requirements for tension steel area and spacings have been
implicitly considered in the spacings control. The following
points summarize the equations used to evaluate the fitness of
each composed design vector:

1. Bending capacity (Md) penalty: to ensure that all cross-
sections are provided with enough resistance against the
imposed ultimate bending actions (Mu):

P1 =


|Mu | − Md

Md
, |Mu |> Md

0 , otherwise.
(10)

2. Maximum and minimum area steels penalties: to ensure
that the provided steel (As) in tension is between maxi-
mum (As,max) and minimum (As,min) limits. While the
provided compression steel is not over the maximum

(As,max) limit:

P2 =


As,min −As

As,min
, As,min > As

As −As,max

As,max
, As,max < As

0 , otherwise.

(11)

3. Maximum shear force capacity (VRd,max) penalty: to
ensure that the shear force (Vu) will be resisted in the
beam without crushing the concrete:

P3 =


| Vu | − VRd,max

VRd,max
, | Vu |> VRd,max

0 , otherwise.
(12)

4. Maximum number of layers (Nmax) penalty: the pro-
vided bars by the algorithm are arranged automatically
according to a ranking-arranging algorithm. In this paper,
the number of resulting layers (Nlayers) are considered
instead of using the direct spacing calculation used by
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Result: Obtain optimal (minimal) solution.
initialize harmony search parameters;
pre-allocate all vectors and matrices;
initialize the primary population;
filter-out the final population HMS;
find the current worst and best fitness of the population;
// start of the rehearsal step

(constant HMCRi and PARi)
for each i← rehearsal iterations do

for each j ← problem dimensions do
if rand ≤ HMCRi then

~Xnew[j]← randomly chosen from [HM] ;
if rand ≤ PARi then

~Xnew[j]← slightly modified;
end

else
~Xnew[j]← randomly generated;

end
end
check ~Xnew limits;
evaluate the fitness f( ~Xnew);
if f( ~Xnew) < f( ~Xworst ∈ [HM]) then

replace the worst design vector;
update worst and best solution vectors in [HM];
register the type of operations used to generate

each design variable in [OTM];
end

end
// start of the performance step (with

variable HMCR and PAR)
for each i← (MaxItr− rehearsal iterations) do

for each j ← problem dimensions do
evaluate HMCRi

j and PARi
j according to the

occurrence probabilities;
check the imposed limits on HMCRi

j and PARi
j ;

if rand ≤ HMCRi
j then

~Xnew[j]← randomly chosen from [HM] ;
if rand ≤ PARi

j then
~Xnew[j]← slightly modified;

end
else

~Xnew[j]← randomly generated;
end

end
check ~Xnew limits;
evaluate the fitness f( ~Xnew);
if f( ~Xnew) < f( ~Xworst ∈ [HM]) then

replace the worst design vector;
update worst and best solution vectors in [HM];
register the type of operations used to generate

each design variable in [OTM];
end

end
Note 1: f(.) is the objective function or fitness.

Note 2: this scheme is for minimization problems.

Algorithm 1: Modified Parameter-Setting-Free Harmony
Search Algorithm (PSFHS)

TABLE I
DETAILS OF THE MODEL’S DESIGN VARIABLES

Design variable Unit Number per beam Notation

Beam breadth mm 1 b
Beam depth mm 1 h
Number of continuous bottom bars – Nspans Ncb

Diameter of continuous bottom bars mm Nspans dcb
Number of cutoff bottom bars – Nspans Npb

Diameter of cutoff bottom bars mm Nspans dpb
Number of continuous top bars – 1 Nct

Diameter of continuous top bars mm 1 dct
Number of cutoff top bars – Nspans + 1 Npt

Diameter of cutoff top bars mm Nspans + 1 dpt
Diameter of shear reinforcement mm 1 ds
Percent of positive bending cutoff bars % 1 Pp

Percent of negative bending cutoff bars % 1 Np

Total number of design variables 6Nspans + 9

former pieces of literature such as [8]:

P4 =


Nlayers −Nmax

Nmax
, Nlayers > Nmax

0 , otherwise.
(13)

5. Real deflection (δreal) penalty: ensures that the deflection
is within the Eurocode provisions (δmax); covers the
intended use of the structure due to quasi-permanent
actions. Notably, long-term creep and shrinkage effects
have been considered and added to the actions’ effect.

P5 =


| δreal | − δmax

δmax
, δreal > δmax

0 , otherwise.
(14)

Afterward, the final violations (penalties) of each design
vector are evaluated (See (15)).

PT =

5∑
i=1

Pi (15)

V. DESIGN CASES AND RESULTS

In the present paper, five design cases with different objec-
tives, geometries, material properties, and boundary conditions
have been solved. Table II reveals the working ranges consid-
ered for solving the proposed design cases.

A. Design case (1)

The first design case considered in this study is a five-span
symmetric beam with the related loading shown in Fig. 3. The
algorithm’s input data is listed in Table III.

The problem has been solved according to the formerly
explained design variables with a symmetrified condition. In
this case, the size of the design pool is 3.592 × 10+24,
considering only 25 design variables, rather than solving the
whole beam for 2.4212 × 10+34 design options with 35
independent design variables. A total of 30, 000 iterations
have been used to converge the best solution according to the
proposed algorithm.

Table IV summarizes the results of 10 independent runs for
minimizing the weight of the beam; the best result achieved
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TABLE II
DESIGN VARIABLES AND SPECIFIED WORKING RANGES FOR THE DESIGN POOL

Design variable Unit Number per beam Variables range Step size

Beam breadth mm 1 250→ 1, 800 50
Beam depth mm 1 250→ 1, 000 50
Number of continuous bottom bars – Nspans 2→ 15 1
Diameter of continuous bottom bars mm Nspans 10→ 20 2
Number of cutoff bottom bars – Nspans 0→ 15 1
Diameter of cutoff bottom bars mm Nspans 10→ 20 2
Number of continuous top bars – 1 2→ 15 1
Diameter of continuous top bars mm 1 10→ 20 2
Number of cutoff top bars – Nspans + 1 0→ 15 1
Diameter of cutoff top bars mm Nspans + 1 10→ 20 2
Diameter of shear reinforcement mm 1 8→ 12 2
Percent of positive bending cutoff bars % 1 0.0→ 1.0 0.05
Percent of negative bending cutoff bars % 1 0.0→ 1.0 0.05

Total number of design variables 6Nspans + 9

Dead Load (self-weight not included) = 54.0 kN/m
Live Load = 18.0 kN/m

4m 4m 1.5m

CL

Fig. 3. Design case (1) – geometry and loading

TABLE III
ALGORITHM’S INPUT VALUES FOR DESIGN CASES (1)→ (3)

The property Value

fck [MPa] 30
fyk [MPa] 500
Max. aggregate size [mm] 20
Support width [mm] 300
Cement type Normal hardening
Max. Nlayers 2
Relative humidity 50%
Age of concrete at the
time of loading [Days] 7

Deflection limit [mm]
Span length [mm]

250

TABLE IV
DESIGN CASE (1) – SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best weight Run No. Best weight
[kN] [kN]

1 42.125 6 42.542
2 42.198 7 42.582
3 42.286 8 42.286
4 42.378 9 42.835
5 42.477 10 47.860

was 42.125 kN, and the weight summary of 10 different runs
was 42.957± 1.734 kN.

The details of reinforcement for the best run obtained are
shown in Fig. 4. Shear reinforcement spacings along the beam
are described in Table V, while the convergence curve is
illustrated in Fig. 5(a).

TABLE V
DESIGN CASE (1) – BEST RUN STIRRUPS DISTRIBUTION

Span No. Span reinforcement regions [m]
[Left, Middle, Right] of span

1 [1.05, 0.70, 2.10]
2 [1.55, 0.70, 1.60]
3 [0.95, 0.70, 1.20]
4 [1.25, 0.70, 1.90]
5 [1.85, 0.70, 1.30]

* Numbering starts from the left span to the right span.
** The regions where the stirrups spacings are distributed.

It should be mentioned that the algorithm found the best
solution where the cutoffs for positive bending moments are
zero (only continuous bottom reinforcement provided). On the
other hand, the top reinforcement was placed at 55% from
the maximum negative bending corresponding at the face of
the support, and as a result, the longitudinal bars’ lengths
developed accordingly.

B. Design case (2)

In the second design case, the cost of a four-span beam
has been minimized (see Fig. 6). The costs of concrete, steel
rebars, and formwork have been included in the objective.
The used cost multipliers were: 105 USD/m3 for concrete,
90 USD/kN for the steel reinforcement and 92 USD/m2 for
the formwork. In this design case, 33 independent design
variables have been involved. As a consequence, this resulted
in 2.780 × 1030 valid design options; 80, 000 iterations were
found to be satisfactory.
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Fig. 4. Design case (1) – best run reinforcement details
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Fig. 5. Design cases (1)→ (4) – best runs convergence curves

The results of 10 trials to solve the problem were re-
ported at Table VI with an average and a standard deviation
of 1, 703.711 ± 45.413 USD. The best cost achieved was
1, 663.641 USD with an overall weight of 32.402 kN.

The obtained design details are revealed in Fig.7 and
the shear stirrups’ regions are explained in Table VII. The
convergence of the best run is shown in Fig.5(b). The solution
implies that cutoffs of the top reinforcement took place at
65% of the maximum moment at the face of the support and
no cutoffs are considered for the bottom reinforcement. In
this case, heavier top reinforcement means that the algorithm
depends on increasing the ductility and reducing the deflection
effects by providing top reinforcement for the beam.

TABLE VI
DESIGN CASE (2) – SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best cost Run No. Best cost
[USD] [USD]

1 1, 663.641 6 1, 686.698
2 1, 677.991 7 1, 686.699
3 1, 678.722 8 1, 696.313
4 1, 684.416 9 1, 781.636
5 1, 686.257 10 1, 794.743

C. Design case (3)

In this design case, cost minimization of a relatively long-
span beam has been considered (refer to Fig. 8). With 17
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Dead Load (self-weight not included) = 27.0 kN/m
Live Load = 9.0 kN/m

5m3m 4m 5m

Fig. 6. Design case (2) – geometry and loading
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Fig. 7. Design case (2) – best run reinforcement details

TABLE VII
DESIGN CASE (2) – BEST RUN STIRRUPS DISTRIBUTION

Span No. Span reinforcement regions [m]
[Left, Middle, Right] of span

1 [0.35, 1.30, 1.20]
2 [1.05, 1.30, 1.50]
3 [1.55, 1.30, 2.00]
4 [1.55, 1.20, 2.10]

* Numbering starts from the left span to the right span.
** The regions where the stirrups spacings are distributed.

independent design variables, constituting a design pool of
4.833×1016 possible beams, 7, 000 iterations were satisfactory

for getting a reliable convergence through all the runs.
Using the same cost multipliers as in design case

(2), the best cost obtained among 10 different runs was
3, 643.179 USD, and for the overall runs was 3, 740.281 ±
40.70 USD (see Table VIII). The details of the best run are
shown in Fig. 9.

The shear regions are explained in Table IX, and Fig. 5(c)
shows the convergence curve. Only top curtailments at 25%,
of the negative bending, have been assigned by the algorithm
in this case.

D. Design case (4)
The use of high-strength concrete (HSC) acquired a great

importance in the recent applications of reinforced concrete
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Dead Load (self-weight not included) = 54.0 kN/m
Live Load = 18.0 kN/m

8m 9m

Fig. 8. Design case (3) – geometry and loading
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Fig. 9. Design case (3) – best run reinforcement details

TABLE VIII
DESIGN CASE (3) – SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best cost Run No. Best cost
[USD] [USD]

1 3, 643.179 6 3, 760.891
2 3, 695.710 7 3, 761.673
3 3, 730.161 8 3, 762.023
4 3, 757.684 9 3, 762.780
5 3, 758.532 10 3, 770.179

TABLE IX
DESIGN CASE (3) – BEST RUN STIRRUPS DISTRIBUTION

Span No. Span reinforcement regions [m]
[Left, Middle, Right] of span

1 [1.95, 1.70, 4.20]
2 [4.25, 1.80, 2.80]

* Numbering starts from the left span to the right span.
** The regions where the stirrups spacings are distributed.

structures. For this reason, a relatively long span and heavily
loaded beam (refer to Fig. 10), has been considered using
high-strength concrete with more restrictions on the deflection
limits. The algorithm’s inputs have been changed for this case,
and the case after (see Table X).

Regarding the cost multipliers, the same multipliers have
been used for steel and formwork in the earlier cases; HSC
concrete cost multiplier is 285 USD/m3 for this case. This
example has been solved for the three objectives (see (6) to

TABLE X
ALGORITHM’S INPUT VALUES FOR DESIGN CASES (4)→ (5)

The property Value

fck [MPa] 55
fyk [MPa] 500
Max. aggregate size [mm] 20
Support width [mm] 300
Cement type Normal hardening
Max. Nlayers 2
Relative humidity 50%
Age of concrete at the
time of loading [Days] 7

Deflection limit [mm]
Span length [mm]

500

(8)). With 23 design variables, a design pool of 3.741× 1022

options must be utilized to find a sufficiently good, near
optimal, solution for each objective.

The best cost resulting from minimizing only costs was
2, 853.337 USD, with a weight of 51.104 kN. The over-
all result of the cost minimization process was 3, 010.424
±68.165 USD. Taking into consideration only the weight
objective, the best achieved weight was 51.329 kN, with
a corresponding cost of 2, 881.312 USD. The accuracy of
the runs related to the weight minimization process was
66.450± 6.368 kN.

Considering the process of minimizing both the costs and
the weight, appropriate weighting factors have been chosen. In
this particular case, it has been considered that the reduction
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Dead Load (self-weight not included) = 54.0 kN/m
Live Load = 18.0 kN/m

6m 6m 5.5m

Fig. 10. Design case (4) – geometry and loading

TABLE XI
DESIGN CASE (4) – COST SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best cost Run No. Best cost
[USD] [USD]

1 2, 853.337 6 3, 019.378
2 2, 961.527 7 3, 024.328
3 2, 999.365 8 3, 066.457
4 3, 003.584 9 3, 079.578
5 3, 006.447 10 3, 090.240

TABLE XII
DESIGN CASE (4) – WEIGHT SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best weight Run No. Best weight
[kN] [kN]

1 51.329 6 70.693
2 62.753 7 70.750
3 63.218 8 70.851
4 63.557 9 70.312
5 70.607 10 70.431

of weight is as twice as the importance of minimizing the
cost of the beam. In other words, the weighting factors have
been chosen to be 2.0 for the weight objective and 1.0 for the
cost objective. The best-obtained result in this process was
2, 963.560 USD (62.576 kN). The overall result of all runs
was 3, 081.343 ± 41.925 USD (69.586 ± 2.464 kN). Tables
XI, XII, and XIII summarize the results of the 30 runs.

The details of the best cost obtained are revealed in Fig. 11,
while the convergence is shown in Fig. 5(d) . It must be noted
that in this case bottom and top cutoffs have been considered
to control the deflection in the mid-span areas. The detailed
bending, shear, and deflection results can be found in Fig. C.1

TABLE XIII
DESIGN CASE (4) – COST-WEIGHT SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best cost[USD] Run No. Best cost[USD]
& weight[kN] & weight[kN]

1 2, 963.560 6 3, 092.534
62.576 70.349

2 3, 083.275 7 3, 095.399
70.275 70.372

3 3, 089.550 8 3, 098.302
70.325 70.396

4 3, 091.271 9 3, 102.098
70.339 70.426

5 3, 090.602 10 3, 106.837
70.334 70.464

TABLE XIV
DESIGN CASE (4) – BEST RUN STIRRUPS DISTRIBUTION

Span No. Span reinforcement regions [m]
[Left, Middle, Right] of span

1 [1.65, 1.10, 3.10]
2 [2.25, 1.10, 2.50]
3 [2.45, 1.10, 1.80]

* Numbering starts from the left span to the right span.
** The regions where the stirrups spacings are distributed.

TABLE XV
DESIGN CASE (5) – SUMMARY OF 10 INDEPENDENT RUNS

Run No. Best cost Run No. Best cost
[USD] [USD]

1 1, 988.424 6 2, 096.992
2 2, 076.559 7 2, 108.725
3 2, 085.080 8 2, 108.808
4 2, 086.283 9 2, 217.600
5 2, 095.076 10 2, 182.089

and Table C.1. Detailed shear regions were explained in Table
XIV.

E. Design case (5)

By adopting the same inputs and cost multipliers used for
the previous design case, the beam shown in Fig. 12 has been
solved for the cost function only. This cantilever-end beam has
21 design variables that compile a domain of 3.897 × 1020

possible design options. A total of 8, 000 iterations were used
to attain a sound stable and reliable solution during the cost
minimization process.

The best cost obtained for this case was 1, 988.424 USD
(34.381 kN), while the overall result for the 10 independent
runs, Table XV, obtained was 2, 104.564 ± 61.424 USD.
The reinforcement details are shown in Fig. 13 and shear
reinforcement regions are shown in Table XVI.

Form Fig. 13 it can be seen that cutoffs were only consid-
ered for the bottom reinforcement of the first span (from the
left).

The convergence curve revealed in Fig. 14 as well as
HMCR and PAR histories for the design variables; calculated
according to (1) and (2) and stored in (4) and (5).
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Fig. 11. Design case (4) – best run reinforcement details

Dead Load (self-weight not included) = 54.0 kN/m
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Fig. 12. Design case (5) – geometry and loading
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Fig. 13. Design case (5) – best run reinforcement details

F. Response correlations

One crucial factor that all metaheuristic algorithms have
in common is the number of iterations (trials) used to solve
problems. Indeed it is hard to tell whether these algorithms will
respond the same under different conditions and objectives. In
this paper, the number of involved design variables, Ψ, as well
as the size of the design pool, Ω, have been considered to find
a recommended and stable number of iterations to solve this
specific problem. The first correlation, fitting the former design
cases data, takes only the size of the design pool into account
(refer to (16)).

MaxItr = 152 Ω0.08946, where R2 = 0.9783 (16)

Using only the number of involved design variables or the
pool size does not reflect the real hardness of the problem,
especially considering discrete problems where a finite number
of solutions exists in the allowed bandwidth for each design
variable. Equation (17) and the corresponding Fig. 15 reveal
the interaction between Ψ, Ω and the stable number of
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TABLE XVI
DESIGN CASE (5) – BEST RUN STIRRUPS DISTRIBUTION

Span No. Span reinforcement regions [m]
[Left, Middle, Right] of span

1 [1.35, 1.00, 2.50]
2 [2.05, 0.90, 2.40]
3 [1.75, 2.00, − ]

* Numbering starts from the left span to the right span.
** The regions where the stirrups spacings are distributed.

iterations.

MaxItr = 4.07× 104 + 2.022× 10−20 Ω − 3789 Ψ

− 6.127× 10−22 Ω Ψ+ 106.2 Ψ2 (17)

VI. CONCLUSIONS

In the present work, an augmented optimization model
to design RC beams according to EC2 norms has been
proposed. A modified version of the parameter-setting-free
harmony search (PSFHS) algorithm has been used to solve the
optimization model. The obtained solutions have been found
integratedly and no solution-staging has been used. Hence, the
final solutions (design vectors) are not intentionally localized.

Different design cases and boundary conditions have been
dealt with in this paper including regular and high-strength re-
inforced concrete beams. However, it has been found fruitless
to compare this paper with other former pieces of literature
due to the differences in the proposed optimization models
and the used standards, i.e Eurocodes. The modified PSFHS
proved its stability and robustness under high-dimensional
problems and avoiding local minima comparing to the state-of-
art algorithms. Furthermore, Figs. 5, 14, and B.1 show clearly
the stable and careful convergence of the method by avoiding
locals. However, the robustness of this algorithm requires
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Fig. A.1. Doubly reinforced rectangular beam section

further refinements and investigations into two different levels,
the model’s level of complexity and the algorithm’s level, to
provide a more-mature mean to be included in the current BIM
software packages.

For the current problem hardness, iteration estimators have
been derived to visualize the real complexity, hardness ap-
proximation, of the proposed optimization model to find
near-optimal solutions. In addition, those derivations can be
considered as a one more step toward fully-free-of-setting
algorithms.

This algorithm is recommended for solving other RC struc-
tural elements, such as columns, walls, etc., associated with a
high number of design variables, especially that the proposed
model and algorithm need no prior knowledge from the end-
user in metaheuristic algorithms. Eventually, applying a large-
scale parametric study on the modified PSFHS will surely open
the doors to new perspectives and applications for it.

APPENDIX A: FLEXURAL REINFORCEMENT

In this section, a sound direct, computationally less ex-
pensive, and a non-iterative bending capacity algorithm has
been derived. The following approach, for doubly reinforced
sections, replaces the conventional and iterative strain com-
patibility method [5], [6] in this paper. The first attempt of
this algorithm is to evaluate the neutral axis position, refer
to Fig. A.1, assuming that both the strains in compression
and tension reinforcement yielded simultaneously, while the
concrete reached its crushing strain (see (A.1) to (A.4)).

T = Asfyd (A.1)

Cc = ηfcdλXb (A.2)

Cs = A
′

sfyd (A.3)

X =
fyd(As −A

′

s)

ληfcdb
(A.4)

After that, the tension and compression steel strains are
evaluated from (A.5) and (A.6) respectively, that were derived
in the first place form the triangulation of the strain distribution
assumed in Fig. A.1.

εs = εcu3(
d

X
− 1) ≤ fyd

Es
(A.5)

ε
′

s = εcu3(1−
d

′

X
) ≤ fyd

Es
(A.6)

If the resulted strain in one of them or both, (A.5) and (A.6),
is less than the yield strain it means that the acting forces on
the cross-section are not in equilibrium; the first assumption is
violated. Attempt two is required, where the general solution
is described by (A.7), and varies as described in the following
cases:

X =

√
A+B + C +D + E + F

2ληbfcd
(A.7)

– Only the strain of the compression reinforcement yielded.
In this case, the tension force, T , in steel must be
modified in (A.1) to be T = AsEsεs, and by solving
for the neutral axis depth, the coefficients A→ F of the
general real positive root are depicted in (A.8) to (A.13);

A = A
′2
s f

2
yd (A.8)

B = 2000A
′

sAsEsfydεcu3 (A.9)

C = 106A2
sE

2
s ε

2
cu3 (A.10)

D = 4000ληbdfcdAsEsεcu3 (A.11)

E = −103AsEsεcu3 (A.12)

F = −A
′

sfyd (A.13)
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TABLE B.1
PARAMETER SETTINGS FOR THE MODIFIED AND STANDARD PSFHS

Parameter Assigned value

MaxItr 300, 000
HMCRi 0.45
HMCRmax 0.99
PARi 0.5
PARmin 0.05
HMS 25
m 3.0
ξ 1.0

– Only the strain in tension reinforcement yielded. In this
case, the compression force in steel, Cs, must be modified
in (A.3) to be Cs = A

′

sEsε
′

s and (A.14) to (A.19) describe
the coefficients to find the real positive root of (A.7);

A = A
′2
s E

2
s ε

2
cu3 (A.14)

B = −2000A
′

sAsEsfydεcu3 (A.15)

C = A2
sf

2
yd (A.16)

D = 4000ληbd
′
fcdA

′

sEsεcu3 (A.17)

E = Asfyd (A.18)

F = −103A
′

sEsεcu3 (A.19)

– Both steel strains do not yield. This case is considered
impractical and out of the scope of this paper, besides,
a well-controlled design algorithm can skip such a case
easily.

Note that (A.7) to (A.19) have been derived where the input
units for stresses are in MPa, hence fcd and fyd, and the
moduli of elasticity are expressed in GPa. In addition, the
provided areas for both tension and compression reinforce-
ments are in mm2 and all the geometrical dimensions such as
b, d and d

′
are in mm. Eventually the resulting depth of the

neutral axis was declared in mm.

APPENDIX B: SMALL-SCALE BENCHMARKING

In this section, a small-scale benchmarking was used to
compare the modified PSFHS with the Original Harmony
Search (OHS) algorithm [7], the standard PSFHS [21] and
Cuckoo Search (CS) Algorithm [38]. For this purposes, stan-
dard Schwefel function (see [39], [40]) has been chosen with
100 design variables (dimensions).

First, both the standard PSFHS and the proposed modified
PSFHS have been compared (refer to Table B.1) to see the pa-
rameters setting. Figure B.1 reveals a comparison between the
modified PSFHS and standard PSFHS algorithms in solving
the Schwefel function.

Elaborately, the modified PSFHS result for 10 independent
runs was −40, 180.400 ± 229.672, and the best achieved
answer was −40, 510.588. Note that the exact answer of the

TABLE B.2
ORIGINAL HARMONY SEARCH (OHS) ADJUSTMENTS

HMS HMCR PAR Iteration Best fitness

40

0.970 0.25

300,000

−25, 900.61
0.980 0.20 −29, 666.42
0.990 0.15 −34, 008.81
0.995 0.10 −37, 891.24

TABLE B.3
CUCKOO SEARCH ALGORITHM (CS) ADJUSTMENTS

Nests Rate of Number of Number of Fitness
number discovery generations evaluations

100

0.10

1, 508 300, 092 −22, 874.83
70 2, 159 300, 102 −22, 444.24
50 3, 031 300, 070 −22, 718.47
30 5, 084 300, 016 −21, 827.67
10 15, 790 300, 011 −23, 041.04
10 0.01 15, 790 300, 011 −24, 326.99
5 0.10 33, 334 300, 006 −23, 101.69

function, using 100 dimensions, is −41, 898.290. Regarding
the standard PSFHS, the overall result was −17, 202.608 ±
1, 870.637, and the best run scored was 20, 091.100.

The OHS has been tested and adjusted accordingly to solve
this problem. Table B.2 explains different solutions obtained
with different adjustments and evaluations, where it functioned
potentially better than the standard PSFHS for the same
problem size.

Finally, the CS algorithm has been used to solve the same
problem in this section. Fine-tuning has been implemented
to obtain the best answer using different generation numbers
in order to keep the number of computational efforts nearly
equal and to get a sounds-fair comparison. Table B.3 shows
the different results obtained with different settings.

APPENDIX C: MISCELLANEOUS RESULTS

In this section, the results of the fourth design case have
been shown in detail. Figure C.1 illustrates the ultimate
and serviceability envelopes as per the Eurocodes [22], [23],
[41], [42], [43], while Table C.1 explains the results of the
maximum deflection for each span taking into account the
shrinkage and creep effects for long term time-spans.

REPLICATION OF RESULTS

The datasets generated during the current study are not
publicly available due to the dependency of such algorithms on
the time seeds used by the pseudo-random number generator

TABLE C.1
DESIGN CASE (4) – THE FINAL DEFLECTION RESULTS OBTAINED

Span No. Mid-span deflection [mm]

1 6.811
2 −3.569∗∗
3 0.640

* Numbering starts from the left span to the right span.
** Flipped sign due to the shrinkage effects
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Fig. C.1. Design case (4) – Ultimate Limit State (ULS) and Serviceability Limit States (SLS) envelops

to generate the results. However, we published C++14, Python
3.7 and Matlab codes that allow the reader to reproduce and
replicate the results of the Schwefel function, refer to Ap-
pendix B. The complete manuscripts, source codes, that were
generated during the current study are not publicly available;
they could be subjected to commercial copyrights soon, yet
they are available from the corresponding author as per rea-
sonable request. The abovementioned codes shall be found on
the online repository: https://doi.org/10.5281/zenodo.2573261
(see [44]).
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