D. Atlas, R. C. Srivastava, and R. S. Sekhon, Doppler radar characteristics of precipitation at vertical incidence, Reviews of Geophysics, vol.11, pp.1-35, 1973.

L. Barthes and C. Mallet, Vertical evolution of raindrop size distribution: Impact on the shape of the DSD, Atmospheric Research, vol.119, pp.13-22, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00619522

M. I. Biggerstaff and R. A. Houze, Kinematic and precipitation structure of the 10-11 June 1985 squall line, Mon. Wea. Rev, vol.119, pp.3034-3064, 1991.

M. I. Biggerstaff and R. A. Houze, Kinematics and microphysics of the transition zone of the 10-11 June 1985 squall line, J. Atmos. Sci, vol.50, pp.3091-3110, 1993.

U. Blahak, RADAR MIE LM and RADAR MIELIB -Calculation of radar reflectivity from model output, vol.150, p.pp, 2007.

S. A. Braun and R. A. Houze, The Transition Zone and Secondary Maximum of Radar Reflectivity behind a Midlatitude Squall Line: Results Retrieved from Doppler Radar Data, Journal of Atmospheric Sciences, vol.51, pp.2733-2755, 1994.

S. A. Braun, R. A. Houze, J. , and M. Yang, Comments on 'The Impact of the Ice Phase and Radiation on a Midlatitude Squall Line System, J. Atmos. Sci, vol.53, pp.1343-1351, 1996.

V. N. Bringi, L. Tolstoy, M. Thurai, and W. A. Petersen, Estimation of Spatial Correlation of Drop Size Distribution Parameters and Rain Rate Using NASA's S-Band Polarimetric Radar and 2D Video Disdrometer Network: Two Case Studies from MC3E, J. Hydrometeor, vol.16, pp.1207-1221, 2015.

V. N. Bringi, C. R. Williams, M. Thurai, and P. T. , Using Dual-Polarized Radar and Dual-Frequency Profiler for DSD Characterization: A Case Study from Darwin, Australia. J. Atmos. Oceanic Technol, vol.26, p.2107, 2009.

G. H. Bryan and H. Morrison, Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics, Mon. Wea. Rev, vol.140, pp.202-225, 2012.

F. Chen and J. Dudhia, Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Wea. Rev, vol.129, pp.569-585, 2001.

R. Cifelli, C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage et al., Drop-Size Distribution Characteristics in Tropical Mesoscale Convective Systems, J. Appl. Meteor, vol.39, pp.760-777, 2000.

D. T. Dawson, M. Ii, J. A. Xue, M. K. Milbrandt, and . Yau, Comparison of Evaporation and Cold Pool Development between Single-Moment and Multimoment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms, Monthly Weather Review, vol.138, pp.1152-1171, 2010.

D. P. Dee and C. , The era-interim reanalysis: configuration and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc, vol.137, issue.656, pp.553-597, 2011.

J. Dudhia, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci, vol.46, pp.3077-3107, 1989.

J. Fan and C. , Cloud-resolving model intercomparison of an MC3E squall line case: Part I, Convective updrafts, Journal of Geophysical Research (Atmospheres), vol.122, pp.9351-9378, 2017.

G. Feingold, R. Walko, B. Stevens, and W. Cotton, Simulations of marine stratocumulus using a new microphysical parameterization scheme, Atmospheric Research, pp.505-528, 1998.

B. Ferrier, A double-moment multiple-phase four-class bulk ice scheme. part i: Description, Journal of the Atmospheric Sciences, vol.51, issue.2, pp.249-280, 1994.

C. Flynn, H. Sivaraman, J. Michelsen, R. Goldsmith, R. Bambha et al., Atmospheric Radiation Measurement (ARM) Climate Research Facility. Raman Lidar Mixing Ratio (RLPROFMR2NEWS10M), 2011.

L. Facility and O. , Accessed, Dataset available online from ARM Climate Research Facility Data Archive, pp.2012-2013

S. E. Giangrande, E. P. Luke, and P. Kollias, Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities, J. Appl. Meteor. Climatol, vol.51, pp.380-391, 2012.

M. Grecu, W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao et al., The GPM Combined Algorithm. Journal of Atmospheric and Oceanic Technology, vol.33, pp.2225-2245, 2016.

S. Hong, Y. Noh, and J. Dudhia, A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev, vol.134, issue.9, pp.2318-2341, 2006.

R. A. Houze, Cloud dynamics, vol.573, p.pp, 1993.

Z. Hu and R. Srivastava, Evolution of raindrop-size distribution by coalescence, breakup and evaporation: Theory and observation, J. Atmos. Sci, vol.52, issue.10, pp.1761-1783, 1995.

A. L. Igel, M. R. Igel, S. C. Van-den, and . Heever, Make it a double? Sobering results from simulations using single-moment microphysics schemes, J. Atmos. Sci, vol.72, pp.910-925, 2015.

A. A. Jensen, J. Y. Harrington, and H. Morrison, Microphysical Characteristics of SquallLine Stratiform Precipitation and Transition Zones Simulated Using an Ice Particle PropertyEvolving Model, Monthly Weather Review, vol.146, pp.723-743, 2018.

M. P. Jensen and C. , The Midlatitude Continental Convective Clouds Experiment (MC3E), vol.97, pp.1667-1686, 2016.

P. A. Jiménez, J. Dudhia, J. F. González-rouco, J. Navarro, J. P. Montávez et al., A revised scheme for the WRF surface layer formulation, Mon. Wea. Rev, vol.140, pp.898-918, 2012.

E. Kessler, On the continuity and distribution of water substance in atmospheric circulations, Meteor. Monogr, vol.10, pp.1-84, 1969.

P. Kirstetter, J. J. Gourley, Y. Hong, J. Zhang, S. Moazamigoodarzi et al., Probabilistic precipitation rate estimates with ground-based radar networks, Water Resour. Res, vol.51, pp.1422-1442, 2015.

L. R. Koenig and F. W. Murray, Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations, Journal of Applied Meteorology, vol.15, issue.7, pp.747-762, 1976.

P. Kollias, B. Albrecht, and F. Marks, Why Mie? Accurate Observations of Vertical Air Velocities and Raindrops Using a Cloud Radar, Bull. Amer. Meteor. Soc, vol.83, pp.1471-1483, 2002.

S. E. Lang, W. Tao, X. Zeng, and Y. Li, Reducing the Biases in Simulated Radar Reflectivities from a Bulk Microphysics Scheme: Tropical Convective Systems, Journal of Atmospheric Sciences, vol.68, pp.2306-2320, 2011.

R. Lhermitte, Attenuation and Scattering of Millimeter Wavelength Radiation by Clouds and Precipitation, J. Atmos. Oceanic Technol, vol.7, pp.464-479, 1990.

A. M. Loftus, W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation, Atmospheric Research, vol.149, pp.35-57

M. Maki, T. D. Keenan, Y. Sasaki, and K. Nakamura, Characteristics of the Raindrop Size Distribution in Tropical Continental Squall Lines Observed in Darwin, Australia. J. Appl. Meteor, vol.40, pp.1393-1412, 2001.

S. L. Mason, J. C. Chiu, R. J. Hogan, and L. Tian, Improved rain rate and drop size retrievals from airborne Doppler radar. Atmospheric Chemistry & Physics, vol.17, pp.567-578, 2017.

J. H. Mather and J. W. Voyles, The ARM Climate Research Facility: a review of structure and capabilitiess, vol.94, pp.377-392, 2013.

A. Matthews, B. Isom, D. Nelson, I. Lindenmaier, J. Hardin et al., Atmospheric Radiation Measurement (ARM) Climate Research Facility. WBand, p.95, 2005.

. Ghz, ARM Cloud Radar (WACR), 2011.

, Dataset available online from ARM Climate Research Facility Data Archive, pp.2013-2019

A. Matthews, B. Isom, D. Nelson, I. Lindenmaier, J. Hardin et al., Atmospheric Radiation Measurement (ARM) Climate Research Facility. Ka ARM Zenith Radar (KAZRGE), Dataset available online from ARM Climate Research Facility Data Archive, 2011.

G. M. Mcfarquhar, A New Representation of Collision-Induced Breakup of Raindrops and Its Implications for the Shapes of Raindrop Size Distributions, J. Atmos. Sci, vol.61, pp.777-794, 2004.

J. A. Milbrandt and R. Mctaggart-cowan, Sedimentation-Induced Errors in Bulk Microphysics Schemes, J. Atmos. Sci, vol.67, pp.3931-3948, 2010.

E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res, vol.102, pp.663-679, 1997.

H. Morrison and J. Milbrandt, Comparison of Two-Moment Bulk Microphysics Schemes in Idealized Supercell Thunderstorm Simulations, Mon. Wea. Rev, vol.139, pp.1103-1130, 2011.

H. Morrison, J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf et al., Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties, 2015.

I. I. Part, Case Study Comparisons with Observations and Other Schemes, J. Atmos. Sci, vol.72, pp.312-339

H. Morrison, S. A. Tessendorf, K. Ikeda, and G. Thompson, Sensitivity of a Simulated Midlatitude Squall Line to Parameterization of Raindrop Breakup, Mon. Wea. Rev, vol.140, pp.2437-2460, 2012.

H. Morrison, G. Thompson, and V. Tatarskii, Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes, Mon. Wea. Rev, vol.137, pp.991-1007, 2009.

P. Muradyan and R. Coulter, Atmospheric Radiation Measurement (ARM) Climate Research Facility. Radar Wind Profiler (915RWPPRECIPMOM), Dataset available online from ARM Climate Research Facility Data Archive, pp.2012-2013, 1998.

C. Planche, F. Tridon, S. Banson, M. Monier, A. Battaglia et al., On the realism of the rain microphysics representation of a squall line in the WRF model. Part II: Sensitivity studies on the raindrop size distributions, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02132274

C. Planche, W. Wobrock, and A. I. Flossmann, The continuous melting process in a cloudscale model using a bin microphysics scheme, Quarterly Journal of the Royal Meteorological Society, vol.140, 1986.
URL : https://hal.archives-ouvertes.fr/hal-01893484

C. K. Potvin, A. Shapiro, and M. Xue, Impact of a Vertical Vorticity Constraint in Variational Dual-Doppler Wind Analysis: Tests with Real and Simulated Supercell Data, Journal of Atmospheric and Oceanic Technology, vol.29, pp.32-49, 2012.

A. V. Ryzhkov, The Impact of Beam Broadening on the Quality of Radar Polarimetric Data, J. Atmos. Oceanic Technol, vol.24, p.729, 2007.

A. Shapiro, C. K. Potvin, and J. Gao, Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis, Journal of Atmospheric and Oceanic Technology, vol.26, p.2089, 2009.

W. C. Skamarock and C. , A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, vol.125, p.pp, 2008.

P. L. Smith, Equivalent Radar Reflectivity Factors for Snow and Ice Particles, Journal of Applied Meteorology, vol.23, pp.1258-1260, 1984.

J. Testud, S. Oury, R. A. Black, P. Amayenc, and X. Dou, The Concept of 'Normalized' Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing, J. Appl. Meteor. Climatol, vol.40, pp.1118-1140, 2001.

D. D. Turner, R. A. Ferrare, L. A. Brasseur, W. F. Feltz, and T. P. Tooman, Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar, J. Atmos. Oceanic Technol, vol.19, pp.37-50, 2002.

D. D. Turner and J. E. Goldsmith, Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program's 1996 and 1997 Water Vapor Intensive Observation Periods, J. Atmos. Oceanic Technol, vol.16, p.1062, 1999.

D. D. Turner, J. E. Goldsmith, and R. A. Ferrare, Development and Applications of the ARM Raman Lidar. Meteorological Monographs, vol.57, 2016.

R. Uijlenhoet, M. Steiner, and J. A. Smith, Variability of Raindrop Size Distributions in a Squall Line and Implications for Radar Rainfall Estimation, J. Hydrometeor, vol.4, pp.43-61, 2003.

K. Van-weverberg, A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, Sensitivity of Idealized Squall-Line Simulations to the Level of Complexity Used in Two-Moment Bulk Microphysics Schemes, Mon. Wea. Rev, vol.140, pp.1883-1907, 2012.

A. Varble and C. , Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties, Journal of Geophysical Research, p.13, 2014.

A. Varble and C. , Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics, Journal of Geophysical Research, p.13, 2014.

U. Wacker and A. Seifert, Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description, Atmos. Res, vol.58, pp.19-39, 2001.

R. L. Walko, W. R. Cotton, M. P. Meyers, and J. Y. Harrington, New RAMS cloud microphysics parameterization part I: the single-moment scheme, Atmospheric Research, vol.38, pp.29-62, 1995.

C. R. Williams, Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions, J. Atmos. Oceanic Technol, vol.33, pp.579-595, 2016.

C. R. Williams and C. , Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters, Journal of Applied Meteorology and Climatology, vol.53, pp.1282-1296, 2014.

D. R. Wilson and S. P. Ballard, A microphysically based precipitation scheme for the UK Meteorological Office Unified Model, Quart. J. Roy. Meteor. Soc, vol.125, pp.1607-1636, 1999.

D. R. Wilson, A. J. Illingworth, and T. M. Blackman, Differential Doppler Velocity: A Radar Parameter for Characterizing Hydrometeor Size Distributions, J. Appl. Meteor, vol.36, pp.649-663, 1997.

L. Xue and C. , Idealized Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic Structure, Monthly Weather Review, vol.145, pp.4789-4812, 2017.