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Abstract

In order to model brittle fracture, we have implemented a two and three di-
mensional phase-field method in the commercial finite element code Abaqus/Standard.
The method is based on the rate-independent variational principle of diffuse
fracture. The phase-field is a scalar variable between 0 and 1 which connects
broken and unbroken regions. If its value reaches one the material is fully
broken, thus both its stiffness and stress are reduced to zero. The elastic
displacement and the fracture problem are decoupled and solved separately
as a staggered solution.

The approach does not need predefined cracks and it can simulate curvi-
linear fracture paths, branching and even crack coalescence. Several examples
are provided to explain the advantages and disadvantages of the method. The
provided source codes and the tutorials make it easy for practicing engineers
and scientists to model diffuse crack propagation in a familiar computational
environment.

Keywords: Brittle fracture, Crack propagation, Abaqus UEL, Phase-field,
Staggered solution, Finite element method

1. Introduction

Fracture is one of the main failure modes for engineering materials. How-
ever, most of the time design codes apply large safety factors to avoid its
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manifestation. Additionally, to the devastating consequence of a brittle fail-
ure, their evolution is difficult to study in practice. Therefore, predicting the
initiation and the propagation path of a fracture is of great importance for
practicing engineers and scientists.

The original theory to understand brittle crack evolution was introduced
first by Griffith [1], then a new metric, called the stress intensity factor,
was proposed by Irwin [2] to account for the microscopic plasticity near the
crack tip, even for macroscopically brittle materials [3, 4]. They considered
crack propagation as a stability problem: if the energy release rate reaches
a critical value, the crack is able to open. The original theory describes
crack propagation adequately, but it is insufficient to account for initiation,
curvilinear crack paths, benching or coalescence.

Nowadays several methods are available to model crack propagation in
solids. These methods can be categorized into two major groups depending
on how they account for the supposed discontinuity: discrete or diffuse. Using
discrete methods, such as node splitting [5], cohesive surfaces [6], hybrid
discrete and finite element methods [7], the crack can only propagate between
elements, therefore its path is strongly mesh dependent. This problem was
overcome by the group of T. Belytschko [8, 9] using a local enrichment in
the shape functions of a finite elements (XFEM), as well as by Grüses and
Miehe [10] with a configurational-force-driven sharp fracture front.

The second group of fracture modeling assumes that the discontinuity
in the material is not sharp, but can be interpreted as a smeared damage.
This theory led to the development of the phase-field model [11, 12]. This
way, the weakness of the original approach of Griffith can be overcome by a
variational approach based on energy minimization, as proposed by several
authors [13, 14, 15, 16, 17]. These approaches introduce a regularized sharp
crack taken into account by an auxiliary scalar damage variable. This vari-
able is considered as a phase-field establishing the connection between intact
and broken materials.

Over almost a decade this method has gained significant visibility due
to its flexible implementation. Besides the work of Msekh et al. [18], mostly
in-house softwares were developed to model fracture with phase-fields. Unfor-
tunately, the aforementioned paper neglects to reproduce the results of most
of the previous implementations [12], and its source code is not available.

In this paper we give a fully functional implementation as an Abaqus/Standard
UEL [19] of the phase-field model [20] to study the quasi-static evolution of
brittle fracture in elastic solids. Additionally, as a supplementary material
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the source code for the UEL and several examples are provided. Our purpose
is to make the diffuse crack propagation scheme widely available not only for
numerical scientists, but for practical applications and design engineers as
well.

Furthermore, the provided source codes can be easily developed to ac-
count for dynamical effects [21], large deformations [22], path-following [23]
or multi-physics problems [24, 25]. One of the major advantage of present
implementation, is that no additional updates and softwares are necessary,
but only the widely available Abaqus/Standard [19] package and a FOR-
TRAN compiler. It can fit into any existing platform and can be parallelized
easily.

The quasi-static simulation of brittle fracture phase-field problem is solved
using a staggered algorithm [20]. This approach decouples the elastic and the
fracture problem. The strategy has proven to been computationally efficient
and extremely robust. However, to reach an accurate solution the step size
should be chosen carefully.

Our results compare favorably with the originally developed algorithm [20],
as well as with other methods. We provide several examples both with the
Abaqus input and FORTRAN files for better understanding and further de-
velopment. The implementation contains 2D plane strain and 3D cases as
well.

The paper is structured as follows. In Section 2 the difference between
sharp and diffuse (phase-field) crack is explained. Then the coupling between
the elastic solution and the phase-field problem is unfolded. Finally the
staggered solution and its finite element implementation are given. Section 3
gives numerous examples and benchmark tests to validate and understand
the simulation process. We also highlight the effect of most of the numerical
parameters, such as the time step, length scale parameter or even mesh
density. Finally in Appendix B a detailed description is given to guide the
users in the development of their own models.

2. Methods

2.1. Phase field approximation of diffuse crack topology

To introduce the concept of a diffuse crack topology, let us consider an
infinite one directional bar aligned along the x axis with a cross section Γ
(see Fig. 1a). Let us assume a fully opened crack at x = 0. If function d(x)
describes the damage, a sharp crack shown in Fig. 1b is a Dirac delta function.
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Figure 1: a) 1D bar with a crack at the middle with the cross section Γ. b) Phase-field
for sharp crack at x = 0. c) Diffuse crack at x = 0 modeled with function (1) and length
scale parameter lc.

Its value is zero everywhere except at x = 0, where d(0) = 1. Variable d(x) is
the crack phase-field function. If its value is zero, the material in unbroken,
if its value reaches 1, it is fully broken.

Following the idea that the crack itself is not a discrete phenomenon,
but initiates with micro-cracks and nano-voids, we introduce an exponential
function to approximate the non-smooth crack topology:

d (x) = e−|x|/lc , (1)

where lc is the length scale parameter and d(x) represents the regularized
or diffuse crack topology. Basically, with this idea the sharp crack is diffused
as shown in Fig. 1c. By lc → 0 the sharp case is recovered. Function (1) has
the property d (0) = 1 and at the limits d (±∞) = 0.
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It is the solution for the homogeneous differential equation [12]:

d (x)− l2cd′′ (x) = 0 in Ω, (2)

subject to the Dirichlet-type boundary condition shown above. The vari-
ational principle of strong form (2) can be written as:

d = Arg

{
inf
d∈W

I (d)

}
, (3)

where

I (d) =
1

2

∫
Ω

(
d2 + l2cd

′2
)
dV , (4)

and W = {d|d (0) = 0, d (±∞) = 0}. Now observe that the integration
over volume dV = Γdx gives I

(
d = e−|x|/lc

)
= lcΓ. Thus, the fracture surface

is related to the crack length parameter. As a consequence, we may introduce
a fracture surface density with the help of the phase-field function by:

Γ (d) =
1

lc
I (d) =

1

2lc

∫
Ω

(
d2 + l2cd

′2
)
dV =

∫
Ω

γ (d, d′) dV , (5)

where γ (d, d′) is the crack surface density function in 1D. Similarly, in
multiple dimensions it can be expressed as:

γ (d,∇d) =
1

2lc
d2 +

lc
2
|∇d|2. (6)

It can be seen that the gradient of the phase-field plays a significant role
in the description.

2.2. Strain energy degradation in the fracturing solid

To couple the fracture phase-field with the deformation problem, we can
write the potential energy of a solid body as:

Πint = E (u, d) +W (d) , (7)

where E (u, d) is the strain and W (d) is the fracture energy. Let Ω ⊂ Rδ,
be the reference configuration of a material body with dimension δ ∈ [1− 3],
and ∂Ω ⊂ Rδ−1 its surface. The crack and the displacement field is studied in
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the range of time T ⊂ R. Consequently we can introduce the time dependent
crack phase-field:

d :

{
Ω× T → [0, 1]

(x, t)→ d (x, t) .
(8)

and the displacement field:

u :

{
Ω× T → Rδ

(x, t)→ u (x, t) .
(9)

In equation (7), the internal potential can be written:

E (u, d) =

∫
Ω

ψ (ε (u) , d) dV , (10)

where ψ (ε, d) is the potential energy density:

ψ (ε, d) = g (d) · ψ0 (ε) . (11)

ψ0 (ε) is the elastic strain energy and g (d) is a parabolic degradation
function: g (d) = (1− d)2 + k and k is a small number responsible for the
stability of the solution [12]. In this work we do not consider anisotropic
energy degradation [12] (or sometimes refereed to as asymmetric tension and
compression energy release), because the examples are primarily tensile stress
dominant and no crack closure is modeled. However, there are several meth-
ods, which can be used to develop the provided source codes to take the
positive (tensile) and negative (compression) energy into account. One of
the first study, which decomposed the potential energy into two parts was
published by Miehe et al. [12]. After the spectral decomposition of the strain
tensor [26], they have assumed that the positive eigenvalues (with the corre-
sponding basis) contribute to the tensile energy as the negative ones to the
compression energy. The greatest disadvantage of this approach is that due
to the asymmetric degradation (history effect) in the energies, the summation
of the positive and negative part creates an unsymmetrical stiffness matrix,
which is computationally much more expensive than a symmetric one. Moës
et al. [27] proposed a different decomposition, which results in symmetrical
constitutive relations. However, the stiffness tensor is still dependent upon
the spectral decomposition and thus upon the applied strain. This causes
the initially linear problem to become highly non-linear. To overcome this
problem, a Newton-type solver with a constant tangent matrix during the
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same load step can be helpful. In this paper our aim is to give a clear and
transparent code which can then be developed either with anisotropic energy
degradation [12], dynamic fracture [21] or crack tip enrichment [23], therefore
mostly isotropic energy degradation is considered.

Assuming linear elasticity in the unbroken solid, the elastic energy density
can be calculated as follows:

ψ0 (ε) =
1

2
εTC0ε, (12)

where C0 is the materials linear elastic stiffness matrix (in Voigt nota-
tion), and ε if the vector containing the strain components. It is calculated

using small strain theory: ε = 1
2

[
(∇u)T +∇u

]
, where u is the vector of

displacements.
Due to damage, the elastic energy is degraded with function g (d). By cal-

culating its first derivative with respect to the strain tensor (Cauchy stress):

σ = g (d) · σ0 =
[
(1− d)2 + k

]
· σ0 =

[
(1− d)2 + k

]
·C0ε. (13)

it can be seen, that similarly to the energy, g (d) has a direct effect on it
as well. Finally the same can be written for the stiffness:

C = g (d) ·C0. (14)

As a result, it is clear that the damage variable, represented by the phase-
field, directly affects the stress and the stiffness of the material. If its value
reaches one, no stress or stiffness will be found in the element.

The second term in equation (7) stands for the energy due to fracture
and can be calculated as:

W (d) =

∫
Ω

gcγ (d,∇d) dV (15)

where W is the sum of all the fracture surfaces multiplied by gc, the
critical energy release rate.

After the internal potential energy, the external component can also be
formulated as follows:

Πext = P (u) =
∫

Ω
γ · udV +

∫
∂Ω

t · udA (16)

where γ and t are respectively the prescribed volume and boundary forces.
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Figure 2: Illustration of the split scheme phase-field problem in elastic solids.

2.3. Staggered solution for phase-field fracture

For problems, where unstable crack propagation is present the static
monolithic solution [12] tends to become numerically unstable as well. When
the crack starts to propagate, due to the newly degraded stiffness matrix, the
internal stress field rearranges [20, 23] and the implicit solver stumbles to find
a stable equilibrium solution.

In order to have a stable implicit formulation the solution is decoupled
as follows.

The schematic illustration of the split scheme is shown in Fig. 2. The
problem can be split into two quasi independent minimization procedures.
First we can write the functional to solve the fracture topology:

Πint ' Πd =

∫
Ω

[
gcγ (d,∇d) + (1− d)2H

]
dV (17)
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where we use a so-called history variable:

H =

{
ψ0 (ε) ifψ0 (ε) > Hn

Hn otherwise,
(18)

where Hn is the previously calculated energy history at step n. This field
weakly couples the displacement and phase-field. Furthermore it enforces
the irreversibility of the damage (ḋ ≥ 0). Thus, the history field satisfies the
Karush–Kuhn–Tucker conditions [23]:

ψ0 −H ≤ 0, Ḣ ≥ 0, Ḣ (ψ0 −H) = 0, (19)

both for loading and unloading, therefore no penalty term is necessary in
contrast to the monolithic scheme [12].

Then with a fixed d, the displacement field is calculated:

E (u, d)− Πext ' Πu =

∫
Ω

[ψ (u, d)− γ · u]dV −
∫
∂Ω

t · udA (20)

By taking the variation of both energies (δΠd = 0, δΠu = 0), the corre-
sponding Eulerian equations can be written (strong form) for the displace-
ment:

δΠu = 0 ∀δu→ ∇σ − γ = 0 in Ω
σ · n = t on ΓN
u = u on ΓD,

(21)

and phase-field problems:

δΠd = 0 ∀δd→ gc
lc

(d− l2c∆d) = 2 (1− d)H in Ω

∇d · n = 0 in Γ,
(22)

where σ is the Cauchy stress tensor.
Further information about the mathematical theory on the monolithic [12]

and decoupled [20] problems can be found in previous works of Miehe et al.

2.4. Finite element discretization in Abaqus/UEL

The staggered method is implemented in an Abaqus user defined element
(UEL). Using a split scheme operator, the former two minimization problems
are solved separately.
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Based on the quantities at time tn (e.g. energy history), a new phase-field
is calculated at tn+1:

dn+1 = Arg

{
inf
d

∫
Ω

[
gcγ (d,∇d) + (1− d)2H

]
dV

}
, (23)

where the history field (H) is calculated according to eq (18). With
a Newton-Raphson nonlinear solver, the associated linear equation can be
solved in close form [20]:

Kd
ndn+1 = −rdn, (24)

where dn+1 is the unknown vector containing the new phase-field values
of each integration point. rdn is the residue and Kd

n is the tangent stiffness at
time tn.

To calculate the displacement field at tn+1 the phase-field value is used
from time tn:

un+1 = Arg

{
inf
u

∫
Ω

[ψ (u, dn)− γ · u]dV −
∫
∂Ω

t · udA
}
. (25)

In equation (25) γ, t and u are the prescribed Neumann and Dirichlet
boundaries at time tn+1. Similarly to the phase-field, this problem can also
be solved by a simple linearization:

Ku
nun+1 = −run. (26)

All the corresponding residue vectors and stiffness matrices can be found
in Appendix A.

To implement the solution in Abaqus two element types are used in a
layered manner. Each layer connects at the same nodes, but contributes to
the stiffness of different degrees of freedom (DOF). A schematic illustration
is depicted in Fig. 3. The first element type has only one DOF (phase-field).
The second element type (displacement) contributes to two or three DOF
(translational) depending on the dimensionality. In all cases isoparametric
elements are used with 4 nodes (2D) and 8 nodes (3D).

In order to visualize the calculated quantities in Abaqus a third layer is
added with infinitesimally small stiffness made from a UMAT (user defined
material model) [18]. It is used to transfer information from the common
block and interpolate between integration points. The internal variables are
summarized in Tab. 1 for both 2D plane strain and 3D elements.
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Figure 3: 2D representation of three layered finite element structure in Abaqus. All nodes
have three degrees of freedom (DOF). The first element contributes to the stiffness of
the 3rd, the second element to the 1st and 2nd DOF. For post processing purposes a
third layer is included made as a UMAT model, which allows to display state dependent
variables (SDVs), where the properties are updated from the other two elements. The
same approach is applied for the 3D element: the phase-field element has one, and the
displacement layer has 3 DOF.

Variable Number of SDV in Abaqus

2D (x, y) 3D (x, y, z)

Displacement (stress-strain) element

displacement - ux, uy, uz SDV1-SDV2 SDV1-SDV3
axial strains - εx, εy, εz SDV3-SDV4 SDV4-SDV6
engineering shear strain - γxy, γxz, γyz SDV5 SDV7-SDV9
axial stress - σx, σy, σz SDV6-SDV7 SDV10-SDV12
shear stress - τxy, τxz, τyz SDV8 SDV13-SDV15
elastic axial stress - σx,0, σy,0, σz,0 SDV9-SDV10 SDV16-SDV18
elastic shear stress - τxy,0, τxz,0, τyz,0 SDV11 SDV19-SDV21
strain energy - ψ SDV12 SDV22
elastic strain energy - ψ0 SDV13 SDV23
phase-field - d SDV14 SDV24

Phase-field element

phase-field - d SDV15 SDV25
history field - H SDV16 SDV26

Table 1: Solution dependent variables used to plot the results in two and three dimensions.
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Figure 4: Flowchart of the staggered solution used to implement the coupled displacement-
phase-field solution in Abaqus.

The staggered scheme is implemented so that the two elements are con-
nected through only the common block, thus with a Newton-Raphson method
the following equation system is solved iteratively:[

Kd
n 0
0 Ku

n

] [
dn+1

un+1

]
= −

[
rdn
run

]
(27)

In the first iteration at every load step the history and the phase-field
is updated for the phase- and displacement field elements. The phase-field
problem is solved based on (Hn+1 = ψ0,n), and displacement is based on the
phase-field value taken from the end of the previous step (dn). In Fig. 4 a
flowchart shows the basic iteration process.

This solution is slightly different from the staggered scheme proposed by
Miehe et al. [20], however it slows down and stabilizes the crack propagation
even further. Additional comparison will be given later.

Based on a simple example, Appendix B gives a detailed explanation on
how to develop and post-process a model using the newly provided UEL.

3. Benchmark tests and numerical examples

Starting with the simplest case where we compare different methods for
one element (analytic, monolithic, staggered), more and more complex cases
are introduced. Finally a 3D single notch mode I specimen ends the section.
In all cases the relevant numerical parameters are summarized, then the
results are shown and interpreted. In all 2D (plane strain) cases the thickness
of the element is 1 mm. The mesh is densified where the crack is expected
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to propagate, the size is specified in the text and the mesh is shown in some
of the figures. According to the results of Miehe et al. [12] the length scale
parameter (lc) is always taken two times larger than the smallest element
around the crack path.

3.1. One element

One 2D plane strain element is the simplest case, where the phase-field
model can be understood. In Fig. 5 the boundary conditions and the geom-
etry are shown. The dimensions of the element are 1× 1 mm in both x and
y direction. The bottom nodes are constrained in both directions, whereas
we allow the top nodes to slide vertically.

The Young’s modulus of the specimen is set to E = 210 kN/mm2 and
the Poisson’s ratio to ν = 0.3. The critical energy release rate is gc =
5 · 10−3 kN/mm and the length scale parameter is lc = 0.1 mm. It needs
to be noted that we violate our initial criteria concerning the relationship
between the mesh size and lc, thus the theoretical fracture surface in not
recovered adequately. Nevertheless, in this section it is not our aim to show
actual fracture patterns, only the elementary solution of eq. (23) and (25).
The deformation is applied in 1000 × ∆uy steps, where ∆uy = 10−4 mm
steps.

The input as well as the source file is available for this example in the first
supplementary directory. The practical details are discussed in Appendix B.

The problem introduced in this section can be solved analytically. Due
to the discretization the gradient in the crack surface vanishes (∇d = 0)
in eq. (23). Therefore, if a simple well determined deformation scheme is
assumed: εy 6= 0, εx = τxy = 0, the stresses and the elastic potential energy
can be calculated directly: σy,0 = c22εy, where c22 is the (2,2) element of the

plane strain stiffness matrix: c22 = E(1−ν)
(1+ν)(1−2ν)

. And finally the elastic energy

can be calculated as: ψ0 = ε2
yc22/2.

Solving the minimization problem shown in eq. (23) for one element, and
assuming a direct coupling between displacement and phase-fields (H = ψ0)
we can show that the damage parameter results in:

d =
2H

gc
lc

+ 2H
=

2ψ0
gc
lc

+ 2ψ0

=
ε2c22

gc
lc

+ ε2c22

. (28)

As well as the y directional axial stress: σy = σy,0(1− d)2.
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Figure 5: a) Axial stress as a function of axial strain for one element subjected to uniaxial
tension. b) Difference between numerically calculated and analytic stress results. c)
Damage phase-field as a function of applied axial strain.
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Fig. 5a shows the axial stress computed by analytical, monolithic (con-
cerning implementation details can be found in Ref. [23]), and two staggered
schemes1. A very good agreement can be found between methods. Also the
black line shows that after a certain damage not just stresses (as shown in
eq. 13), but also the stiffness is degraded: C = (1− d)2 ·C0.

Quantitative comparison between the analytically calculated stresses and
the numerical results are shown in Fig. 5b. It can be seen that the mono-
lithic solution almost perfectly recovers the analytic solution, whereas the
staggered schemes accumulate a small sum of error. This solution compared
to Miehe’s work [20] shows two times larger error, because the variables are
updated only at each time step. In the work of Miehe et al. [20] the dis-
placement field is calculated based on the already determined phase-field.
Unfortunately, in Abaqus the two degrees of freedom cannot be isolated and
solved separately. Despite the observed difference the error is vary small
and by reducing the time step, it can be eliminated. Therefore, we conclude
that both staggered schemes carry the same disadvantage. The error caused
by the deviation can be neglected with respect to the incredible robustness
gained by the methods [23, 20].

Stability problems appear in the monolithic solution, when the crack
starts to propagate and due to the quick stiffness and stress reduction in
a small amount of elements, the initial prediction soon differs markedly from
the solution. Due to the abrupt change in the stiffness the stress needs to
redistribute, and the Newton-Raphson method needs a significant amount
of internal iterations to converge. Of course due to the fact that in a one
element model, no stress redistribution appears, we do not have any stability
problem.

Finally, Fig. 5c shows the governing phase-field as a function of the applied
axial strain. It can be observed that the staggered algorithm satisfies the
irreversibility criterion (ḋ ≥ 0) without any Penalty parameter as used in the
monolithic scheme [12].

3.2. Single edge notched test

Our second benchmark test is the well known single edge notched tensile
and shear sample. The geometry and the boundary conditions are depicted
in Fig. 6a. The bottom side of the rectangular specimen is fixed, while the

1Due to lack of available space the concerning line colors are shown in Fig. 5c
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Figure 6: a) Geometry and boundary conditions of single edge notched specimen. b)
Fracture pattern for unidirectional tension (α = 90◦). c) Fracture pattern for pure shear
deformation (α = 0◦). d) Crack angle (β) as a function of loading direction (α) with linear
fit and the work of Bourdin et al. [16] (variational model).

top side is moved. The stiffness is set to: E = 210 kN/mm2 and ν = 0.3.
Fracture properties are taken identical to Ref. [20] for direct comparison:
lc = 0.0075 mm, gc = 2.7 · 10−3 kN/mm.

The finite element mesh of ≈22 000 elements is used. The region around
the crack path is refined in order to reach the maximum of h = 0.001 mm
mesh size.

Tensile loading is applied by ∆u = 10−4 mm for 500 steps, then ∆u =
10−5 mm to precisely follow the overall propagation. While the shear defor-
mation was applied in ∆u = 10−4 mm for 1000 steps. Then the step size was
reduced similarly to the tensile case to ∆u = 10−5 mm. The change in the
step size is applied to be consistent with the results of Miehe et al. [12, 20].

The fracture pattern for the two limit cases are shown in Fig. 6b and c.
While for the tensile case (α = 90◦), the crack is horizontal, for the pure
shear case we see a curved crack path initiating with a β = 61◦ angle from
the direction of the deformation. The crack pattern is in agreement with
both works of Miehe et al. [12, 20]. As well as by gradually changing α a
linear transition is observed in β. There is excellent agreement with the work
of Bourdin et al. [16] as shown in Fig. 6d.

In Fig. 7a the y directional reaction force is shown for the tensile speci-
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Figure 7: Reaction force for the uniaxial tensile test using different length scale parameters
(lc) along with results by Miehe et al. [12, 20] (symbols).

mens for different length scale parameters (lc) along with previous results by
Miehe et al. [12, 20] are shown next to our results. It can be seen that the
maximum reaction force value is in agreement, only a small deviation in the
propagation period can be observed. Similarly, as it is shown between the
monolithic [12] and staggered scheme [20], the crack propagation calculated
by our solution is slowed down ever further. This result causes no problem,
because these implicit methods carry no dynamic meaning (due to lack of
mass [21]). Additionally, as will be discussed later, by reducing the time step
the solution converges to the monolithic one.

Due to the large size of the input files only a smaller tensile test with
≈ 4000 elements (h = 0.005 mm) is included as supplementary material in
the second folder.

3.3. Symmetric double notched tensile test

Using a double notched specimen shown in Fig. 8a we have studied the
effect of load step and finite element size. The following material properties
are used: E = 210 kN/mm2, ν = 0.3, lc = 0.0075 mm, gc = 2.7 · 10−3

kN/mm.
The sample is meshed randomly with a refined zone at the middle (for

details see Fig. 9a and b). The crack edges and the dotted line are meshed
with h, while the dashed lines with 10h size finite elements. The transition
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Figure 8: a) Geometry and boundary conditions for the double notched specimen. b)
Fracture pattern with ∆u = 10−4 mm. c) Fracture pattern with ∆u = 10−5 mm.

between the different zones are linear. The deformation is applied with a
constant rate using ∆u = 10−6 mm steps.

In Fig. 9c the reaction force is shown as a function of the displacement.
While Fig. 9 part d shows the maximum force as a function h. It can be
seen that there are cases (shown with crosses) which do not fracture until
u = 0.01 mm, therefore the maximum reaction force cannot be defined.
However, if the mesh is densified a gradual convergence appears. Red dashed
line shows the value of lc/2, which was suggested as a minimum elements size
by Miehe et al. [12]. According to their analysis, this is the value, where the
spatial integration of the damage variable recovers sufficiently the analytic
fracture surface. The choice of the length scale parameter was arbitrary in
this case. However, in real materials the crack propagation phenomenon
can be understood as multi-scale damage. In most of the materials (e.g.
bone [28], glasses [29] or even metals [30]) the crack front is not precisely
identifiable. Therefor, it could be possible to define a damage length scale
parameter as a real material property. However, this topic exceeds the aim
of present paper.

The time step has also a significant effect on not only the stress field, but
the governing crack pattern as well. Fig. 8b shows the effect of the random,
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Figure 9: a) Schematic illustration of mesh seed distribution. b) Finite element mesh for
h = 0.001 mm. c) Reaction force as a function of displacement. d) Maximum reaction
force as a function of mesh size (h) (next to each data point the approximate amount of
finite elements are plotted; ”k” stands for thousand).

consequently unsymmetrical mesh. If the time step is not small enough, the
crack appears symmetrically. However, after reducing the load increment -
due to the random mesh - more potential energy gathers at one side, initiating
the crack faster at that notch.

The deviation due to too large load steps is visible in the reaction force
diagram. Thanks to the robustness of the solution, the Newton-Raphson
solver always finds a local equilibrium, however the precision of the solution
remains questionable. In Fig. 10a and b it can be seen that the maximum
reaction force depends strongly on ∆u. By reducing ∆u, the maximum
reaction force reduces as well. When the load step is small enough (∆u =
10−5 mm) a convergence is observed.

Another interesting test can be conducted by deforming the sample until
u = 0.008 mm (under 0.8 s pseudo time), and then stopping the displacement
but continuing the calculation. Fig. 10c shows the reaction force for a sample
which was deformed using ∆u = 10−5 mm displacement steps (∆t = 10−3 s
time steps) until u = 0.008 mm, then the top displacement was frozen but
the iteration was continued. An interesting creep like phenomenon can be
observed. Even with the static scheme if the crack propagation is unstable,
the method can find the fully opened crack state. Furthermore, it is inter-
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Figure 10: Reaction force as a function of displacement: a) different ∆u; b) maximum
force as a function of ∆u; c) deformation stopped at u = 0.008 mm with ∆u = 10−5 mm
and the calculation is continued with different time steps.

esting to see, that if the time step is varied the pseudo dynamics of the crack
is different. In Fig. 10c we plotted the reaction force for different time steps.
If ∆t was left 10−3 s the crack finished propagating the same time, as when
the top side was moved (t ≈ 0.84 s). But if the step size was reduced, the
crack accelerated.

One of the disadvantages of the decoupled solution, is that the amount of
”staggering” affects the time dependent response significantly. Therefore, it
is highly recommended to conduct a sensitivity study when developing a new
model. The symmetric double notch model is included as a supplementary
file in the third directory.

3.4. Asymmetric double notched tensile specimen

After the simple cases we are going to present a few complex ones to show
the utility of the new implementation. To study the coalescence of the cracks
a well studied [31, 32] asymmetric double notch specimen is used. The exact
geometry is depicted in Fig. 11a. The following material properties are used:
E = 210 kN/mm2, ν = 0.3, lc = 0.2 mm, gc = 2.7 · 10−3 kN/mm. The mesh
is well refined and contains ≈38 000 elements, with the size of h = 0.1 mm
around the crack path. The tensile deformation is applied by ∆u = 10−4 mm
for 400 steps, then ∆u = 10−5 mm for the rest of the simulation to follow
precisely the governing fracture pattern.
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Figure 11: a) Geometry and boundary conditions for the double notched asymmetric
tensile test. b) Fracture pattern at different displacement steps.

The appearing fracture pattern is shown in Fig. 11b.
The eventually obtained fracture pattern is in excellent agreement with

previous results [27, 31, 32].

3.5. Notched bi-material tensile test

This case study is a tensile specimen made of two materials. The upper
material is stiffer and its fracture toughness if higher (E = 377 kN/mm2 ,
ν = 0.3, lc = 0.3 mm, gc = 0.01 kN/mm), whereas the lower material is 10
times softer (E = 37.7 kN/mm2 , ν = 0.3, lc = 0.3 mm, gc = 0.001 kN/mm)
and has an initial notch. The specimen is tensioned parallel to the separating
line. The geometry and boundary conditions are shown in Fig. 12a.

The model consists of≈15 000 elements, with a refinement of h = 0.1 mm.
The deformation is applied by ∆u = 10−4 mm for 400 steps, then ∆u =
10−5 mm for the rest of the simulation.

The aim of this benchmark test is to show that our implementation is
capable of modeling the crack branching phenomenon.

The reaction force is shown in Fig. 12b. It can be recognized that mostly
the loading is carried by the hard material, therefore when the fracture occurs
in the soft part, it does not affect the overall response significantly.

Fig. 13 shows the evolution of the damage in the specimen. After initia-
tion the fracture propagates normally until reaching the material transition
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Figure 12: Geometry, material properties and boundary conditions for the bimaterial
tensile test. The specimen is made of two materials with significantly different stiffness
and fracture properties.

Figure 13: Fracture pattern for different load steps. In parts (c) and (d) a close lookup is
given at the branching area.
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zone. Then, since branching requires less energy than continuing into the
hard material after a short period the damaged zone becomes larger, and the
crack separates along the interface. Fig. 13e shows that after a large defor-
mation even the stronger material starts to break, and the reaction force to
reduce. The aim of this benchmark test is to show crack branching, therefore
the finite element mesh is densified at the center. The crack in the stiffer
material is thus wider because the finite element size at that area is larger.

3.6. Symmetric three point bending test

Consider a symmetric three point bending test depicted in Fig. 14a. The
material parameters are the following: E = 20.8 kN/mm2, ν = 0.3, lc = 0.03
and 0.06 mm, gc = 0.0005 kN/mm. The finite element mesh consists of ≈28
000 elements with a refinement of h = 0.002 mm at the middle. The loading
is applied with ∆u = 10−4 mm for 360 steps, then ∆u = 10−5 mm for the
rest of the simulation.

As shown in Fig. 14a, the left and right sides of the beam are considered
elastic according to the suggestions of Moës [27]. Due to the singularity
caused by the constrained nodes, if the material remained non-linear, the
initial notch would have significantly less effect and the crack would initiate
from one of the corners.

In Fig. 14b the reaction force is shown for isotropic and anisotropic energy
degradation. For the latter, eq. (18) is modified in order to degrade only the
tensile part of the energy:

H =

{
ψ+

0 (ε) ifψ+
0 (ε) > Hn

Hn otherwise
, (29)

where ψ+
0 is the tensile part of the overall potential energy: ψ = g (d)ψ+

0 +
ψ−0 . It can be calculated as follows:

ψ±0 =
Eν

(1 + ν) (1− 2ν)
〈tr (ε)〉2± +

E

2 (1 + ν)

(
〈ε2〉2± + 〈ε2〉2±

)
. (30)

Functions 〈〉± stand for: positive 〈x〉+ = (x+ |x|) /2 and negative 〈x〉− =
(x− |x|) /2 part, while ε1,2 are the principal strains. Details concerning the
stress calculation and the tangent stiffness can be found in Ref. [27].

Fig. 7b shows only a slight difference in the macroscopic response if only
the tensile energy is degraded. Compared to the effect of the length scale
parameter, it is negligible. However, in Fig. 14c the fracture pattern shows
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Figure 14: a) Geometry and boundary conditions for the symmetric three point bending
test. b) Reaction force as a function of applied displacement for two different lc values.
The symmetric degradation case is shown with solid line and the asymmetric one with
dashed line. c) Fracture pattern for lc = 0.06 mm with symmetric and asymmetric energy
degradation. The damaged area caused by compressive damage is highlighted in the upper
figure.
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that if compression can cause damage a small fracture zone appears under
the applied load. This becomes more and more significant if the loading is
employed using a concentrated force. Due to the singularity this can cause
the crack to propagate not from the notch but from the loading area.

3.7. Perforated asymmetric bending test

With the asymmetric three point bending test a curvilinear crack trajec-
tory can be studied. The evolution of the crack path strongly depends on the
precise position of the holes [33]. In Fig. 15 the geometry and the boundary
conditions are shown. Similarly to the symmetric problem, here the sides
are considered elastic. The nonlinear material parameters are the following:
E = 20.8 kN/mm2, ν = 0.3, lc = 0.025 mm, gc = 0.001 kN/mm. The mesh is
refined around the holes and the notch (h = 0.01 mm). The model contains
≈60 000 elements. The bending load is applied with: ∆uy = 10−3 mm for
150 steps, then ∆u = 10−4 mm for the rest of the simulation.

Two examples are studied, similarly to Ref. [33]. The geometrical differ-
ences can be found in Fig. 15.

It is a great example, because by modifying the initial size and position
of the notch, the governing fracture pattern can be altered. If the crack
is placed closer to the holes and its initial length is larger, the governing
fracture approaches the second hole from the right. However, if it is further
away, the fracture appears from the left.

Fig. 16 shows that the crack pattern is recovered precisely with the phase-
field method for the first example. However, the crack collides with the first
hole in the second, then follows the experimental results as well. In the
phase-field scheme the crack has a finite width. Therefore, if the damaged
zone reaches a hole, it attracts the crack, and the fracture cannot pass by.
Usually, the second example is not shown in papers dealing with diffuse crack
propagation [12, 20, 34] due to the above mentioned problem. However,
we strongly believe that if this method is going to be used by practicing
engineers, not only the functional cases should be shown, but the attention
needs be drawn to examples where the approach gives less precise results.
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Figure 15: Geometry and boundary conditions for the perforated asymmetric bending
test. The holes are 0.5 mm in diameter. Example 1: a = 6 mm, b = 1 mm. Example 2:
a = 5 mm, b = 1.5 mm.

Figure 16: Fracture pattern for the two cases compared with experimental results of
Bittencourts et al. [33].
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Figure 17: a) Geometry and boundary conditions for the three dimensional single edge
notched tensile test. b) Finite element mesh. c) Fracture pattern: isosurface of the phase-
field with the value above 0.97.

3.8. Three dimensional single notched plate

We end this section with a three dimensional case. Similarly to the 2D
case, a single edge notched specimen is studied with a mode I crack. The
material properties and the geometry are taken according to Ref. [12]: E =
20.8 kN/mm2 , ν = 0.3, lc = 0.2 mm, gc = 5 · 10−4 kN/mm with the mesh of
≈54 000 elements, and the refinement of h = 0.03 mm. The loading is applied
with ∆u = 10−4 mm for 250 steps, then it is reduced to ∆u = 10−5 mm.

Fig. 17a and b show the geometry and the 3D finite element mesh.
To show the crack, the isosurface of the damage phase-field is depicted

with the value larger then 0.97 in Fig. 17c. The result is in agreement with
the monolithic solution of Miehe et al. [12].

A 3D example containing one element is included as supplementary ma-
terial with the corresponding source code.
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4. Conclusion

A staggered phase-field model was implemented in the commercial fi-
nite element code Abaqus/Standard to simulate brittle fracture in 2D and
3D solids. The implementation was carried out in the framework of a user
defined finite element (UEL). To visualize the results, an additional layer
of UMAT was included. The solution is given as two (plus one for visu-
alization) finite element layers. Each layer contributes to different degrees
of freedom. Depending on the dimensionality each node has two (or three)
translational and one phase-field (damage) DOF. The phase-field is a scalar
variable which connects broken and unbroken materials. If its value reaches
one, both stiffness and stress reduce to zero.

The method is based on the rate-independent variational principle of dif-
fuse fracture. The elastic displacement and the fracture problem are decou-
pled and solved separately. The connection is established using a so-called
history variable, which contains the materials elastic potential energy.

The sources code for both 2D and 3D element are available as supple-
mentary material with four benchmark examples. Abaqus is one of the most
widely used software in practice. Therefore, this implementation enables
practicing engineers and scientists to simulate easily not only crack propaga-
tion, but initiation, curvilinear paths, branching and even coalescence.

The utility of the method is shown through several examples: starting
from one element up to 3D crack propagation.

It was shown that the right choice of the load step is the most important
to achieve precise results. The size of the finite elements has small effect on
the macroscopic force response if it is smaller than the half of the length scale
parameter (lc).

There remains an important question: is lc, which controls the diffusion of
the crack, a material parameter, or just a numerical one. This can be tested
using atomic scale simulations [35, 3] as well as microscopic experiments [36].

Present implementation gives a transparent code which can be developed
further in order to model large strains [22], plasticity near cracks [37], snap-
back effects [23] or even dynamic fracture [21] in glass [38].
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Appendix A. Implementation details

To calculate the phase-field fracture problem a split scheme operator
is used. The following linear equation system is solved iteratively using a
Newton-Raphson algorithm, updating the tangent matrix and the residue
vector at each internal iteration:[

Kd
n 0
0 Ku

n

] [
dn+1

un+1

]
= −

[
rdn
run

]
(A.1)

The corresponding residue vector for the phase-field degrees of freedom
reads as:

rd =

∫
Ω

{[
gc
lc
d− 2 (1− d)H

] (
Nd
)T

+ gclc
(
Bd
)T∇d}dV (A.2)

where Nd is the vector of the shape functions: Nd =
[
N1 ... Nb

]
(where b = 4 for 2D and b = 8 for 3D) and Bd is a matrix with the spatial

derivatives (gradient)2: Bd =

 ∂N1

∂x
... ∂Nb

∂x
∂N1

∂y
... ∂Nb

∂y
∂N1

∂z
... ∂Nb

∂z

.

The phase-field values are calculated on each integration point as: d = Ndd,
where d is a vector contacting phase-field values on each element node. The
local gradient reads similarly as: ∇d = Bdd.

In equation (A.1) the tangent matrix is calculated as follows:

Kd =

∫
Ω

{[
gc
lc

+ 2H

] (
Nd
)T

Nd + gclc
(
Bd
)T

Bd

}
dV. (A.3)

The displacement residue can be divided into internal and external parts:
ru = f int − f ext. The external force vector reads as:

f ext =

∫
Ω

(Nu)T · γdV +

∫
∂Ω

(Nu)T · tdA. (A.4)

2in 2D it is constructed only from x, y directional components
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Whereas, the internal one is:

f int =

∫
Ω

{[
(1− d)2 + k

]
( Bu)Tσ0

}
dV. (A.5)

Finally we give the tangent matrix for the displacement field solution:

Ku =

∫
Ω

{[
(1− d)2 + k

]
( Bu)TC0B

u
}
dV (A.6)

Similarly to the phase-field problem Nu and Bu are the vector of shape
functions and its derivatives used in classic finite elements [39].

Appendix B. Tutorial: One element

Present section shows a simple example, which can be used to create any
model in Abaqus/Standard with the staggered fracture model. The problem
which is going to be solved is a simple element subjected to a uniaxial tension.
This example is shown in the first supplementary folder (Abaqus input file
and FORTRAN code). For results and comparison with other methods see
section 3.

Every problem consists of two files: an Abaqus input file (*.inp) and a
FORTRAN file (*.for or *.f, depending on the operation system).

Due to the problem of the allocation of the common block for every finite
element mesh a new FORTRAN file should be created. The only variable
which should be modified in the provided example file is N ELEM (the number
of the elements in one layer). Thus, in this case N ELEM=1.

The Abaqus input file is generally written by the software itself, however
we can access it before initiating the simulation.

In the first section the parts are created. The nodes are given (*Node)
and the elements are generated. After creating all the nodes, a command is
given to define the phase-field element type (*User element, nodes=4,
type=U1, properties=3, coordinates=2, VARIABLES=8). This
command creates an element with four nodes, in 2D, with three material
properties and eight status variables. The status variables are used to trans-
port information from one step to the next. It contains the phase-field value
and the history variable at each integration point. For details visit Tab. 1,
where first the displacement then the phase-field variables are listed.

In the next line we define the concerning degree of freedom, in this case
only the third. To create the elements after the command: *Element,
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type=U1, the elements are given starting with the serial number then the
nodes of the corners in a counterclockwise list: 1, 1, 2, 4, 3. To assign
material properties to the elements a set is created. After which the command

*Uel property, elset=AllPhase and the properties are given in the
next line (where AllPhase is the name of the set containing the phase-field
elements). The properties are gives as follows: length scale parameter (lc),
fracture surface energy (gc), thickness.

Similarly the second layer can be created (see example file). When gener-
ating the elements, the same node sequence is listed and N ELEM is added to
the first digit (serial number): 2, 1, 2, 4, 3. The material properties
should be given in the following order: Young’s modulus (E), Poisson’s ratio
(ν), thickness, stability parameter (k, usually a small number).

The third layer is created following the sequence mentioned above. The
nodes are listed the third time in the same order while the serial number of
the elements shifted again with N ELEM: 3, 1, 2, 4, 3

Than in the assembly section the nodes are declared, where the boundary
conditions are applied. Here an additional set should be defined in order to
save only the results from the UMAT elements: *Elset, elset=umatelem.

From this point, the loads, boundaries and the analysis is defined usually
as it is done in a normal input file.

A general advise is to create the finite element model using the graphical
interface of Abaqus, then replicate the three different layers multiplying the
serial number of the elements as it is shown above. Furthermore, adding
a line in the ASSEMBLY section pointing to the UMAT elements for post-
processing purposes. Then creating a job based on the new input file linked
to the FORTRAN script.

To visualize the results simply open the concerning *.odb file and select
the desired solution dependent variable (SDV) in contour plot mode accord-
ing to Tab. 1. To remove the white X from the bottom left corner go to:
Options/Display Group/Create... and select ELEM-1.UMATELEM from the
Elements item and press replace. This seems unnecessary in this case, but
for many elements the white nodes can dilute the image.
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