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b IBISC, Univ Évry, University of Paris-Saclay, 91025 Évry, France
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Distributionally robust inventory routing problem to

maximize the service level under limited budget

Abstract

This paper studies a stochastic inventory routing problem with alternative
handling modules and limited capital budget, under partial distributional in-
formation (i.e., the mean and covariance matrix of customer demands). The
objective is to maximize the service level, i.e., the probability of jointly en-
suring no stockout and respecting the warehouse capacities for all customers
at the end of each period. A novel distributionally robust chance constrained
formulation is proposed. The sample average approximation method and a
model-based hierarchical approach based on problem analysis are developed.
Computational results show that the latter approach is more efficient. We
also draw some managerial insights.

Keywords: Inventory routing problem; Stochastic optimization;
Distributionally robust; Ambiguity set; Service level

1. Introduction

Inventory routing problem (IRP) considers simultaneously the invento-
ry control, the transportation management and their coordination. IRP
plays an important role in saving system cost and improving performance
of companies (Rahimi et al., 2017). IRP has a wide range of applications
in traditional commerce and e-commerce environment. One of the applica-
tions comes from the supply chain system of P&G and Wal-Mart (Yu et al.,
2009a), where P&G can be considered as the central depot delivering prod-
ucts to Wal-Mart stores (i.e., customers). Another application is from the
e-commerce supply chain system, e.g., Amazon and IKEA, where the manu-
facturer is responsible to delivery products to the product centers. Although
there have been various works investigating IRP since it has been introduced
by Bell et al. (1983), most of them focus on constant and dynamic customer
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demands (Savelsbergh and Song, 2008; Raa and Aghezzaf, 2009; Solyalı and
Süral, 2011; Michel and Vanderbeck, 2012; Adulyasak et al., 2014).

Practitioners and researchers have the same consensus: distribution s-
trategies have to consider fully the uncertain customer demands, which can
be impacted by quickly changing market, flexible price and product pro-
motion (Jiang et al., 2015). Ignoring the uncertainties may have dramatic
consequences, such as loss of potential sale, early exhaust of cash flow and
loss of new investment opportunities. Most existing works address the s-
tochastic IRP under discrete scenarios or known probability distributions
(Kleywegt et al., 2002; Huang and Lin, 2010; Yu et al., 2012; Zhalechi-
an et al., 2016). However, according to Wagner (2008) and Delage and Ye
(2010), the complete distributional information may not be well accessed,
due to the following factors: (i) it is hard to obtain the information for new
products, (ii) customers’ reaction cannot be quickly collected and analyzed
in time, (iii) and consequence of unforeseeable events and business strategies
of competitors cannot be precisely estimated.

Besides, high customer service level is one of goals of companies. Cus-
tomers’ decision making and satisfaction are largely influenced by the service
levels of companies. Bijvank and Vis (2012) indicate that customer satisfac-
tion is commonly used as a differentiation strategy among competitors. Most
existing related works focus on measuring service level by the rate of delivery
delay or stockout under deterministic problem settings or known probability
distribution of uncertain parameters (Rahimi et al., 2017), and respecting
the service level as a problem constraint (Bijvank and Vis, 2012; Yu et al.,
2012; Singh et al., 2015). In this work, each customer has a warehouse, and
stockout or overfilling the warehouse may cause great loss for companies,
such as huge cost and low customer satisfaction and loyalty (Rahimi et al.,
2017). The pursued objective is (customer) service level, which is measured
by the probability of jointly ensuring no stockout and respecting the ware-
house capacities for all customers at the end of each period.

Moreover, each customer’s warehouse possesses multi-functional equip-
ments and has workers with different qualifications. Appropriately combin-
ing and managing these resources can significantly reduce warehouse han-
dling cost and improve warehouse performance. Such equipment and worker
combinations can be considered as handling modules with different capaci-
ties, performance or specific competence (Li et al., 2011; Li et al., 2014). In
practice, the handling module selection is a tactical-level decision (Li et al.,
2011). Once the handling module is selected, it remains unchanged during

2



the planning horizon (Li et al., 2014). Therefore, in this work, the handling
module selection is also regarded as a tactical-level decision.

Motivated by the above observations, to remain close to real IRP busi-
ness cases, this paper investigates a distributionally robust IRP with various
alternative handling modules and limited budget, especially only partial dis-
tributional information of customer demands is known (i.e., the mean and
covariance matrix). The problem is shown in Figure 1, which is to determine
(i) customer warehouse handling module selection in the tactical level, and
(ii) vehicle delivery routes and volumes in each period and (iii) customer
inventory quantity in each period in the operational level. The objective is
to maximize the service level. Especially, the probability or risk of total sys-
tem cost exceeding the budget is controlled. The contribution of this paper
mainly includes:

(1) A new stochastic IRP with partial distributional information on cus-
tomer demands, limited budget and handling module selection is stud-
ied.

(2) For the problem, a novel distributionally robust chance constrained
formulation is first proposed, in which the objective function is proba-
bilistic and the risk of system cost exceeding the budget is controlled
by a chance constraint.

(3) Based on two approximation methodologies for the partial known prob-
ability distribution, a sample average approximation (SAA) method
and a hierarchical approach are proposed, respectively.

The remainder of this paper is organized as follows. Section 2 gives a
brief literature review. Section 3 describes the problem and provides a dis-
tributionally robust chance constrained formulation. In Section 4, two ap-
proximation methods for the partial known probability distribution are ap-
plied. Based on the two approximation methods, two solution methods, i.e.,
a classic sample average approximation (SAA) and a hierarchical approach,
are designed, respectively. Computational results on randomly generated in-
stances are reported and analyzed in Section 5. Section 6 summarizes this
paper and suggests future research directions.
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2. Literature review

The deterministic IRPs, to minimize the total cost or maximize the profit,
have been well investigated in the literature (Bertazzi et al., 2002; Campbell
and Savelsbergh, 2004; Aghezzaf et al., 2006; Yu et al., 2007; Yu et al., 2008;
Yu et al., 2009a; Yu et al., 2009b; Bard and Nananukul, 2010; Coelho et al.,
2012). Since this work falls within the scope of IRP with uncertain customer
demands and handling module selection to maximize the service level, we
only review the most related researches. Besides, as we adopt the framework
of distribution robust optimization, we also briefly review the distributionally
robust approaches.

2.1. IRP with uncertain customer demands

Most existing works address the IRP with stochastic customer demands
under given set of scenarios or known probability distributions.

Huang and Lin (2010) consider a multi-item IRP with normally distribut-
ed demands, to minimize the total cost. A mixed integer programming (MIP)
formulation and an ant colony optimization algorithm are developed. Solyalı
et al. (2012) investigate a robust IRP, where uncertain demands are restrict-
ed in an interval. Robust optimization is achieved via uncertainty budget
control, which measures the protection against the uncertainty. Two MIP
formulations and a branch-and-cut algorithm are developed. Bertazzi et al.
(2013) study an IRP with known discrete probability distributions of de-
mands, to minimize the total cost. A dynamic programming (DP) formula-
tion and a rollout algorithm are proposed. Shukla et al. (2013) investigate an
IRP with known probability distributions of demands, to minimize the total
cost. An MIP formulation and algorithm portfolios, based on evolutionary
algorithms (EAs), are proposed. Rahim et al. (2014) consider an IRP with
normally distributed demands, to minimize the total system cost. An MIP
with stochastic parameters and an approximated deterministic model are de-
veloped. Bertazzi et al. (2015) study an IRP with known discrete probability
distributions of demands, to minimize the total cost. They show that the
expected cost based on the deterministic formulation (i.e., using average de-
mand) is worse than that with probability distributions. Soysal et al. (2015)
investigate an IRP with normally distributed customer demands, consider-
ing CO2 emission and fuel consumption, to minimize the total system cost.
Agra et al. (2018) consider a stochastic IRP with given set of scenarios of
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demands, to minimize the total system cost. The SAA method and several
heuristic algorithms are developed.

In sum, to our best knowledge, researches considering the stochastic IRP,
where only partial distributional information of customer demands is known,
are very rare.

2.2. IRP considering the service level

Most related existing works focus on considering the service level as a
problem constraint (Bijvank and Vis, 2012; Yu et al., 2012; Singh et al.,
2015), or measuring service level by the rate of delivery delay or stockout
under deterministic problem settings or known probability distribution of
uncertain parameters.

Bijvank and Vis (2012) investigate a deterministic IRP, where the service
level is controlled. They measure the service level as the average fill rate, i.e.,
the fraction of demand satisfied. Singh et al. (2015) study a deterministic
IRP, to maximize the service level and the efficiency of the operations, where
the service level is measured as a function of the number of stockouts. Yu
et al. (2012) investigate a stochastic IRP with split delivery to minimize the
total system cost, where the uncertain demands respect a normal distribu-
tion. In their study, service level is measured as the probability of stockout
and the probability of overfilling each customer’s warehouse. They consider
the service level as a problem constraint. Rahimi et al. (2017) propose a
stochastic model for a multi-objective IRP, where the probability distribu-
tions of uncertain parameters, such as vehicle speed, customer demands and
transportation costs, are known. They measure the service level as a function
of delays and backorder frequency.

Therefore, to the best of our knowledge, there is no result on stochastic
IRP with partial distributional information on the uncertain demands, to
maximize the service level that is measured by the probability of jointly en-
suring no stockout and respecting the warehouse capacities for all customers.

2.3. Handling modules

In practice, handling module selection can improve the efficiency and
performance of a warehouse. However, most existing works considering han-
dling modules mainly focus on facility location problems. Literature on IRP
considering handling modules for inventories is very rare.

Li et al. (2011) investigate a two-stage capacitated facility location prob-
lem with handling cost and cross-docking tasks. A given alliance of workers
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and equipments, having both handling capacity and handling cost, is mod-
eled as one handling module. A limited set of handling module is equipped
at each depot location, where the handling cost of a module is incurred
as soon as the module is used. Following that, Li et al. (2014) investigate
a multi-product facility location problem, where different handling modules
are considered. Irawan and Jones (2018) consider a facility location problem,
where the locations of distribution centres should be determined and each
center have several capacity levels, i.e., handling modules, to be selected.

The constructed warehouse possesses various equipments and workers.
Appropriately selecting the equipment and worker combination can improve
greatly the system performance. However, to the best of our knowledge,
there is no result on IRP jointly considering handling modules.

2.4. Distributionally robust approaches

Under partial distributional information of uncertain demands, it is dif-
ficult and impractical to obtain sufficient and representative historical data
to exactly estimate the probability distribution (Wagner, 2008; Delage and
Ye, 2010; Ben-Tal et al., 2013). For such problems, distributionally robust
optimization approaches have shown great power (Zhang et al., 2016; Zhang
et al., 2017; Zhang et al., 2018), which include two popular approach classes:
(i) one class of approaches is transforming the original problems into deter-
ministic optimization problems based on random samples, among which the
SAA method has been widely and successfully applied (Luedtke and Ahmed,
2008; Zhang et al., 2015); (ii) the other class focuses on employing convex
approximations (Nemirovski and Shapiro, 2006), which is usually based on
ambiguity sets that are assumed to include the true probability distribution.

Zhang et al. (2015) consider a stochastic chance constrained bin pack-
ing problem under partial known distributional information of item sizes.
Based on the SAA, a two-stage stochastic MIP model is proposed to ap-
proximate the problem. Jebali and Diabat (2017) investigate a stochastic
chance constrained operating room planning problem. An approximated
two-stage stochastic MIP model, based on the SAA, is proposed. Zhang
et al. (2016) also investigate a chance constrained bin packing problem, in
which only the mean and covariance matrix of item weights are known. Two
approximation models, based on two types of ambiguity sets, are proposed
and compared with the SAA model. Zhang et al. (2017) investigate the
chance constrained allocation of surgery blocks, where the surgery durations
are uncertain with only the mean and covariance matrix known. Based on
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two ambiguity sets, a semidefinite programming (SDP) model and a second-
order conic programming (SOCP) model, to approximate the original chance
constrained formulation, are established. Zhang et al. (2018) study general
distributionally robust chance constrained optimization problems with only
mean and covariance matrix known. Two ambiguity sets are constructed
for the partial known probability distribution, and two approximated SOCP
models are proposed. Esfahani and Kuhn (2018) consider general distri-
butionally robust optimization problems. They construct an ambiguity set
named as Wasserstein ambiguity set, and propose an approximated model.
The authors compare the approximated model with the SAA method. Liu
et al. (2018) investigate a stochastic parallel machine problem, in which the
job processing times are uncertain with only mean and covariance matrix
known. A distributionally chance constrained formulation with a probabilis-
tic objective is proposed for the problem. The authors propose the SAA
method and a heuristic, which is grounded on an approximated model based
on an ambiguity set.

Concluding, we broaden the realm of IRPs to maximize the service level
under (i) partial demand information, (ii) handling module selection, and
(iii) limited capital budget.

3. Problem description and formulation

In this section, we first give the problem statement and then propose
a new distributionally robust chance constrained formulation with a proba-
bilistic objective function for the problem.

3.1. Problem description

This paper studies a stochastic IRP with handling modules and limited
capital budget. The considered problem includes a central depot 0, a set of
customers {1, 2, ..., n} and a fleet of vehicles, as shown in Figure 1. Note
that on a complete graph, set N = {0, 1, 2, ..., n} is used to denote the set of
nodes including the central depot and customers. In the problem:

(1) The central depot can be considered as a central vendor or manufac-
turer, whose capacity is assumed to be unlimited (Yu et al., 2008; Yu
et al., 2012). The central depot 0 is responsible for distributing prod-
ucts to customers, via a fleet of homogeneous vehicles with specified
capacity. It is assumed that the numbers of vehicles and vehicle tours
in each period are not constrained (Yu et al., 2012).
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Figure 1: An illustrative example

(2) Given a planning time horizon T = {1, 2, ..., t, ..., |T |}, the demand of
customer i ∈ N\{0} in period t ∈ T is stochastic and denoted as ξit,
and ξi = [ξi1, ξi2, ..., ξi,|T |]

T. Only partial distributional knowledge of ξi,
i.e., the mean and covariance matrix, is known. Besides, a customer’s
demand can be split and satisfied by two or more vehicles.

(3) Each customer i ∈ N\{0} has a warehouse. In other words, each
customer is equipped with a dedicated warehouse, which is located
at the corresponding customer’s location. Each customer’s warehouse
possesses various equipments and workers. Different combinations of
these resources are considered as handling modules with corresponding
warehouse capacities and handling costs.

(4) The system capital budget B is predetermined, and the probability or
risk for the total system cost exceeding the capital budget has to be
controlled.

As stated above, the accurate probability distribution of customer de-
mands, denoted by P in the following, is unknown. A limited set of samples,
including historical data of customer demands {ξri }

|R|
r=1, is given, where R

denotes the set of samples indexed by r and ξri = [ξri1, ξ
r
i2, ..., ξ

r
i,|T |]

T under
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sample r ∈ R. Then the empirical mean vector µi and covariance matrix Σi

of customer demand ξi = [ξit, ξi2, ..., ξi,|T |]
T are calculated as:

µi =
1

|R|
∑
r∈R

ξri , Σi =
1

|R|
∑
r∈R

(ξri − µi)(ξ
r
i − µi)

T, ∀i ∈ N\{0},

where (·)T denotes the transposition of the vector in parentheses.
The problem is to determine (i) customer warehouse handling module

selection in the tactical level; and (ii) vehicle delivery volumes and routes
in each period and (iii) customer inventory quantity in each period in the
operational level. The objective is to maximize the service level, i.e., the
probability of jointly ensuring no stockout and respecting warehouse capaci-
ties for all customers at the end of each period.

3.2. The distributionally robust formulation

In this part, a distributionally robust chance constrained formulation for
the problem is proposed. In the following, we give basic notations, define
decision variables, then propose the formulation.

Parameters:

- T : Set of discrete periods indexed by s and t, and T = {1, 2, ..., |T |}.

- H: Set of handling modules indexed by h, and H = {1, 2, ..., |H|}.

- C: Vehicle capacity in volume.

- cah: The fixed cost of handling module h ∈ H.

- cij: Variable delivering cost per unit of product on arc (i, j), and cij = cji,
which satisfies the triangle inequality cij + cjl ≥ cil, ∀i, j, l ∈ N\{0}.

- cbi0: Traveling cost of an empty vehicle from customer i ∈ N\{0} driving
directly to the central depot 0.

- ft: Fixed vehicle cost per tour in period t ∈ T .

- cinvit : Inventory cost for holding per unit product by customer i ∈ N\{0}
in period t ∈ T .

- Ii0: Inventory level of customer i ∈ N\{0} at the beginning.
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- Wh: The warehouse capacity of handling module h ∈ H.

- B: The system capital budget.

- α: The required maximum probability (or risk) for exceeding budget B.

- ξit: Stochastic demand of customer i ∈ N\{0} in period t ∈ T .

Decision variables:

- xijt: Integer variable, denoting the number of times that arc (i, j) is tra-
versed in period t ∈ T .

- yijt: Continuous variable, denoting the volume of products transported on
arc (i, j) in period t ∈ T .

- zih: Binary variable, equal to 1 if handling module h ∈ H is selected for
customer i ∈ N\{0}, 0 otherwise.

- qit: Continuous variable, denoting the delivery volume to customer i ∈
N\{0} in period t ∈ T .

Distributionally robust formulation [P1]:

max inf
P

ProbP

0 ≤ Ii,0 +
t∑

s=1

qis −
t∑

s=1

ξis ≤
∑
h∈H

Wh · zih,

∀i ∈ N\{0}, t ∈ T

 (1)

s.t.
∑
h∈H

zih = 1, ∀i ∈ N\{0} (2)∑
j∈N,j 6=i

xijt =
∑

j∈N,j 6=i

xjit, ∀i ∈ N, t ∈ T (3)∑
j∈N,j 6=i

yjit −
∑

j∈N,j 6=i

yijt = qit, ∀i ∈ N, t ∈ T (4)∑
i∈N\{0}

y0it =
∑

i∈N\{0}

qit, ∀t ∈ T (5)

yijt ≤ C · xijt, ∀i ∈ N, j ∈ N\{0}, j 6= i, t ∈ T (6)
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inf
P


ProbP


∑

i∈N\{0}

∑
t∈T

max

{
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, 0

}
· cinvit

+
∑
t∈T

∑
i∈N

∑
j∈N,j 6=i

cij · yijt +
∑
t∈T

∑
i∈N\{0}

ft · xi0t

+
∑

i∈N\{0}

∑
t∈T

cbi0 · xi0t +
∑

i∈N\{0}

∑
h∈H

cah · zih ≤ B




≥ 1− α

(7)

qit ≥ 0, ∀i ∈ N\{0}, t ∈ T (8)

yijt ≥ 0, ∀i, j ∈ N, j 6= i, t ∈ T (9)

xijt ∈ Z+, ∀i, j ∈ N, i 6= j, t ∈ T (10)

zih ∈ {0, 1}, ∀i ∈ N\{0}, h ∈ H (11)

In (1), we use inf
P
{·} to denote the worst-case scenario, i.e., the robust-

ness, and ProbP(·) to denote the probability of the event in the parentheses
under probability distribution P. Note that only partial information on the
probability distribution P, i.e., the mean and covariance matrix, is known.
The objective function (1) is to maximize the service level, which is measured
by the probability of jointly ensuring (i) no stockout for all customers at the

end of each period, i.e., Ii,0 +
t∑

s=1

qis −
t∑

s=1

ξis ≥ 0, ∀i ∈ N\{0}, t ∈ T , and

(ii) respecting the warehouse capacities for all customers at the end of each

period, i.e., Ii,0 +
t∑

s=1

qis −
t∑

s=1

ξis ≤
∑
h∈H

Wih · zih, ∀i ∈ N\{0}, t ∈ T .

Constraint (2) ensures that there must be one handling module select-
ed for customer i’s warehouse, where i ∈ N\{0}. Constraint (3) implies
that the number of vehicles leaving node i ∈ N is equal to the number of
vehicles arriving at i. Constraint (4) denotes the flow conservation, which
also serves as the subtour elimination. Constraint (5) implies that the total
product volume transported from the central depot is equal to the total de-
livery volume to all customers in period t ∈ T . Constraint (6) respects the
capacities of vehicles. Constraint (7) limits the probability of exceeding the
budget less than α, where the total cost includes (i) the inventory holding

cost for all customers, i.e.,
∑

i∈N\{0}

∑
t∈T

cinvit ·
(

max

{
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, 0

})
and (ii) the variable transportation cost, i.e.,

∑
t∈T

∑
i∈N

∑
j∈N,j 6=i

cij · yijt, and (iii)

the fixed transportation cost, i.e.,
∑
t∈T

∑
i∈N\{0}

ft · xi0t, and (iv) the traveling
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cost for empty vehicles driving from customers to the central depot, i.e.,∑
i∈N\{0}

∑
t∈T

cbi0 · xi0t, and (v) the total fixed cost for handling module selec-

tion, i.e.,
∑

i∈N\{0}

∑
h∈H

cah ·zih. Constraints (8)-(11) give the domains of decision

variables.

4. Solution approaches

It is notoriously difficult to obtain exact solutions for general stochastic
programs (Birge and Louveaux, 2011). According to Zymler et al. (2013),
under partial distributional information, chance constrained problems can
only be solved by conservative approximation. In this work, the objective
function is probabilistic. Thus our problem is even more difficult, and ob-
taining the exact solution is quite intractable. To better solve the problem,
we first propose an equivalent transformation of the original objective func-
tion, leading to an equivalent model [P2]. Then, two popular approximation
methods for [P2] are proposed, i.e., the SAA method and the approximation
method based on an ambiguity set for partial known P. Based on the sec-
ond approximation method, an MIP-based hierarchical approach is further
developed.

4.1. Equivalent formulation

In this subsection, by introducing a risk level β ∈ [0, 1], the original
probabilistic objective function can be equivalently transformed as:

min β

s.t. inf
P

ProbP

0 ≤ Ii,0 +
t∑

s=1

qis −
t∑

s=1

ξis ≤
∑
h∈H

Wh · zih,

∀i ∈ N\{0}, t ∈ T

 ≥ 1− β,

(12)

where risk level β implies the maximum probability of existing stockout or
overfilling a customer’s warehouse, and β is considered as a decision variable.
For the problem, the maximization of probabilistic objective function (1) is in
consistent with the minimization of β, with satisfying joint chance constraint
(12) simultaneously.
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Accordingly, the original formulation [P1] can be equivalently trans-
formed into the following model:

[P2] : min β

s.t. (2)-(12)

Under partial distributional information, it is difficult to solve [P2] by calling
commercial solvers due to chance constraint (7) and joint chance constraint
(12). Thus approximation methods are developed in the following.

4.2. The SAA

The basic idea of the SAA is to solve the stochastic optimization prob-
lems via Monte Carlo simulation and deterministic optimization techniques
(Kleywegt et al., 2002; Hu et al., 2012). For the studied problem, only partial
distributionally knowledge of customer demands, i.e., the mean and covari-
ance matrix, is known. Based on the idea of SAA, we replace the partial
known distribution P by an empirical one that satisfies the given conditions,
corresponding to a finite set Ω of randomly generated scenarios. Follow-
ing the expected-penalty-based SAA models (Zhang et al., 2015; Jebali and
Diabat, 2017), we approximate the chance constraints (7) and (12) by a sam-
ple average estimation function, which is the weighted penalty of the stockout
volume, the volume of stock beyond the warehouse capacity and the budget
overruns. Note that β can be minimized through minimizing the stockout
volume and the volume of stock beyond the warehouse capacity. Accordingly,
an approximated SAA-based model [P3] is proposed. As the handling mod-
ule selection is considered as a tactical decision, decision variable zil denoting
the handling module selection does not depend on scenario ω ∈ Ω in [P3].

New parameters:

- Ω: Set of scenarios indexed by ω, and Ω = {1, 2, ..., |Ω|}.

- ξit(ω): Demand of customer i ∈ N\{0} in period t ∈ T under scenario
ω ∈ Ω.

- θ1, θ2, θ3: The weight coefficients of stockout volume, volume of the stock
beyond the warehouse capacity and budget overruns in the objective func-
tion, respectively.

New decision variables:
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- I+
it (ω): Continuous variable, denoting the inventory level of customer i ∈
N\{0} at the end of period t ∈ T under scenario ω ∈ Ω, and I+

it (ω) =

max

{
Ii,0 +

t∑
s=1

qis(ω)−
t∑

s=1

ξis(ω), 0

}
.

- υit(ω): Continuous variable, denoting the stockout volume of customer
i ∈ N\{0} in period t ∈ T under scenario ω ∈ Ω.

- ηit(ω): Continuous variable, denoting the volume of stock beyond the ware-
house capacity at customer i ∈ N\{0} in period t ∈ T under scenario
ω ∈ Ω.

- ϕ(ω): Continuous variable, denoting the budget overruns under scenario
ω ∈ Ω.

[P3]:

min

 1

|Ω|

 ∑
i∈N\{0}

∑
t∈T

∑
ω∈Ω

(
θ1 · υit(ω) + θ2 · ηit(ω)

)
+ θ3 ·

∑
ω∈Ω

ϕ(ω)


(13)

s.t.
∑
h∈H

zih = 1, ∀i ∈ N\{0} (14)∑
j∈N,j 6=i

xijt(ω) =
∑

j∈N,j 6=i

xjit(ω), ∀i ∈ N, t ∈ T, ω ∈ Ω (15)∑
j∈N,j 6=i

yjit(ω)−
∑

j∈N,j 6=i

yijt(ω) = qit(ω), ∀i ∈ N, t ∈ T, ω ∈ Ω (16)∑
i∈N\{0}

y0it(ω) =
∑

i∈N\{0}

qit(ω), ∀t ∈ T, ω ∈ Ω (17)

yijt(ω) ≤ C · xijt(ω), ∀i ∈ N, j ∈ N\{0}, j 6= i, t ∈ T, ω ∈ Ω (18)

Ii,0 +
t∑

s=1

qis(ω)−
t∑

s=1

ξis(ω) + υit(ω) ≥ 0, ∀i ∈ N\{0}, t ∈ T, ω ∈ Ω

(19)
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Ii,0 +
t∑

s=1

qis −
t∑

s=1

ξis(ω)− ηit(ω) ≤
∑
h∈H

Wh · zih,

∀i ∈ N\{0}, t ∈ T, ω ∈ Ω
(20)∑

i∈N\{0}

∑
t∈T

cinvit · I+
it (ω) +

∑
t∈T

∑
i∈N

∑
j∈N,j 6=i

cij · yijt(ω) +
∑
t∈T

∑
i∈N\{0}

ft · xi0t(ω)

+
∑

i∈N\{0}

∑
t∈T

cbi0xi0t(ω) +
∑

i∈N\{0}

∑
h∈H

cah · zih − ϕ(ω) ≤ B, ∀ω ∈ Ω (21)

I+
it (ω) ≥ Ii,0 +

t∑
s=1

qis(ω)−
t∑

s=1

ξis(ω), ∀i ∈ N\{0}, t ∈ T, ω ∈ Ω (22)

I+
it (ω), υit(ω), ηit(ω), ϕ(ω), qit(ω) ≥ 0, ∀i ∈ N\{0}, t ∈ T, ω ∈ Ω (23)

yijt(ω) ≥ 0, ∀i, j ∈ N, j 6= i, t ∈ T, ω ∈ Ω (24)

xijt(ω) ∈ Z+, ∀i, j ∈ N, i 6= j, t ∈ T, ω ∈ Ω (25)

zih ∈ {0, 1}, ∀i ∈ N\{0}, h ∈ H (26)

The objective minimizes the weighted sum of the expected stockout vol-
ume, the expected volume of stock beyond the warehouse capacities and the
expected budget overruns, to approximate chance constraints (7) and (12) in
[P2].

Constraint (14) is the same as Constraint (2). Constraint (15) denotes
that the numbers of vehicles arriving at node i ∈ N and vehicles leaving i ∈ N
are the same, under scenario ω ∈ Ω. Flow conservation under scenario ω ∈ Ω
is ensured by Constraint (16). Constraint (17) denotes that the central depot
is responsible for delivering products to all customers under scenario ω ∈ Ω.
Constraint (18) respects the capacities of vehicles under scenario ω ∈ Ω.
Constraint (19) defines the stockout volume υit(ω) of customer i ∈ N\{0} in
period t ∈ T under scenario ω ∈ Ω. Constraint (20) calculates the volume
of stock ηit(ω) beyond the warehouse capacity of customer i ∈ N\{0} in
period t ∈ T under scenario ω ∈ Ω. Constraint (21) defines the budget
overruns ϕ(ω) under scenario ω ∈ Ω. Constraints (22)-(26) give the domains
of decision variables.

MIP model [P3] can be optimally solved by calling commercial solvers,
such as CPLEX. Due to the NP-hard nature of the problem, we observe
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that the computational time of the SAA increases dramatically with the
problem size. Therefore, to efficiently solve large-scale problems, a two-stage
hierarchical method is further designed.

4.3. The MIP-based hierarchical approach

In this part, based on the given mean and covariance of customer de-
mands, we first construct an ambiguity set to approximately characterize
the partial known probability distribution P. Joint chance constraint (12) is
then conservatively approximated by a set of individual chance constraints
via Bonferroni’s approximation. Besides, an approximation technique is de-
veloped for the chance constraint that restricts the system cost. Following
the uncertainty approximation method, i.e., assuming an ambiguity set as in
Delage and Ye (2010), and chance constraint approximation approach as in
Zhang et al. (2017), an approximated MIP formulation is proposed. Based
on that, a hierarchical approach is further developed.

4.3.1. Ambiguity set

Ambiguity set includes a family of distributions characterized via known
properties of the partial known P. Traditional ambiguity sets focus on exact-
ly matching the given mean and covariance matrix of uncertain parameters
(El Ghaoui et al., 2003; Calafiore and Ghaoui, 2006). Delage and Ye (2010)
construct a new ambiguity set considering estimation errors, and the am-
biguity set has been successfully applied (Cheng et al., 2013; Zhang et al.,
2017). Therefore, following the idea in Delage and Ye (2010), an ambiguity
set P(µ,Σ, γ1, γ2), where µ = [µ1,µ2, ...,µn] and Σ = [Σ1,Σ2, ...,Σn], is
applied:

P(µ,Σ, γ1, γ2) =

P :
(EP[ξi]− µi)

T(Σi)
−1(EP[ξi]− µi) ≤ γ1,

EP[(ξi − µi)(ξi − µi)
T] � γ2Σi, ∀i ∈ N\{0}.

 ,

where E[·] denotes the expected value. Besides, γ1 ≥ 0 and γ2 ≥ γ1 are two
parameters of ambiguity set P(µ,Σ, γ1, γ2), which restricts that the true
mean vector for ξi lies in an ellipsoid centered at µi with radius γ1 and
the true covariance matrix for ξi is in a positive semi-definite cone which is
bounded by γ2Σi, where i ∈ N\{0}. Thus the partial known P is considered
to be included in P , i.e., P ∈ P , in the following.
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4.3.2. The Bonferroni approximation

Following Bonferroni’s inequality, if the individual risk levels ε1it and ε2it,

for violating inequalities Ii,0 +
t∑

s=1

qis−
t∑

s=1

ξis ≥ 0 and Ii,0 +
t∑

s=1

qis−
t∑

s=1

ξis ≤∑
h∈H

Wh · zih, are known for each i ∈ N\{0} and t ∈ T , Constraint (12) can

be approximated by the following ones:

inf
P∈P

ProbP

(
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis ≥ 0

)
≥ 1− ε1it, ∀i ∈ N\{0}, t ∈ T

(27)

inf
P∈P

ProbP

(
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis ≤
∑
h∈H

Wh · zih

)
≥ 1− ε2it,

∀i ∈ N\{0}, t ∈ T (28)

where ε1it and ε2it are restricted by
∑

i∈N\{0}

∑
t∈T

(ε1it + ε2it) ≤ β (Calafiore and

Ghaoui, 2006). Constraint (27) implies that the probability of no stockout
for customer i ∈ N\{0} in period t ∈ T is no less than 1 − ε1it. Constraint
(28) requires that the probability of no overstock for customer i ∈ N\{0} in
period t ∈ T is no less than 1− ε2it.

The approximation quality depends largely on the selection of individual
risk levels, i.e., ε1it and ε2it. However, according to Sun et al. (2014), the
problem of finding the optimal individual risk levels is very difficult and
intractable. In this paper, we apply a popular approach to set ε1it and ε2it, by
evenly dividing β, i.e., ε1it = ε2it = 1

2
· β
n·|T | (Chung et al., 2012). Therefore,

an approximated model [P4] with distributionally robust individual chance
constraints, i.e., Constraints (27) and (28), is formulated as:

[P4]: min β

s.t. (2)-(11), (27), (28)∑
i∈N\{0}

∑
t∈T

(
ε1it + ε2it

)
≤ β (29)

0 ≤ ε1it, ε
2
it, β ≤ 1, ∀i ∈ N\{0}, t ∈ T (30)
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4.3.3. Approximation of the chance constraint for the system cost

Formulation [P4] is difficult to be solved, due to the non-linear expression

in Constraint (7), i.e., max

{
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, 0

}
. Thus we develop a

conservative approximation for Constraint (7) (please see Appendix A). To do
this, a new continuous and nonnegative variable, ψit ≥ 0, is first introduced.
Constraint (7) can be approximated by the following three inequalities:

inf
P∈P

ProbP

(
ψit ≥ Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, ∀i ∈ N\{0}, t ∈ T

)
≥ 1− α

(31)∑
i∈N

∑
t∈T

cinvit · ψit +
∑
t∈T

∑
i∈N

∑
j∈N,j 6=i

cij · yijt +
∑
t∈T

∑
i∈N\{0}

ft · xi0t+∑
i∈N\{0}

∑
t∈T

cbi0xi0t +
∑

i∈N\{0}

∑
h∈H

cah · zih ≤ B (32)

ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T (33)

According to Bonferroni’s inequality, if the individual risk level αit for

ψit < Ii,0 +
t∑

s=1

qis −
t∑

s=1

ξis is known, joint chance constraint (31) can be

approximated by the following individual chance constraints:

inf
P∈P

ProbP

(
ψit ≥ Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis

)
≥ 1− αit, ∀i ∈ N\{0}, t ∈ T

(34)

where
∑

i∈N\{0}

∑
t∈T

αit ≤ α and αit is obtained in this paper via evenly dividing

α, i.e., αit = α
n·|T | . Thus, formulation [P2] can be approximated by the

following chance constrained model [P5]:

[P5]: min β

s.t. (2)-(6), (8)-(11), (27)-(30), (32)-(34)
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4.3.4. An approximated MIP formulation

Owing to the distributionally robust chance constraints (27), (28) and
(34), [P5] still cannot be directly solved by calling commercial solvers. By
applying the approximation method in Zhang et al. (2017), the distribution-
ally robust chance constraints can be approximated by (35), (36) and (37),
respectively (please see Appendix B). Accordingly, an MIP model [P6] is
proposed to approximate formulation [P2]. In the following, related new
parameters and new decision variables are first specified, and then [P6] is
further presented.

New parameters:

- γ1, γ2, a, b: Parameters of ambiguity set P(µ,Σ, γ1, γ2), where γ1 ≥ 0 and
γ2 ≥ γ1 and γ1 = b

1−a−b , γ2 = 1+b
1−a−b .

- αit: αit ≥ Prob

(
ψit < Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis

)
, i.e., the maximal probabili-

ty that variable ψit is less than the inventory level of customer i ∈ N\{0}
in period t ∈ T , and αit = α

n·|T | .

- δit: Vector [1, ..., 1, 0, ..., 0]T, ∀i ∈ N\{0}, t ∈ T , where the first t elements
in this vector are 1.

- πit: Vector [−1, ...,−1, 0, ..., 0]T, ∀i ∈ N\{0}, t ∈ T , where the first t
elements are −1.

New decision variables:

- β: Continuous variable, denoting the maximum probability of existing
stockout or overfilling a customer’s warehouse.

- ε1it, ε
2
it: Continuous variable, denoting individual risk probability for exist-

ing stockout and overfilling the warehouse of customer i ∈ N\{0} in period
t ∈ T , respectively. It is calculated as ε1it = ε2it = 1

2
· β
n·|T | .

- ψit: Continuous variable to linearize max

{
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, 0

}
, which

is nonnegative.

[P6]: min β

s.t. (2)-(6), (8)-(11), (29), (30), (32), (33)
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√
1

1− a− b

(
1 +

√
ε1it · b

1− ε1it

)√
δit

TΣiδit

≤

√
ε1it

1− ε1it

(
Ii,0 +

t∑
s=1

qis − µi
Tδit

)
, ∀i ∈ N\{0}, t ∈ T (35)

√
1

1− a− b

(
1 +

√
ε1it · b

1− ε1it

)√
δit

TΣiδit

≤

√
ε1it

1− ε1it

(
Ii,0 +

t∑
s=1

qis − µi
Tδit

)
, ∀i ∈ N\{0}, t ∈ T (36)

√
1

1− a− b

(
1 +

√
αit · b

1− αit

)√
πitTΣiπit

≤
√

αit
1− αit

(
ψit − Ii,0 −

t∑
s=1

qis − µi
Tπit

)
, ∀i ∈ N\{0}, t ∈ T

(37)

ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T (38)

Based on [P6], a two-stage hierarchical approach named as the MIP-based
hierarchical approach is further developed and shown in Algorithm 1. The
MIP-based hierarchical approach is based on the trial-and-error rule: finding
a minimal β such that [P6] is feasible during the iterations and obtaining the
corresponding feasible solution. Since [P6] is a conservative approximation,
budget with larger value is required to satisfy Constraint (32). The input
capital budget B′ is set to be the product of its original value and a multiplier
θ0 ≥ 1, i.e., B′ = B · θ0, to find feasible solutions. If no feasible solution can
be found under current θ0, the value of θ0 will be updated as θ0 = θ0 + ∆,
where ∆ is the step size of θ0. In the beginning of the method, estimated
risk probabilities ε1it and ε2it are given. MAXITER implies the maximum
number of iterations. U and O denote two sets that store values of ε1it and
ε2it in each iteration, respectively. U∗ and O∗ denote two sets that store ε1it
and ε2it values, under which [P6] is feasible.

As shown in Algorithm 1, during the k-th iteration: (i) [P6] is solved
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Algorithm 1: MIP-based hierarchical approach

Input: Parameters for the problem:
n, |T |, |H|, C, B, cah, cij, cbi0, ft, cinvit , µi, Σi, ∀i, j ∈ N, t ∈
T, h ∈ H.

1 k = 1; (Iteration counter)

2 ε1,kit = 0.618
n·|T | , ε

2,k
it = 0.618

n·|T | , ∀i ∈ N, t ∈ T ;

3 U = ∅, O = ∅; (Set of the values of ε1it and ε2it)
4 U∗ = ∅, O∗ = ∅; (Set of the values of ε1it and ε2it so that [P6] is feasible)
5 while θ0 do
6 for k = 1 : MAXITER do
7 Solve formulation [P6] by calling CPLEX;
8 U = U ∪ ε1it and O = O ∪ ε2it;
9 if The problem is feasible then

10 U∗ = U∗ ∪ ε1it and O∗ = O∗ ∪ ε2it;

11 ε1,k+1
it = ε1,kit − 0.618 ·

(
ε1,kit − max

u∈{1,...,|U |}

{
U(u)|U(u) < ε1,kit

})
and

ε2,k+1
it = ε2,kit − 0.618 ·

(
ε2,kit − max

o∈{1,...,|O|}

{
O(o)|O(o) < ε2,kit

})
;

12 else

13 ε1,k+1
it =

ε1,kit + 0.618 ·
(

min
u∈{1,...,|U |}

{
U(u)|U(u) > ε1,kit

}
− ε1,kit

)
,

14 ε2,k+1
it =

ε2,kit + 0.618 ·
(

min
o∈{1,...,|O|}

{
O(o)|O(o) > ε2,kit

}
− ε2,kit

)
;

15 end

16 end

17 end
18 θ = θ + ∆;

19 end
20 Compare the values in Sets U∗ and O∗ and obtain the minimum

objective β.
Output: A service level (1− β) and the corresponding solution.
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and its feasibility is checked by calling CPLEX; (ii) Risk levels ε1,kit and ε2,kit
are updated via the step search methods, such as the bisection search and
the golden-section search. Since the golden-section search method has been
widely used and performs well (Nazareth and Tseng, 2002; Mourad and
Reilly, 2010; Chen et al., 2015), it is applied in this study. The process
continues until the stop criterion is met. Then by comparing the values of risk
levels in U∗ and O∗, the minimum values of ε1it and ε2it and the corresponding
objective value β and solution can be obtained.

5. Computational experiments

In this section, the proposed solution approaches are evaluated in ran-
domly generated instances. The approaches are coded in MATLAB 2014b
and combined by CPLEX 12.6 solver. All numerical experiments are con-
ducted on a personal computer with Core I5 and 3.30GHz processor and 8GB
RAM under Windows 7 Operation System. The computational times of the
methods are limited to 3600 seconds. Each instance is tested 10 times by
each approach, to obtain its average value.

5.1. Out-of-sample test

We test the solutions obtained by the two methods in a large set of
scenarios, namely the out-of-sample test (Zhang et al., 2016; Zhang et al.,
2017; Zhang et al., 2018). In the scenarios, customer demands are generated
following a Log-Normal distribution and satisfying the specified information,
representing the realization of customer demands (Xie and Ahmed, 2018).
To determine the number of scenarios, we have tested 1000, 5000, 10,000
scenarios (Bertsimas et al., 2017; Zhang et al., 2017). Experiments show
that three scenario numbers provide very similar results, but 5000 and 10,000
scenarios are extremely time-consuming. Besides, Xie and Ahmed (2018)
use 1000 scenarios to evaluate their methods. Thus, we test the solutions
obtained by the two methods in 1000 scenarios. As the handling module
selection is considered as the tactical-level decision, it should be determined
before the realization of customer demands. That is, for each method, based
on its obtained handling module selection:

(1) Under each scenario out of the 1000 ones, the vehicle routing decision
and the customer inventory quantities in each period are determined
by solving [P3] via calling CPLEX.
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(2) Then the out-of-sample performance of each method is evaluated by
the following metrics:

(i) the service level by the following formula: s1
1000
× 100%, where s1 de-

notes the number of scenarios without stockout and overfilling cus-
tomers’ warehouses;

(ii) the risk level calculated by s2
1000
× 100%, where s2 is the number of

scenarios in which the total system cost exceeds the budget;

(iii) the coverage level obtained by times
1000×n×|T | × 100%, where 1000× n×

|T | denotes the total frequency of customer demands and times is
the number of times for no stockout and overfilling the customers’
warehouses.

5.2. An illustrative example

Preliminary analyses are conducted to adjust the parameters for the pro-
posed two solution methods (please see Appendix C), such that each method
can obtain solutions with high quality under the selected parameters, to
make them comparable. Parameters for the proposed two solution methods
are shown in Table 1. In the following, θ1, θ2, θ3 and |Ω| for the SAA are set
to be 6, 6, 1 and 20, and γ1, γ2, ∆ for the MIP-based hierarchical approach
are set to be 0.2 and 0.4.

Table 1: Input parameters for the solution methods

SAA
MIP-based
hierarchical approach

Parameters θ1 θ2 θ3 |Ω| γ1 γ2 ∆ MAXITER
Values 6 6 1 20 0.2 0.4 0.2 10

An illustrative example based on a small network is studied to compare
the proposed two solution methods with an exact method by calling CPLEX,
which will be detailed later. The parameters of the example are presented
in Table 2, where there are 3 customers and 2 time periods in total. It
is assumed that the customer demands are independent and its probability
distribution is discrete (Table 3). The total number of possible scenarios is
46 = 4096, where 4 denotes the number of probabilities in Table 3 and 6 is
the number of demands of 3 customers during 2 periods. According to Table
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Table 2: Input parameters for the small network

Parameters Value

Number of customers (n) 3
Number of time periods (|T |) 2

Vehicle capacity (C) 6
Fixed vehicle cost (ft) [5,10]

Inventory holding cost (cinvit ) 5
Inventory level at the beginning (Ii0) 0

Coordinates (1, 5), (1, 4), (5, 5)
Warehouse capacities (Wh) [4, 6, 8]

Handling cost (cah) [100, 200, 300]
Capital budget (B) 1000

Table 3: The probability distribution of customer demands

Demands 2 4 6 8

Probability 0.4 0.4 0.1 0.1

Table 4: Experimental results of the small network instance

Exact method SAA
MIP-based
hierarchical
approach

Customers\ Handling modules 1 2 3 1 2 3 1 2 3

1 1 1 1
2 1 1 1
3 1 1 1

Time (seconds) 312.6 15.2 13.8
Service level (%) 100 100 100

Risk level (%) 0 0 0
Coverage level (%) 100 100 100
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3, the given mean and standard deviation of each customer’s demand can be
calculated as 3.8 and 3.77.

Table 4 reports the handling module selection obtained by the exac-
t method, the SAA and the MIP-based hierarchical approach. Note that
the exact method is based on enumerating all 4096 scenarios, in which C-
PLEX is called to directly solve [P3]. In each row i ∈ {1, 2, 3}, if there is a
number “1”, it means that the handling module of customer i’s warehouse is
h ∈ H, i.e., zih = 1. The computational times of the exact method, the SAA
and the MIP-based hierarchical approach are 312.6, 15.2 and 13.8 seconds,
respectively. We can observe from Table 4 that the service level, risk level
and coverage level are the same by the three methods, but the computational
time of the SAA and the MIP-based hierarchical approach are only 4.86%
and 4.41% of the exact method by calling CPLEX, respectively. The results
for the tested instance show that the SAA and the MIP-based hierarchical
approach perform well for the small-size instance.

However, in practice, as the probability distribution of demands is more
complex and the possible scenarios cannot be enumerated, the exact method
is not appropriate for large-size instances. Therefore, in the following, we
apply the SAA and the MIP-based hierarchical approach to test large-size
instances.

5.3. Numerical experiments on randomly generated instances

Numerical experiments on randomly generated instances with differen-
t scales are conducted. The tested data is detailed in Table 5. Parameters
C, ft, c

inv
it , Ii0 are randomly and uniformly generated as in line with Yu et al.

2012 from the intervals [100, 400], [400, 700], [0.5, 2], [50, 400], and |T | = 5.
The SAA is based on a finite-sample approximation, via a set of scenarios
Ω with randomly generated demand. The way (i.e., selected empirical dis-
tribution) to randomly generate demands may impact the performance of
the SAA. Therefore, two common distributions are employed, i.e., Unifor-
m distribution and Normal distribution. Since the correlation of customer
demands depends on the specific application background, it is necessary to
preprocess the limited historical data. Besides, the correlation may be posi-
tive or negative. In order to illustrate the proposed approaches, we consider
a neutral correlation, i.e., the customer demands in different time periods
are assumed as independently distributed (Chen et al., 2010). The compu-
tational results are reported in Table 6, where “-” denotes that no feasible
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Table 5: Input data of the tested instances

Parameters
Related to
previous work

Randomly
generated Value

Mean demand (µit) X [100, 400]
Standard deviation of demand (σit) X 0.2µit

Vehicle capacity (C) X [100, 400]
Fixed vehicle cost (ft) X [400, 700]

Inventory holding cost (cinvit ) X [0.5, 2]
Inventory level at the beginning (Ii0) X [50, 400]

Vehicle delivering cost (cij) X
Geometrical
distance from
a 10× 10 square

Traveling cost of an empty vehicle (cbi0) X 10× ci0
Warehouse capacities (Wh) X [200, 300, 400, 500]

Handling cost (cah) X [400, 600, 800, 1000]
Capital budget (B) X 11.5× 103 × n

solution can be found within 3600 seconds.
From columns 6, 10 and 14 in Table 6, it can be obtained that the com-

putational times of the proposed two solution methods increase with the
problem scale. The computational times in columns 6 and 10 of the SAA are
much greater than those of the MIP-based hierarchical approach. From the
25-th row in Table 6, it can be observed that the SAA loses its power to solve
the instances exceeding 51 customers. Besides, columns 4-10 in Table 6 show
that solutions obtained by the SAA under Normal distribution and Unifor-
m distribution demands are very similar, in terms of the service level, risk
level, coverage level and computational time. Thus it can be concluded that
the impact of different demand distribution for the SAA is quite small. In
addition, the solutions obtained by the SAA and the MIP-based hierarchical
approach are similar.

Moreover, it can be also obtained from Table 6 that with the expansion
of the problem scale, the service level has not become worse. The reasons
might be as follows. As in line with Yu et al. (2012), the fleet of vehicles
and the number of tours a vehicle performs in each period are not restricted.
That is, the increase of customers’ demand can be satisfied by employing
more vehicles or performing more vehicle tours. Thus, the expansion of
the problem scale, i.e., the increase of demand, mainly yields more cost.
Besides, the capital budget in the computational experiments is set to be
11.5 × 103 × n, where n denotes the number of customers. That is, the
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capital budget is proportional to the number of customers. Therefore, the
capital budget increases with the expansion of the problem scale.

5.4. Sensitivity analyses

Table 7: Input data of the case

Customers (i) Ii0
µit cinv

it

1 2 3 4 5 1 2 3 4 5

1 59 345 171 366 382 155 1.37 1.61 1.32 1.15 0.85
2 52 334 139 171 249 283 0.50 0.76 0.84 1.58 1.60
3 64 297 319 145 238 215 0.55 0.58 0.76 1.45 0.96
4 85 316 184 191 116 345 1.32 1.16 1.59 0.75 1.34
5 57 387 259 194 376 162 1.78 0.84 0.59 1.94 1.06
6 51 116 142 380 236 133 1.19 1.07 1.44 0.79 1.65
7 90 258 216 293 247 131 1.91 0.69 1.05 0.84 1.19
8 77 179 230 318 400 325 1.45 1.11 1.70 1.92 1.51
9 55 378 288 128 323 343 1.60 1.95 0.61 1.64 1.72
10 75 294 331 301 109 280 1.44 0.76 0.87 0.78 0.79
11 70 284 188 214 204 289 1.70 0.72 0.67 0.64 1.25
12 88 365 317 229 259 218 0.75 1.69 1.93 1.00 1.26
13 89 241 164 206 136 332 0.76 1.45 1.99 0.76 1.41
14 91 174 384 104 171 112 1.42 1.41 1.09 1.81 1.32
15 96 288 143 183 307 172 0.51 0.69 1.44 0.86 1.46

In this part, sensitivity analyses on a instance with 15 customers are
conducted. The input data is generated in the way detailed in Table 5, such
that: (1) four handling modules are set as W1 = 200, W2 = 400, W3 =
600, W4 = 800, and ca1 = 400, ca2 = 600, ca3 = 800, ca4 = 1000; (2) the
coordinates of customers and central depot are first generated from a 10 ×
10 square, and cij is then calculated as the geometrical distance between
customers i and j and cbi0 = 10 × ci0; and (3) Ii0, µit and cinvit are shown in
Table 7. In the following, unless otherwise specified, (i) the fixed vehicle costs
in |T | = 5 periods: f1 = 615, f2 = 456, f3 = 650, f4 = 424, f5 = 480, (ii) the
vehicle capacity is set to be 300, (iii) the capital budget is set as 11.5×103×n,
where n = 15, and (iv) the standard deviation is set as σit = 0.2 × µit. For
the MIP-based hierarchical approach, the limited risk level for exceeding the
capital budget is set as α = 0.5, and the maximum number of iteration is 10.

The impact of the budget value is first examined, and the budget is set
from 9 × 103 × n, 9.5 × 103 × n, ..., 12 × 103 × n. The numerical results
are reported in Table 8 and Figure 2. It can be obtained that the service
level, risk level and coverage level obtained by the SAA and the MIP-based
hierarchical approach are very similar. However, from columns 5 and 9 in
Table 8, we can observe that the computational time of the SAA is about
7 times larger than that of the MIP-based hierarchical approach. As the
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Table 8: The impact of capital budget B

SAA MIP-based hierarchical approach
B
(×103 × n)

Service
level (%)

Risk
level (%)

Coverage
level (%)

Time
(seconds)

Service
level (%)

Risk
level (%)

Coverage
level (%)

Time
(seconds)

9.0 0.00 100.00 89.58 160.1 0.00 100.00 89.84 21.4
9.5 0.00 100.00 89.54 159.8 0.00 100.00 89.54 21.2
10.0 0.00 100.00 89.59 153.2 0.00 100.00 89.58 20.9
10.5 0.00 65.00 91.13 155.2 0.00 65.10 91.14 20.8
11.0 1.00 25.00 94.72 157.8 1.02 25.01 94.73 22.4
11.5 40.00 2.00 98.21 152.3 40.21 2.01 98.21 21.7
12.0 92.00 0.00 99.83 156.4 92.31 0.00 99.84 22.7

MIP-based hierarchical approach has a relatively slight advance, in Figure
2, we only plot the performance of this method. The service level and the
coverage level increase with the capital budget, as shown in Figure 2. That
may be because that handling module with higher warehouse capacity and
more vehicles can be selected with larger capital budget. Moreover, as the
risk level is measured by the probability of exceeding the capital budget, thus
it is understanding that the risk level decreases when the capital budget is
getting larger, as illustrated in Figure 2.

Figure 2: The impact of capital budget

We then examine the sensitivity of the solutions with the standard de-
viation, i.e., σit, and the standard deviation is set from 0, 0.1 × µit, ...,
1 × µit. Besides, as the standard deviation σit is set to be related to the
mean customer demand µit, we also test whether the results are influenced
by parameter settings, and each mean customer demand µit is randomly and
uniformly generated from intervals [100,200], [100,300], [100, 400] and [100,
500]. Numerical results are reported in Figure 3, from which we can observe
that the changing trends of the service level, the coverage level and the risk
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level are different under different µit. When µit is small, i.e., µit ∈ [100, 200],
the solution quality is very high under all tested σit, such that the coverage
level and the service level are very close to 1 and the risk level is close to
0. Under µit ∈ [100, 300], larger µit may exist. With the increase of the
σit, the number of customers with large demands increases, thus the service
level decreases. In addition, under µit ∈ [100, 400], we observe that with the
increase of σit, the service level increases at first, then fluctuates slightly, and
finally decreases. The reason may be that when σit starts to increase from 0,
the customer demands are relatively fixed in the given interval [100,400] and
there are more smaller demands, and thus more demands may be satisfied
under given vehicle and warehouse capacities. However, as σit continues to
increase, the number of small customer demands and large customer demands
increase simultaneously, thus the service level fluctuates slightly. When σit is
getting larger, there may exist the situation where the demand is too large to
be satisfied, thus the service level decreases. Besides, the risk level increases
with σit. The reason may be that when σit is getting larger, handling mod-
ule with larger module capacity and higher handling cost will be selected to
balance the demand fluctuation, leading to a larger cost. Moreover, when
µit ∈ [100, 500], there are more larger µit, leading to more larger customer
demands, and thus the solution quality is quite poor under all tested σit.

The impact of the vehicle capacity is further examined, and the capacity
is set from 100, 150, ..., 400. Computational results of the MIP-based hier-
archical approach are shown in Figure 4. It can be obtained that the service
level and coverage level increase with the vehicle capacity. The reason may
be that when the vehicle capacity is getting larger, more demands can be
covered by one vehicle. Besides, the risk level decreases with the increase
of the vehicle capacity. That may be because that larger vehicle capacity
requires less vehicles to meet customer demands, leading to less system cost.

The impact of the inventory level of each customer at the beginning is
tested, and the input or the initial value of the inventory level is set from
I0− 50, I0− 40, ..., I0 + 50. Numerical results of the MIP-based hierarchical
approach are shown in Figure 5. It can be obtained that the service level
and the coverage level increase with the input inventory level. The reason
may be that when the input inventory level at the beginning increases, same
number of vehicle tours can satisfy more demands. Besides, the impact of
the input inventory level on the risk level is little.

In sum, it can be obtained that (i) solutions obtained by the SAA and
the MIP-based hierarchical approach are similar, in terms of service level,
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Figure 3: The impact of standard deviation under different mean demands

Figure 4: The impact of vehicle capacity
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Figure 5: The impact of the inventory level at the beginning

risk level and coverage level; (ii) the computational time of the SAA is much
larger than that of the MIP-based hierarchical approach; (iii) with the in-
crease of the capital budget, the service and coverage levels increase and the
risk level decreases; (iv) when the standard deviations of customer demands
increase, the risk level increases; (v) under the given parameter setting of
mean customer demand µit, with the increase of the standard deviation of
each customer demand, the service and coverage levels increase at first and
then decrease slightly; (vi) with the increase of the vehicle capacity, the ser-
vice level and coverage level increase, and the risk level decreases; (vii) with
the increase of the input inventory level of each customer at the beginning,
the service and coverage levels increase, and the risk level does not change
very much; (viii) we recommend the MIP-based hierarchical approach as
solution method due to its efficiency.

In view of the above observation, we have made the following proposals
for the practitioners and managers:

(1) Trade-offs between the capital budget, the inventory level at the be-
ginning and the service level are remarkably important in supporting
the planning process for decision makers. A larger inventory level at
the beginning leads to a higher service level, while it also results in a
larger holding cost, thus a capital budget increase is needed.

(2) When the mean customer demands are quite small, there is no need to
increase the budget, even if the standard deviations are getting larg-
er. However, when there are very large mean customer demands, an
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increase of budget is needed, regardless the standard deviations. In
other situations, the standard deviation is a significant factor affecting
decisions.

(3) The vehicle capacity largely impacts the service level, the coverage level
and the risk level, i.e., under large vehicle capacity the same number of
vehicle delivery tours can satisfy more customer demands, leading to
high coverage level and service level. Thus the vehicle fleet should be
hired reasonably.

6. Conclusion

This paper studies a stochastic IRP with various alternative handling
modules and limited capital budget, to maximize the service level. Cus-
tomer demands are assumed to be stochastic, and only partial knowledge on
the probability distribution, i.e., the mean and covariance matrix, is known.
A novel distributionally robust chance constraint formulation is proposed,
in which the objective function is probabilistic and the total system cost is
controlled by a chance constraint. As the formulation cannot be directly and
optimally solved under partial distributional information, a equivalent trans-
formation model is proposed and approximation methods are applied. Based
on two approximation methods, the SAA and the MIP-based hierarchical
approach based on the problem characteristics, are developed. Numerical
experiments are conducted to evaluate the applicability and the performance
of the two methods. We also make some proposals for the practitioners and
managers who wish to attain a high service level.

Future research directions may include: (1) to design meta-heuristics
which can solve the problem more efficiently, (2) to find the approximation
approach to the distributionally robust chance constrained formulation with
higher accuracy, and (3) to develop algorithms to calculate an upper bound
on the objective function, i.e., the customer service level maximization, to
measure the quality of solution approaches (i.e., relative gap).
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Appendix A: Approximation of chance constrained total cost

Due to the non-linear expression, i.e., max

{
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, 0

}
de-

noted by I+
it , Constraint (7) cannot be well addressed. It is still difficult

to solve model [P4]. Therefore, in this part, we develop a conservative
approximation for Constraint (7). For ease of exposition, we use Iit =(
Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis

)
in the following. Hereafter, the discussion is for any

probability distribution P, and thus we omit P for ease of exposition. Firstly,
a new continuous and nonnegative variable, ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T , is
introduced. That is, Prob (ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T ) = 1. For a better ex-
position, suppose Prob (ψit ≥ Iit, ∀i ∈ N\{0}, t ∈ T ) = p1, where p1 ∈ [0, 1].
Thus we have the following relations:

Prob
(
ψit ≥ I+

it , ∀i ∈ N\{0}, t ∈ T
)

=Prob (ψit ≥ Iit, ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T )

=Prob ({ψit ≥ Iit, ∀i ∈ N , t ∈ T} ∩ {ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T})
=Prob (ϕit ≥ Iit, ∀i ∈ N\{0}, t ∈ T )

− Prob ({ϕit ≥ Iit, ∀i ∈ N\{0}, t ∈ T} ∩ {ϕit < 0, ∃i ∈ N\{0}, t ∈ T})
=Prob (ϕit ≥ Iit, ∀i ∈ N\{0}, t ∈ T )

=p1.

Note that as ϕit is nonnegative by the definition, i.e., ϕit ≥ 0, ∀i ∈ N\{0}, t ∈
T and Prob ({ϕit < 0, ∃i ∈ N\{0}, t ∈ T}) = 0, thus

Prob ({ϕit ≥ Iit, ∀i ∈ N\{0}, t ∈ T} ∩ {ϕit < 0, ∃i ∈ N\{0}, t ∈ T}) = 0.

That is, given ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T , inequality ψit ≥ I+
it , ∀i ∈

N\{0}, t ∈ T is equivalent to inequality ψit ≥ Iit, ∀i ∈ N\{0}, t ∈ T . It
is understanding that if inequality ψit ≥ I+

it , ∀i ∈ N\{0}, t ∈ T holds,∑
i∈N\{0}

∑
t∈T

cinvit · ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit · I+
it must be satisfied, while the converse

may not be true. Suppose Prob

( ∑
i∈N\{0}

∑
t∈T

cinvit · ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit · I+
it

)
=
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p2, where p2 ∈ [0, 1], we have

Prob
(
ψit ≥ I+it , ∀i ∈ N\{0}, t ∈ T

)
≤ Prob

 ∑
i∈N\{0}

∑
t∈T

cinvit · ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit · I+it

 ,

that is, p1 ≤ p2.
In the following, for ease of exposition, we use a new notation cost′ =(∑

t∈T

∑
i∈N

∑
j∈N,j 6=i

cijyijt +
∑
t∈T

∑
i∈N\{0}

ftxi0t +
∑

i∈N\{0}

∑
t∈T

cbi0xi0t +
∑

i∈N\{0}

∑
h∈H

cahzih

)
.

It can be observed that if the following two inequalities, i.e.,
∑

i∈N\{0}

∑
t∈T

cinvit ·

ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit ·I+
it and

∑
i∈N\{0}

∑
t∈T

cinvit ·ψit+cost′ ≤ B hold simultaneous-

ly, inequality
∑

i∈N\{0}

∑
t∈T

cinvit ·I+
it +cost′ ≤ B must be satisfied, but the converse

may not be true. Suppose that Prob

( ∑
i∈N\{0}

∑
t∈T

cinvit · I+
it + cost′ ≤ B

)
= p3,

where p3 ∈ [0, 1], and Prob

( ∑
i∈N\{0}

∑
t∈T

cinvit · ψit + cost′ ≤ B

)
= 1, we have

Prob

 ∑
i∈N\{0}

∑
t∈T

cinvit · I+it + cost′ ≤ B

 = p3

≥Prob

 ∑
i∈N\{0}

∑
t∈T

cinvit ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit I+it

⋂
 ∑

i∈N\{0}

∑
t∈T

cinvit ψit + cost′ ≤ B




=Prob

 ∑
i∈N\{0}

∑
t∈T

cinvit ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit I+it

−
Prob

 ∑
i∈N\{0}

∑
t∈T

cinvit ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit I+it

⋂
 ∑

i∈N\{0}

∑
t∈T

cinvit ψit + cost′ > B




=Prob

 ∑
i∈N\{0}

∑
t∈T

cinvit ψit ≥
∑

i∈N\{0}

∑
t∈T

cinvit I+it


=p2,

that is, p2 ≤ p3 thus p1 ≤ p2 ≤ p3. Based on the above statement, it can be
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obtained that if the following inequalities hold, i.e.,
Prob (ψit ≥ Iit, ∀i ∈ N\{0}, t ∈ T ) = p1,
Prob (ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T ) = 1,

Prob
( ∑
i∈N\{0}

∑
t∈T

cinvit · ψit + cost′ ≤ B
)

= 1,

p1 ≥ 1− α,

inequality Prob

{ ∑
i∈N\{0}

∑
t∈T

cinvit · I+
it + cost′ ≤ B

}
= p3 ≥ 1 − α must be

satisfied.
Therefore, Constraint (7) can be approximated by the following three

inequalities:

ψit ≥ 0, ∀i ∈ N\{0}, t ∈ T

infP∈P ProbP

(
ψit ≥ Ii,0 +

t∑
s=1

qis −
t∑

s=1

ξis, ∀i ∈ N\{0}, t ∈ T
)
≥ 1− α

∑
i∈N

∑
t∈T

cinvit · ψit +
∑
t∈T

∑
i∈N

∑
j∈N,j 6=i

cij · yijt +
∑
t∈T

∑
i∈N\{0}

ft · xi0t+∑
i∈N\{0}

∑
t∈T

cbi0xi0t +
∑

i∈N\{0}

∑
h∈H

cah · zih ≤ B

Appendix B: Approximation of distributionally robust chance con-
straints

By introducing a vector δit = [1, ..., 1, 0, ..., 0]T, ∀i ∈ N\{0}, t ∈ T , where
the first t elements in this vector are equal to 1, Constraint (27) can be
rewritten as following:

inf
P∈P

ProbP

(
t∑

s=1

ξis ≤ Ii,0 +
t∑

s=1

qis

)
≥ 1− ε1it, ∀i ∈ N\{0}, t ∈ T,

or

inf
P∈P

ProbP

(
δit

Tξi ≤ Ii,0 +
t∑

s=1

qis

)
≥ 1− ε1it, ∀i ∈ N\{0}, t ∈ T,
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which can be conservatively approximated by the method introduced by
Zhang et al. (2017) as:√

1

1− a− b

(
1 +

√
ε1it · b

1− ε1it

)√
δit

TΣiδit ≤

√
ε1it

1− ε1it

(
Ii,0 +

t∑
s=1

qis − µi
Tδit

)
,

∀i ∈ N\{0}, t ∈ T

where the values of a, b and γ1, γ2 are restricted by the following equalities:

γ1 =
b

1− a− b
, γ2 =

1 + b

1− a− b

Similarly, a new coefficient column vector πit = [−1, ...,−1, 0, ..., 0]T, ∀i ∈
N\{0}, t ∈ T is introduced, in which the first t elements are −1. Constraint
(28) can be rewritten as:

inf
P∈P

ProbP

(
−

t∑
s=1

ξis ≤ −Ii,0 −
t∑

s=1

qis +
∑
h∈H

Wh · zih

)
≥ 1− ε2it, ∀i ∈ N\{0}, t ∈ T,

or

inf
P∈P

ProbP

(
πT
itξi ≤ −Ii,0 −

t∑
s=1

qis +
∑
h∈H

Wh · zih

)
≥ 1− ε2it, ∀i ∈ N\{0}, t ∈ T.

which can be approximated by the following inequality:√
1

1− a− b

(
1 +

√
ε2it · b

1− ε2it

)√
πitTΣiπit

≤

√
ε2it

1− ε2it

(
−Ii,0 −

t∑
s=1

qis +
∑
h∈H

Wh · zih − µi
Tπit

)
, ∀i ∈ N\{0}, t ∈ T

Moreover, chance constraint (34) can be rewritten as:

inf
P∈P

ProbP

(
−

t∑
s=1

ξis ≤ ψit − Ii,0 −
t∑

s=1

qis

)
≥ 1− αit, ∀i ∈ N\{0}, t ∈ T,
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or

inf
P∈P

ProbP

(
πT
itξi ≤ ψit − Ii,0 −

t∑
s=1

qis

)
≥ 1− αit, ∀i ∈ N\{0}, t ∈ T,

which can be approximated by:√
1

1− a− b

(
1 +

√
αit · b

1− αit

)√
πitTΣiπit ≤√

αit
1− αit

(
ψit − Ii,0 −

t∑
s=1

qis − µi
Tπit

)
, ∀i ∈ N\{0}, t ∈ T

Appendix C: Preliminary analysis

Preliminary analyses (on the instance in Section 5.4) are conducted to
adjust the input parameters for the SAA and the MIP-based hierarchical ap-
proach. The impact of θ1, θ2 and θ3 on the SAA is first tested, and 20 com-
binations of θ1, θ2 and θ3 are considered: (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4),
(1, 1, 5), (1, 1, 6), (1, 1, 7), (1, 1, 8), (1, 1, 9), (1, 1, 10), (2, 2, 1), (3, 3, 1), (4, 4, 1),
(5, 5, 1), (6, 6, 1), (7, 7, 1), (8, 8, 1), (9, 9, 1), (10, 10, 1), (20, 20, 1). The com-
putational results are reported in Figure 6, where the numbers in the hori-
zontal axis denote the above 20 combinations. We can observe that under
the 20th combination (20, 20, 1) the service level and coverage level are the
highest, while the risk level is also the highest. Except for (20, 20, 1), under
the 15th combination (6, 6, 1), the service level is the highest and the service
level is the smallest and the coverage level is relatively high. Therefore, we
set θ1 = 6, θ2 = 6, θ3 = 1 for the SAA.

The preliminary analysis on number of scenarios for data training, i.e.,
|Ω|, is then examined on a instance with 17 customers, and the number of
scenarios is set from 5, 10, ..., 50. The numerical results are reported in
Figure 7, where the number of scenarios is denoted in the horizontal axis.
It can be observed that the computational time increases with |Ω|. The
risk levels and the coverage levels are very similar under different values of
|Ω|. Besides, the service level obtained under |Ω| = 20 is larger than those
obtained under |Ω| = 5, 10, 15 and similar to those obtained under other
values of |Ω|. Therefore, based on the tradeoff between the computational
time and the solution quality, |Ω| is set to be 20.
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To determine the combination of parameters γ1 and γ2 for the MIP-
based hierarchical approach, 20 parameter combinations are tested. Results
are shown in Table 9 and Figure 8. It can be observed that the MIP-based
hierarchical approach under (γ1, γ2) = (0.2, 0.4) performs better than that
under other combinations. The service level, the risk level and the coverage
level are 40.12%, 0.00% and 98.76%, respectively, which are underlined and
in bold in Table 9 and marked with a red border in Figure 8. It can be
obtained from Table 9 that the average values of the service level, the risk
level and the coverage level are 38.28%, 0.01% and 98.53%, respectively. The
largest and smallest values of the service level are 40.12% and 37.14%, and
the largest and smallest values of the risk level are 0.03% and 0.00%, and the
largest and smallest values of the coverage level are 98.84% and 98.17%. In
sum, the service levels, the risk levels and the coverage levels are very close
to their average values. Therefore, the trend of the curve in Figure 8 is not
obvious.

Therefore, in the numerical experiments, the SAA is conducted under
parameters θ1 = 6, θ2 = 6, θ3 = 1, and the MIP-based hierarchical approach
is conducted under γ1 = 0.2 and γ2 = 0.4, to obtain solutions with high
quality for each method and to make the two methods comparable.

Figure 6: The impact of combinations of θ1, θ2 and θ3 on the SAA
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