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The aim of the present work is to develop a seamless hybrid Reynolds-averaged Navier–Stokes
�RANS� large-eddy simulation �LES� model based on transport equations for the subgrid stresses,
using the elliptic-blending method to account for the nonlocal kinematic blocking effect of the wall.
It is shown that the elliptic relaxation strategy of Durbin is valid in a RANS �steady� as well as a
LES context �unsteady�. In order to reproduce the complex production and redistribution
mechanisms when the cutoff wavenumber is located in the productive zone of the turbulent energy
spectrum, the model is based on transport equations for the subgrid-stress tensor. The partially
integrated transport model �PITM� methodology offers a consistent theoretical framework for such
a model, enabling to control the cutoff wavenumber �c, and thus the transition from RANS to LES,
by making the C�2

coefficient in the dissipation equation of a RANS model a function of �c. The
equivalence between the PITM and the Smagorinsky model is shown when �c is in the inertial range
of the energy spectrum. The extension of the underlying RANS model used in the present work, the
elliptic-blending Reynolds-stress model, to the hybrid RANS-LES context, brings out some
modeling issues. The different modeling possibilities are compared in a channel flow at Re�=395.
Finally, a dynamic procedure is proposed in order to adjust during the computation the dissipation
rate necessary to drive the model toward the expected amount of resolved energy. The final model
gives very encouraging results in comparison to the direct numerical simulation data. In particular,
the turbulence anisotropy in the near-wall region is satisfactorily reproduced. The contribution of the
resolved and modeled fields to the Reynolds stresses behaves as expected: the modeled part is
dominant in the near-wall zones �RANS mode� and decreases toward the center of the channel,
where the relative contribution of the resolved part increases. Moreover, when the mesh is modified,
the amount of resolved energy changes but the total Reynolds stresses remain nearly constant.
© 2010 American Institute of Physics. �doi:10.1063/1.3415254�

I. INTRODUCTION

Problems ranging from noise prediction to fluid/structure
interaction or thermal fatigue require the computation of
time-dependent characteristics of complex flows. Reynolds-
averaged Navier–Stokes �RANS� computations are often
used in industrial configurations because of their low com-
putational cost, which is weakly dependent on the Reynolds
number, but are not able to provide unsteady information. On
the contrary, large-eddy simulation �LES� can provide the
necessary information by resolving the large-scale structures
and modeling the smaller scales, which have a more univer-
sal behavior. However, at high Reynolds numbers, the com-
putational cost of LES is too high for complex industrial
applications. One reason is that the cutoff wavenumber, sepa-
rating resolved and modeled scales, must be sufficiently
large for the energetic scales to be resolved, leading to the
use of fine meshes. In particular, a limitation of LES is the
resolution required for the crucial near-wall region, which is

to be solved in a quasi-direct numerical simulation �DNS�
mode, in order to avoid the use of wall functions.

Therefore, a wide variety of relatively low-cost strate-
gies �compared to LES� have recently emerged for perform-
ing unsteady computations:1 very large-eddy simulation
�VLES�,2 limited numerical scales �LNS�,3 detached eddy
simulation �DES�,4 unsteady RANS �URANS�,5–9 organized
eddy simulation �OES�,10 scale-adaptive simulation �SAS�,11

partially averaged Navier–Stokes,12 partially integrated
transport model �PITM�,13,14 and additive RANS/DNS
filtering,15–17 among others.

Computations based on a RANS model in some regions
of the flow, in particular in the near-wall zones and on LES
in some other regions, where explicit computation of the
large-scale structures is required, as in separated zones, are
referred to as hybrid RANS-LES computations. When the
transition RANS-LES occurs in a continuous manner, the
model is said to be seamless or continuous, sometimes
global1 or unified.18 In homogeneous flows, this type of
model can be seen as a LES with a cutoff wavenumber con-
tinuously going to zero or, equivalently, as a LES with a filter
width continuously going to infinity, this limit corresponding
formally to the RANS approach �spatial average�. For inho-
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mogeneous and stationary flows, similar approaches can be
formulated in the framework of temporal filtering, leading to
hybrid temporal LES-RANS models.19,20

Using such a model between a RANS region and a LES
region, there is necessarily, by continuity, a region where the
cutoff wavenumber is located in the energetic part of the
spectrum. The challenge is thus to be able to reproduce the
complex production and redistribution mechanisms occur-
ring at these scales, which are very difficult, if not impos-
sible at all, to be accounted for using an algebraic relation
between the subgrid-stress tensor and the resolved strain ten-
sor. In the context of unsteady RANS, it has been highlighted
by several authors, in the case of a turbulent field subject to
an imposed, periodic strain �e.g., Hadžić, Hanjalić, and
Laurence;21 Carpy and Manceau22�, that a second-moment
closure is necessary to provide a correct physical representa-
tion. Thus, in the present paper, a model based on transport
equations for the subgrid-stress tensor is developed. This ap-
proach was initially suggested in the early work of
Deardorff,23 and followed, e.g., by Schumann24 and more
recently by Chaouat and Schiestel14 and Perot and
Gadebusch.25 The better representation of the physical
mechanisms is at the price of a moderate increase in the
computational cost, due to the additional transport equations.
However, a model that is able to correctly reproduce the
physical mechanisms when the cutoff wavenumber is in the
energetic range is expected to be able to run in VLES mode
far from the wall, i.e., on meshes too coarse to perform a
standard LES. A slight coarsening of the mesh can by far
compensate for the cost of solving additional transport equa-
tions.

Another challenge is to provide a theoretical framework
to the separation resolved/modeled scales which bridges
RANS and LES. Recently, such a theoretical framework has
been proposed,13 the so-called PITM, and used with transport
equations for the subgrid-stress tensor and the dissipation
rate.14 As a result of modeling in spectral space, with a vari-
able cutoff wavenumber �c, compatibility is guaranteed with
RANS ��c→0� and LES.

The originality of the present work is the use of transport
equations for the subgrid-scale �SGS� stresses based on the
application of the elliptic-blending strategy to reproduce the
nonviscous, nonlocal blocking effect of the wall. Similar to
the RANS context,26 elliptic relaxation is a method based on
a theoretical argumentation that enables the reproduction of
the influence of the wall on turbulence without the introduc-
tion of so-called “damping function,” which is empirical and
lacks theoretical foundations, in particular for unsteady ve-
locity and pressure fields. The present model is thus an ad-
aptation to the hybrid RANS–LES approach of the elliptic-
blending Reynolds-stress model �EB-RSM�,27,28 which is a
near-wall extension of the Speziale–Sarkar–Gatski �SSG�
model,29 using the elliptic relaxation strategy of Durbin.26

This model was successfully applied to different configura-
tions in a RANS framework.28,30–36

The aim of the present paper is thus to adapt the elliptic-
blending model to the hybrid context, using the PITM
methodology.13,14 Section II introduces the general filtering

approach of Germano,37 applied to the Navier–Stokes equa-
tions, which provides an unified formalism for RANS and
LES equations. The model equations of the PITM and the
elliptic-blending strategy are presented in Sec. III. The adap-
tation of the EB-RSM brings out some issues which are ex-
posed in Sec. III C. The numerical methods are provided in
Sec. IV A, and then the modeling issues are investigated and
discussed in Secs. IV B–IV D. Finally, in Sec. V, a dynamic
procedure is proposed to adapt the dissipation rate in order to
reach the expected balance between resolved and modeled
energy. A channel flow at Re�=395 is used to evaluate the
modeling options, in comparison against DNS data.38

II. FILTERED EQUATIONS

As usual in LES, the formalism is introduced in the
frame of homogeneous flows, and extended to inhomoge-
neous flows afterwards. The instantaneous velocity and pres-
sure fields are denoted by Ui

� and P�, respectively. The in-
stantaneous flow is driven by the incompressible Navier–
Stokes equations

�Ui
�

�t
+ Uj

��Ui
�

�xj
= −

1

�

�P�

�xi
+ �

�2Ui
�

�xj � xj
, �1�

�Uj
�

�xj
= 0. �2�

In the context of LES and hybrid methods, the instantaneous

velocity is decomposed into a resolved part Ũi and a residual
part ui�, such that

Ui
� = Ũi + ui�. �3�

The resolved velocity is obtained by the application to the
instantaneous velocity of a filter F, of characteristic width � f

Ũi�x,t� = �Ui
�� =� F�x,��Ui

���,t�d� , �4�

where the brackets denote the filtering operator. The most
common filters are the Gaussian filter, the top-hat filter, and
the spectral cutoff filter. In the case of a spectral cutoff filter,
the cutoff wavenumber separating resolved and modeled
scales is defined by �c=� /� f. Wavenumbers smaller than �c

in the turbulent energy spectrum are explicitly resolved,
whereas wavenumbers higher than �c are modeled �see Fig.
1�. The ensemble average .̄ �Reynolds average� of Ui

� is de-
noted by Ui=Ui

�. The large-scale fluctuation is defined by

ui� = Ũi − Ui, �5�

and the total fluctuation by

ui = Ui
� − Ui = ui� + ui�. �6�

Similarly, the instantaneous pressure P� is decomposed into a

filtered, resolved part P̃ and a residual fluctuating part p�.

The filtered field is incompressible, i.e., �kŨk=0, and the
filtered momentum equation is written as37
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D̃Ũi

D̃t
= −

1

�

�P̃
�xi

+ �
�2Ũi

�xj � xj
−

��ij

�xj
, �7�

where D̃ / D̃t=�t+ Ũk�k and �ij is the SGS tensor, which is the
tensor of the generalized central moments �ij =��Ui

� ,Uj
�� de-

fined by ��a ,b�= �ab�− �a��b� for any variables a and b. The
exact transport equation for �ij is given by Germano37

D̃�ij

D̃t
= −

���Ui
�,Uj

�,Uk
��

�xk
+ �

�2�ij

�xk � xk
− 2��� �Ui

�

�xk
,
�Uj

�

�xk
�

DijSGS

T DijSGS

� �ijSGS

−
1

�
��Ui

�,
�P�

�xj
� −

1

�
��Uj

�,
�P�

�xi
�− �ik

�Ũj

�xk
− � jk

�Ũi

�xk

�ijSGS

PijSGS

,

�8�

where

��a,b,c� = �abc� − �a���b,c� − �b���a,c� − �c���a,b�

− �a��b��c� . �9�

PijSGS
, �ijSGS

, DijSGS

� , DijSGS

T , and �ijSGS
represent SGS produc-

tion, dissipation, viscous diffusion, turbulent diffusion, and
velocity-pressure gradient correlation, respectively. Hereaf-
ter, �ijSGS

is called the pressure term for convenience.
In homogeneous flows, one of the advantages of using

the generalized central moments is that for any filter defined
by Eq. �4�, the total Reynolds stress Rij =uiuj can be simply
decomposed as37

Rij = �ŨiŨj − UiUj� + �ij . �10�

On the right hand side of Eq. �10�, �ij is the modeled part of
the Reynolds stress, and the term in parentheses represents
the resolved part. The total fluctuating kinetic energy is de-
fined by k= 1

2Rii=km+kr, where the modeled part is

km = kSGS =
1

2
�ii �11�

and the resolved part

kr =
1

2
�ŨiŨi − UiUi� =

1

2
ui�ui�. �12�

A noteworthy feature of Eq. �8� is that it is of the same form
as the standard RANS equations. When the cutoff wavenum-
ber goes to zero, such that all the turbulent scales are mod-
eled, �ij→Rij, kr→0, and km→k. In this case, the RANS
limit is formally reached in homogeneous flows, and the fil-
tered field corresponds to a spatially averaged field, equiva-
lent to the ensemble-averaged field.19 This feature provides
the basis for consistently bridging RANS and LES methods.

III. EQUATIONS OF THE MODEL

In this section, the hybrid RANS-LES approach, to so-
called PITM, initially proposed by Schiestel and Dejoan,13 is
first introduced �for a detailed presentation of all the steps of
the derivation of this approach, the reader is referred to the
original articles13,14,39�. Then, the compatibility of the
method with Smagorinsky-like models is analyzed in the
case of a cutoff wavenumber in the inertial range. In this
consistent framework, the SGS transport equations are mod-
eled and, in particular, the accounting of wall effects by el-
liptic blending is proposed.

A. Hybrid RANS-LES approach: The PITM

1. Rationale and equations

In seamless hybrid RANS/LES methods, the amount of
resolved energy is to be controlled by making the equations
of the model dependent on the filter width. As shown by
Schiestel and Dejoan,13 this can be achieved by using a
transport equation for the dissipation rate that is a modifica-
tion of the usual equation used in RANS. In order to know
how to modify this equation in order to make it dependent on
the cutoff wavenumber, homogeneous turbulence is consid-
ered, and the turbulence spectrum is partitioned into three
regions, �0,�c�, ��c ,�d�, and ��d ,	�, such that the model is a
particular case, reduced to only three spectral zones of the
multiscale models proposed by Schiestel.40–42 �c is the cutoff
wavenumber, characterizing the filter introduced in Sec. II.
The interval �0,�c� is explicitly resolved, whereas the inter-
val ��c ,	� is to be modeled. The wavenumber �d is defined
by the relation

�d = �c + 
m
�

km
3/2 , �13�

where �=�SGS= 1
2� j jSGS

is the Reynolds-averaged dissipation
rate and the constant 
m is chosen sufficiently large, such that
the contribution of the zone ��d ,	� to the total energy is
negligible �see Fig. 1�. This also implies that the energy
transfer at �d can be assumed equal to the dissipation rate,
i.e., spectral equilibrium is satisfied at this scale.13

In homogeneous flows, the evolution equation of the en-
ergy spectrum reads

cutoff
variable

Resolved scales Modelled scales

E
(κ

)

κc κd

FIG. 1. �Color online� Definition of the wavenumbers �c and �d.
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�E

�t
= − �ijAij + T − 2��2E , �14�

where �ij is the mean velocity gradient tensor, Aij the spec-
tral tensor integrated over a spherical shell, and T the spectral
transfer term. Integrating Eq. �14� in the two ranges of wave-
numbers ��c ,	� and ��d ,	�, introducing them into Eq. �13�
and taking the time derivative, it can be shown,13 after some
algebraic manipulations, that the derivative of the subgrid
turbulent energy and the dissipation rate can be written in a
form similar to the usual RANS equations

dkm

dt
= Pm − � �15�

and

d�

dt
= C�1

Pm�

km
− �C�1

−
km

�

d�d

dt
−

d�c

dt

�d − �c
�

C�2

�

�2

km
, �16�

where Pm= PSGS= 1
2 PjjSGS

is the production rate of SGS en-
ergy. Although these equations are formally similar to the
standard RANS equations, they involve SGS rather than
Reynolds-averaged variables. In order to guarantee compat-
ibility with the RANS limit, C�2

� must be equal to the RANS
coefficient C�2

when �c=0 and d�c /dt=0. This constraint
leads to

d�d

dt
= �C�1

− C�2
�
�

k
�d. �17�

Introducing Eq. �17� into the value of C�2

� defined in Eq. �16�,
and using the fact that �c��d, the coefficient C�2

� is found
implicitly dependent on the filter width through the relation

C�2

� = C�1
+ r�C�2

− C�1
� . �18�

r=km /k is the ratio modeled energy over total energy, which
is dependent on the cutoff wavenumber. As proposed by
Schiestel and Dejoan,13 using a spectral cutoff filter and a
Kolmogorov energy spectrum, the ratio r can be linked to the
cutoff wavenumber �c by

r =
1

k
�

�c

	

E���d� =
1

k
�

�c

	

CK�2/3�−5/3d�

=
3CK

2
��c

k3/2

�
	−2/3

. �19�

It is worth pointing out that in the present section, the study
of the way to modify the dissipation equation is carried out
using Fourier transforms in homogeneous flows. Conse-
quently, Eq. �16� involves averaged quantities �, km, and Pm.
It is assumed that the relations between averaged quantities
obtained in spectral space can be applied to filtered quanti-
ties. Therefore, Eq. �16� will be solved for the filtered dissi-
pation rate �SGS= 1

2� j jSGS
, sensitized to the cutoff wavenum-

ber by Eq. �18�. This practice corresponds to assuming that

the level of SGS energy kSGS will fluctuate around the aver-
age value km, which is controlled by the variable C�2

� coeffi-
cient. However, since the relations �16� and �18� are true
only for averaged quantities, transposing them to resolved,
fluctuating quantities does not ensure that the expected ratio
r of resolved energy over total energy will be reached in the
simulations. This issue will be addressed in Sec. V. More-
over, the flows considered being inhomogeneous, molecular
and turbulent diffusion terms will be introduced in the equa-
tions.

2. Compatibility with the Smagorinsky model

In the present approach, contrary to standard LES, the
characteristic length scale of subgrid turbulence is not di-
rectly related to the grid, but evaluated using the dissipation
rate given by Eqs. �16� and �18�. This equation can be asso-
ciated with an eddy-viscosity model,13 as well as a second-
moment closure.14 The parameter r controls the transition
from a RANS to a LES behavior, the RANS equation being
recovered when r=1. When r is reduced, typically around
the value 0.2, the cutoff wavenumber is well in the inertial
range of the energy spectrum. The aim of this section is to
show the compatibility of the hybrid approach with standard
LES in this case.

If spectral equilibrium is assumed, a Kolmogorov spec-
trum can be used

E��� = CK�2/3�−5/3, �20�

with CK
1.5. The SGS kinetic energy defined by Eq. �11�
then reads

km = �
�c

	

E���d� =
3CK

2
�2/3�c

−2/3. �21�

If, as usual in LES, the cutoff wavenumber is related to the
mesh size � by �c=� /�, Eq. �21� leads to

km
3/2

�
= �3CK

2
	3/2�

�

 1.07� , �22�

which shows that in case of spectral equilibrium, the length
scale of subgrid turbulence is directly linked to the mesh
size, similarly to LES. However, this is only a particular
case, and the PITM does not assume spectral equilibrium at
the cutoff wavenumber �c, but only at wavenumber �d, as
mentioned in Sec. III A 1. When the mesh is locally coarse
compared to a LES mesh, the cutoff wavenumber can be
located in the productive zone of the spectrum, where equi-
librium is rarely achieved, and in such a case, determining
the length scale through transport equations for dissipation
and SGS energy �or SGS stresses� is crucial.

In the inertial range of the spectrum, second-moment
closures and eddy-viscosity models for the SGSs are equiva-
lent, due to the equilibrium and the isotropy pertaining to
these scales, such that the following analysis is restricted to
an eddy-viscosity model, for simplicity. The subgrid viscos-
ity is written as

055104-4 Fadai-Ghotbi et al. Phys. Fluids 22, 055104 �2010�

Downloaded 10 May 2010 to 194.167.54.36. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



�t = C

kSGS
2

�SGS
, �23�

where C is a constant to be determined. Local equilibrium
and Boussinesq relation imply

� = �SGS = C

kSGS
2

�SGS
S̃2, �24�

with S̃ij =1 /2�� jŨi+�iŨj� and S̃=�2S̃ijS̃ij. Writing

kSGS
2

�SGS
S̃2 = �

km
2

�
S̃2, �25�

where � is a correlation coefficient, and combining Eq. �24�
with Eq. �21� leads to

� = �3/2C
3/2�3CK

2
	3��

�
	2

S̃2
3/2

. �26�

Now, the Smagorinsky model yields

� = �Cs��2S̃3, �27�

where the usual evaluation43 of the Smagorinsky constant is

Cs =
1

�
� 2

3CK
	3/4� S̃2

3/2

S̃3
	1/2

. �28�

Compatibility between Eqs. �26� and �27� then requires

C =
1

�
� 2

3CK
	3

. �29�

Since �2 /3CK�3
0.088, if the correlation coefficient � is
assumed to be close to unity, the compatibility with the Sma-
gorinsky model is ensured if the standard RANS value C


0.09 is chosen. It is worth pointing out that if the correla-
tion coefficient � is lower than unity, the coefficient C is to
be increased for cutoff wavenumbers in the inertial regions,
which is against intuition.

This result shows that the PITM, which is obviously
compatible with standard RANS models when the cutoff
wavenumber is equal to zero �r=1, km=k�, is also compatible
with standard LES, when the cutoff wavenumber is in the
inertial range. This is consistent with previous numerical
studies showing the behavior of the PITM in the case of
decay of isotropic turbulence, both using subgrid-viscosity
models13 or, very recently, subgrid-stress models.44

When the model is neither in RANS mode nor in LES
mode, i.e., when the cutoff wavenumber is in the productive
region of the spectrum �VLES mode�, the situation is differ-
ent. The SGSs are subject to large-scale strain variations, and
in such a case, the eddy-viscosity models fail and, in particu-
lar, the phase shift between stress and strain must be ac-
counted for.22,45 Several authors10,46 showed that reducing
the value of C is beneficial in this case, but such models are
not compatible with the LES limit, which cannot be reached
by reducing C, as shown by the analysis above. The alter-
ation of the length scales linked to the location of the cutoff
wavenumber must be accounted for by another mechanism,

which can be a modification of the dissipation rate in the
subgrid energy equation �DES� or of the transport equation
for the dissipation rate �PITM�.

B. Elliptic-blending model in the hybrid context

In case of a wall-bounded LES at very high Reynolds
number, the near-wall regions must be solved in a quasi-DNS
mode, leading to a dramatic increase in the computational
cost. One of the aims of the hybrid methods is to solve these
regions in a RANS mode, which is cheaper and weakly de-
pendent on the Reynolds number. A second aim of the hybrid
methods is to allow relatively coarse meshes, meaning that
the cutoff wavenumber can be in the productive range of the
spectrum. In this range, important complex physical pro-
cesses must be taken into account, such as production and
redistribution. A second-moment closure provides a much
better representation of these physical processes, in compari-
son to eddy-viscosity models, as can be shown by studying
the interaction of a turbulent background with a time-varying
strain.21,22 In Eq. �8�, subgrid-stress production PijSGS

and
viscous diffusion DijSGS

� do not require modeling, and models
will be discussed for the pressure �ijSGS

, dissipation �ijSGS
,

and turbulent diffusion DijSGS

T terms.

1. Pressure term

The most crucial term to be modeled in Eq. �8� is the
pressure term �ijSGS

, which is at the origin of the redistribu-
tion mechanisms and the nonlocal blocking effect due to the
wall. The latter effect can be taken into account in single-
point RANS closures using the elliptic relaxation strategy of
Durbin,26,47 or simplified formulations such as the
EB-RSM,27,28 which has been successfully applied in many
flows,28,30–36 in a RANS context. An adaptation of the EB-
RSM is used here in the hybrid context for several reasons.
First, unlike classical near-wall models, the EB-RSM does
not make use of damping functions, which are arbitrary and,
in principle, not valid for fluctuating quantities. On the con-
trary, it will be shown in the present section that the elliptic
relaxation approach and, consequently, its simplified form,
the elliptic-blending approach, are valid for filtered quanti-
ties, since they are derived from the Poisson equation for
pressure fluctuations and asymptotic behaviors in the vicinity
of the wall, which are formally identical in the RANS �sta-
tistical averaging� and the hybrid �filtering� formulations.
Therefore, the main objective of the present work, compared
to existing hybrid models based on transport equations to
account for SGSs,13,14,25 is to avoid the use of damping func-
tions in the near-wall region by introducing the nonlocal ef-
fects through elliptic blending. Finally, the elliptic-blending
model is numerically robust, contrary to other models based
on elliptic relaxation, for which the boundary conditions lead
to strong numerical instabilities, and it is also less expansive
since a single additional equation is to be solved, compared
to the six additional equations of the original elliptic relax-
ation method of Durbin.26 In the present section, the validity
of the elliptic relaxation strategy for filtered quantities is first
demonstrated. Then, the simplified formulation, the so-called
elliptic-blending approach, is adapted to the hybrid context.
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a. Elliptic relaxation strategy in the hybrid context. Sub-
tracting the filtered equation �7� from the instantaneous equa-
tion �1�, one can deduce the evolution equation for the sub-
grid fluctuating field

�ui�

�t
+ uj�

�ui�

�xj
= −

1

�

�p�

�xi
+ �

�2ui�

�xj � xj

+
�

�xj
��ij − Ũiuj� − Ũjui�� , �30�

with the kinematic incompressibility constraint � juj�=0. Tak-
ing the divergence of Eq. �30�, it is deduced that the residual
fluctuating part of the pressure, and therefore its gradient,
satisfy a Poisson equation

�2�p�

�xk
= �

�

�xk
�− 2

�Ũi

�xj

�uj�

�xi
−

�2

�xi � xj
�ui�uj� − �ij��

Sk

. �31�

Using Green’s formalism,48,49 the solution to Eq. �31� is
given by

�p�

�xk
�x� =� Sk�x + r�

4��r�
dr , �32�

where 1 / �4��r�� is Green’s function associated with the op-
erator �2. The time dependence of the variables is not ex-
plicitly written in order to simplify the notation. As shown by
Eq. �32�, the subgrid pressure gradient is nonlocal since it
results of a spatial integration. Assuming a spectral cutoff
filter to simplify the formalism, the pressure term, defined in
Eq. �8�, can be written as

��ijSGS
= − ui�

�p�

�xj
� − uj�

�p�

�xi
� . �33�

Note that the following results can be extended to any filter.
Using Eq. �32�, the integral equation of �ijSGS

reads

��ijSGS
�x� = − �

D

�ui��x�S j�x + r� + uj��x�Si�x + r��
4��r�

dr .

�34�

Similar to the elliptic relaxation model applied in the RANS
context,47 a simple shape is assumed for the two-point cor-
relation, of the form

�ui��x�S j�x + r� + uj��x�Si�x + r��

= �ui��x + r�S j�x + r� + uj��x + r�Si�x + r��exp�−
�r�

LSGS
	 ,

�35�

where LSGS is a correlation length scale. The main difference
between Eq. �35� and the one found in RANS lies in the fact
that the former is written for filtered variables, while the
latter is written for Reynolds-averaged variables. Conse-
quently, the length scale, which was modeled as a function of
Reynolds-averaged quantities in RANS, must in the present
case be modeled as a function of SGS quantities, and as

such, will be dependent on the cutoff wavenumber. This
modeling issue will be investigated in Sec. IV.

The use of an isotropic form of the correlation function,
with the same length scale for all the directions, is a strong
assumption. The validity of this approximation was investi-
gated, by extracting the correlation function from a DNS
database, by Manceau et al.48 in the frame of RANS model-
ing. It was shown that the correlation function is indeed
strongly anisotropic in the near-wall region, but also that the
main consequence of the isotropic assumption, the underes-
timation of wall-blocking in the logarithmic layer, is due to
the asymmetry of the correlation function in the wall-normal
direction. The elongation in the tangential directions does not
affect the redistribution process, due to statistical homogene-
ity, and, consequently, it was shown that the length scale
entering the modeled, isotropic correlation function must be
calibrated in order to correctly reproduce the nonlocal effects
in the wall-normal direction. Furthermore, several modifica-
tions of the elliptic relaxation model were proposed to en-
hance the wall-blocking in the logarithmic layer,48,50–52 but
the elliptic-blending approach,27 a simplification of elliptic
relaxation, introduced in Sec. III B 1 b, does not exhibit this
weakness.

In the frame of hybrid RANS/LES, the elongation of the
correlation function in the directions tangent to the wall can-
not be rigorously neglected, since the redistribution term is
not constant in these directions anymore. However, since the
hybrid formulation presented in the subsequent sections en-
forces the RANS mode in the near-wall region, the gradients
in the tangential directions remain weak and the main effect
to be reproduced is still the nonlocality in the wall-normal
direction. The unique length scale entering Eq. �35� will be
carefully calibrated in Sec. IV C to reproduce this effect.
Since the length scale of the correlation function in Eq. �34�
is shorter in the wall-normal direction than in the other
directions,48 this procedure can, however, lead to an under-
estimation of the nonlocal effect in the tangential directions.

Using the model equation �35�, the integral equation for
�ijSGS

becomes

��ijSGS
�x� = − �

D
�ui��x + r�S j�x + r� + uj��x + r�Si�x + r��

�ij�x+r�

�

exp�−
�r�

LSGS
�

4��r�
dr . �36�

The function exp�−�r� /LSGS� / �4��r�� being Green’s function
associated with the operator �2−1 /LSGS

2 , Eq. �36� is the so-
lution of the so-called elliptic relaxation equation

�ijSGS
− LSGS

2 �2�ijSGS
=

LSGS
2

�
�ij . �37�

Again, this result shows that the RANS �Reynolds-averaged�
and hybrid �filtered� versions of the elliptic relaxation model
are formally identical, although they are written for different
variables. Following the common practice in RANS, the
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right hand side of Eq. �37� can be modeled using a local
model �ij

h , i.e., a model that does not account for the nonlo-
cality of the pressure term presented above, such that

�ijSGS
− LSGS

2 �2�ijSGS
= �ij

h . �38�

The particular model used for �ij
h will be detailed in Sec.

III B 1 b, dedicated to the elliptic-blending model, which is a
simplified formulation of the elliptic relaxation model.

b. Elliptic-blending model in the hybrid context. As
noted by Manceau and Hanjalić27 in RANS, the system �38�
is somewhat redundant since it applies the same operator,
with the same correlation length scale, to all the components
of �ijSGS

. Consequently, they proposed to reproduce the non-
local effect using a simplified formulation, with a single dif-
ferential equation instead of six. First, the elliptic relaxation
equation is solved for a blending coefficient �

� − LSGS
2 �2� = 1. �39�

The elliptic-blending strategy then consists in blending the
“homogeneous” �away from the wall� and the near-wall
models of the pressure term �ijSGS

using

�ijSGS
= �1 − f��ij

w + f�ij
h . �40�

Originally, Manceau and Hanjalić27 used f =k� as the blend-
ing function in this equation, but Manceau28 showed that
using a power of � is equivalent close to the wall and avoids
erroneous behaviors in several configurations. Therefore, f
=�3 is used in the present work. The boundary condition of
Eq. �39� at the wall is simply �=0, such that � goes from
zero at the wall, to unity far from the wall. This parameter is
an implicit indicator of the distance to the wall. The choice
of the correlation length scale LSGS is crucial and will be
discussed in Sec. IV. In the RANS context, Manceau and
Hanjalić27 showed that the appropriate form of �ij

w can be
obtained by an analysis of the asymptotic behaviors at the
wall, in order to satisfy the balance between the pressure,
molecular diffusion, and dissipation terms in the vicinity of
the wall. Since in the present approach, the near-wall zone
will be treated in RANS mode, the near-wall form �ij

w used in
RANS does not require modification to be used in the hybrid
model. It will appear in the results below that the near-wall
region is never fully steady, since it is subject to large-scale
oscillations coming from the outer region, but the analysis of
Manceau and Hanjalić27 already accounted for this possibil-
ity. Therefore, the same form as in RANS can be used

�ij
w = − 5

�SGS

kSGS
��iknjnk + � jknink −

1

2
�klnknl�ninj + �ij�� ,

�41�

where n=�� / ���� is a generalized wall-normal vector.
Due to the formal equivalence of RANS and LES mo-

tion equations �see Sec. II�, the SSG model of Speziale
et al.,29 usually applied in a RANS context, is assumed to be
applicable here for �ij

h

�ij
h = − �g1 + g1

� PSGS

�SGS
	�SGSbij + �g3 − g3

��bklbkl�kSGSS̃ij

+ g4kSGS�bikS̃jk + bjkS̃ik −
2

3
blmS̃lm�ij	

+ g5kSGS�bik�̃ jk + bjk�̃ik� , �42�

where S̃ij =1 /2�� jŨi+�iŨj� and �̃ij =1 /2�� jŨi−�iŨj� are, re-
spectively, the rate of strain and rotation tensor based on the
resolved velocity, and bij =�ij / �2kSGS�−�ij /3 is the SGS an-
isotropy tensor. The constants are g1=3.4, g1

�=1.8, g3=0.8,
g3

�=1.3, g4=1.25, and g5=0.4. Obviously, the ensemble-
averaged quantities used in RANS are replaced by the fil-
tered quantities. Considering that a RANS model for the
pressure term can be used without modification in the filtered
equations is a strong assumption, but in the absence of DNS
data providing the budgets of the subgrid-stress transport
equation, this is a reasonable choice. A recalibration of the
coefficient would probably improve the accuracy of the
model, but such a procedure also requires an appropriate
DNS database. Chaouat and Schiestel14 proposed a modifi-
cation of the coefficient of the slow part of the pressure term
function of the cutoff wavenumber, in order to increase the
return to isotropy in the inertial range. The influence of such
a modification in the present model �first term in the right
hand side of Eq. �42�� is investigated in Sec. IV D.

2. Dissipation rate

In hybrid RANS/LES, the cutoff wavenumber of the fil-
ter is supposed to be located far before the dissipative scales,
such that the dissipation rate �ijSGS

of the subgrid stress �ij is,
in average, very close to the usual dissipation rate �ij of the
Reynolds stress uiuj, i.e., �ijSGS


�ij. The assumption of isot-
ropy of the dissipation is a matter of debate,53 but in RANS
second-moment closures, �ij is usually modeled by the iso-
tropic expression 2

3��ij, and the departure from isotropy �the
deviatoric part� is assumed to be contained in the model for
the slow part of the redistribution term.54 Although �ijSGS

, the
dissipation rate of the subgrid stress, is likely to be more
anisotropic than its average �ij, in the absence of a DNS
database for the budgets of the subgrid stress, the above-
mentioned decomposition between the deviatoric part,
grouped together with the slow part of the pressure term
�ijSGS

, and the isotropic part 2
3�SGS�ij, is considered as valid,

at least far away from the wall. Moreover, a recalibration of
the slow part is considered in Sec. IV D.

Near the wall, the hybrid model is in RANS mode, and
thus a RANS model can be used. In order to extend the
validity of the SSG model29 to the near-wall region,
Manceau and Hanjalić27 showed that the model of Rotta,55

�ij =�uiuj /k, can be associated with the near-wall form �Eq.
�41�� of the pressure term, such that the exact asymptotic
behavior of the Reynolds stress is satisfied. Moreover, fol-
lowing the RANS practice,27 in order to bridge the near-wall
and far away from the wall forms of the dissipation rate
tensor, similarly to the pressure term, the two forms of the
model are combined, leading to
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�ijSGS
= �1 − f�

�ij

kSGS
�SGS + f

2

3
�SGS�ij . �43�

The dissipation rate involved in Eq. �43� is provided by the
transport equation

D̃�SGS

D̃t
= C�1

�
PSGS

T
− C�2

� �SGS

T

+
�

�xl
���lm + CeT�lm�

��SGS

�xm
. �44�

Following the PITM methodology described in Sec. III A,
the C�2

� coefficient is dependent on the cutoff wavenumber
�Eq. �18��, with C�1

=1.44 and C�2
=1.83. Since the flow con-

sidered will be inhomogeneous, transport terms have been
incorporated. The turbulent diffusion term is modeled by the
generalized gradient diffusion hypothesis,56 with Ce=0.18.
Following Manceau and Hanjalić,27 to avoid singularities at
the wall, the subgrid time scale is bounded by the Kolmog-
orov scale

T = max� kSGS

�SGS
,CT� �

�SGS
	 , �45�

with CT=6.0, and to take into account the increase in the
production of dissipation in the near-wall zone, the coeffi-
cient of the generation term in the dissipation equation is
taken as

C�1
� = C�1

�1 + A1�1 − f�� kSGS

�ijninj
	 , �46�

with A1=0.03 and n being the generalized wall-normal vec-
tor. This formulation gives the classical value C�1

far from
the wall, and a larger value in the near-wall zone. The
boundary condition at the wall �subscript w� for the dissipa-
tion rate is

�SGSw = lim
xn→0

2�
kSGS

xn
2 , �47�

where xn is distance to the wall.

3. Turbulent diffusion

The generalized gradient diffusion hypothesis of Daly
and Harlow56 is extended to the diffusion process of the SGS
stresses

DijSGS

T =
�

�xl
�CdT�lm

��ij

�xm
	 , �48�

where Cd=0.21 and the time scale is given by Eq. �45�.

C. Modeling issues

As mentioned above, some modeling issues remain and
must be discussed. Some of them are related to the PITM
methodology and others are due to the development of an
elliptic-blending model in the hybrid context.

• The value of the RANS-LES transition parameter r
must be chosen as a function of the cutoff wavenum-

ber in such a way that it is consistent with both RANS
and LES. The issue of explicitly relating r to the cutoff
wavenumber is addressed in Sec. IV B.

• The elliptic relaxation equation �39� enables to ac-
count for the nonviscous, nonlocal blocking effect of
the wall on the subgrid stress. This kinematic effect
reflects the incompressibility condition for the nonre-
solved scales. In a hybrid context, the blocking of the
large scales, which are explicitly resolved, follows
from the explicit resolution of the continuity equation

��kŨk=0�. The elliptic blending aims at imposing the
blocking effect only on the modeled scales, which im-
plies that the correlation length scale LSGS, entering
Eq. �39�, must be decreased compared to the RANS
case, where all the scales of motion are modeled. This
issue is addressed in Sec. IV C.

• It is usual to assume that small scales return to isot-
ropy faster than the large scales �e.g., Hinze57 or
Pope58�, which could be reproduced, as suggested by
Chaouat and Schiestel,14 by making the slow part of
the pressure term a function of the filter width. The
necessity of doing such a modification is addressed in
Sec. IV D.

To investigate these issues, the test case of a channel
flow is considered at Re�=u�h /�=395, where h is the chan-
nel half-width and u� the friction velocity, and results are
compared to DNS data.38 The streamwise, wall-normal, and
spanwise directions are, respectively, denoted by x, y, and z.
In all the following figures, the quantities will be presented
in wall units, the reference velocity and length scale being u�

and � /u�, respectively.

IV. INVESTIGATION OF THE MODELLING ISSUES

A. Numerical method

Computations are performed with Code_Saturne, a
parallel, finite volume solver on unstructured grids, devel-
oped at EDF.59 Spatial discretization is based on a colloca-
tion of all the variables at the center of gravity of the cells.
Velocity/pressure coupling is ensured by the SIMPLEC algo-
rithm, with a Rhie and Chow interpolation in the pressure-
correction step �e.g., Ferziger and Perić60�. The Poisson
equation is solved with a conjugate gradient method. Time
advancement is based on a Crank–Nicolson scheme. Spatial
derivatives are approximated by a second-order central-
difference scheme for the resolved velocity field and a first-
order upwind-difference scheme for the subgrid turbulence
field.

The computational domain is �8h, 2h, and 4h� long in
streamwise, wall-normal, and spanwise directions, respec-
tively, corresponding to �3160, 790, and 1580� in wall units.
The reference mesh M0 contains 64�42�64=172 032
cells. This mesh is chosen too coarse ��x+=50, �z+=25� in
the near-wall region to perform a well-resolved LES, which
requires with the present second-order numerical method
�x+=20 and �z+=10, but sufficiently fine and isotropic in
the outer region to enable the model to approach the LES
mode. One of the important features expected from a hybrid
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RANS-LES model is the ability to safely and progressively
return to the RANS solution when the mesh is coarsened. In
order to assess the behavior of the model in such a case, a
second mesh, M−, is designed, by reducing the number of
cells in the streamwise and spanwise directions by a factor
of 2.

Due to the rapid variations in space and time of the
resolved field, it is found necessary to average the strain
tensor in the homogeneous directions, before evaluating the
source terms of the subgrid-stress transport equations, simi-
lar to what was done by Chaouat and Schiestel,14 to sustain
fluctuations in the resolved field. This procedure is used only
to aid the development of the model, in order to test the
different modeling issues. Since it is not physically justified,
the last section of this article �Sec. V�, is devoted to the
development of a dynamic procedure, aiming at helping the
model to sustain the expected amount of resolved energy.
Although the theory provides the link �Eq. �18�� between the
coefficient C�2

� and the ratio modeled energy over total en-
ergy �r�, the ratio observed in the simulations is not neces-
sarily the expected ratio.

B. Modeling of the parameter r

The first modeling issue concerns the choice of the pa-
rameter r, which is the ratio of the modeled to the total
energy. This ratio enters the evaluation of the C�2

� coefficient

in the dissipation equation �Eqs. �44� and �18��. The filter
width is related to the local mesh size �= ��x�y�z�1/3 by
� f =Cg� /2, where Cg�2 is a constant, such that the cutoff
wavenumber can be written as

�c =
2�

Cg�
. �49�

Using definition �49�, and introducing for convenience the
dimensionless cutoff wavenumber �c

�c =
�

�

k3/2

�
, �50�

Eq. �19� can be written as

r =
1

�0�c
2/3 where �0 =

2

3CK
� 2

Cg
	2/3

� 0.44. �51�

Table I gives the value of �0 as a function of the parameter
Cg. The relevant value of Cg will be investigated at the end
of this section. Equation �51� is not compatible with the
RANS limit �lim�c→0r=1�, simply because the Kolmogorov
�5/3 power law is not valid at large scales. A first possibility
to correct this shortcoming is to bound r,

rMIN = min�1;
1

�0�c
2/3	 . �52�

This formulation will be denoted as MIN hereafter. Some
authors13,14 proposed another simple empirical choice

rCS =
1

1 + �0�c
2/3 . �53�

Formulation �53� will be denoted as CS hereafter. Schiestel
and Dejoan14 proposed the use of the von Karman spectrum
to evaluate r

E��� = CK�2/3�q� CK

q + 1
� �

k3/2	m−1

+ �m−1�−�m+q�/�m−1�

,

�54�

with m=5 /3. The total fluctuating kinetic energy k is given
by the integration of Eq. �54� between �=0 and �=	. Note
that in decaying turbulence, the dissipation rate is given by
the time derivative of the kinetic energy, i.e., �=−dk /dt, and
that d� /dt=−C�2

�2 /k. Combining these results, the follow-
ing relation can be obtained �see Schiestel and Dejoan13 for
more details�:

C�2
=

3q + 5

2�q + 1�
, �55�

which gives q
2.03 for C�2
=1.83. The parameter r is evalu-

ated by integration of Eq. �54� between �=�c and �=	, and
is denoted as VK

rVK = 1 − �1 +
2

3�q + 1��0
�c

−2/3�−�3/2��q+1�

. �56�

It can be easily seen that this formulation is compatible with
the RANS limit. Table II gives a summary of the different
formulations for the parameter r tested in the present work.

The integral length scale k3/2 /� enters the evaluation of
the parameter r through the dimensionless wavenumber �c.

TABLE I. Value of �0 as a function of the parameter Cg �see Eq. �51��.

Cg 2 4 6 8 10

�0 0.44 0.28 0.21 0.18 0.15

TABLE II. Different semiempirical proposals for the parameter r.

Acronym Formulation

MIN r = min�1;
1

�0
�c

−2/3	
VK r = 1 − �1 +

2

3�q + 1��0
�c

−2/3�−�3/2��q+1�

CS r =
1

1 + �0�c
2/3

EB r = min�1;�1 − �2� + �2 1

�0
�c

−2/3�
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However, the total turbulent kinetic energy k is not known at
the beginning of the computation. In the present section, the
integral scale is evaluated from a preliminary RANS compu-
tation performed with the EB-RSM. This approach is not
problematic in a channel flow because the length scales
given by the average PITM solution are close to those given
by the RANS model. However, in other kind of flows, such
as massively separated flows, the averaged PITM results are
expected to be different from the RANS results. In such
flows, it will be crucial, after a transient phase, to update the
integral length scale during the computation. Therefore, the
evaluation of the length scale during the computation will be
introduced once the final form of the model is chosen, i.e., in
Sec. V.

Figure 2 shows the profile of r for the different formu-
lations. Using formulation CS for r with mesh M−, it is no-
ticed that the condition �0�c

2/3�1 is not satisfied at the cen-
ter of the channel, such that the formulation �51�, based on
the Kolmogorov law, is not asymptotically approached. Fig-
ure 3 shows the influence of the particular form of r on the
prediction of the resolved, modeled, and total streamwise
component of the Reynolds stress for the mesh M−. It is
observed that the resolved part of the Reynolds stress in-
creases very rapidly as a function of the distance to the wall
and is strongly overestimated, even on this coarse mesh. The
same results are obtained with formulation VK �not shown
here�. This behavior seems to be related to the fact that for-
mulations CS and VK do not involve the distance to the wall,
and thus the transition RANS-LES completely relies on the
mesh, and can occur too close to the wall. The same problem
is faced with the original DES formulation, which motivated
the development of delayed detached-eddy simulation
�DDES�,61 in order to avoid artifacts such as mesh-induced
separation.

In the elliptic-blending framework, it is proposed to
blend the value of r near the wall �r=1� and its theoretical
value, given by Eq. �51�, valid far from the wall, as

rEB = min�1;�1 − �p� + �p 1

�0�c
2/3� , �57�

where � is the blending parameter solution of Eq. �39� and p
is a positive constant. Formulation �57�, denoted EB hereaf-
ter, enables a better control of the transition RANS-LES, as
shown on Figs. 2 and 3 because r is not only a function of
the local cell size, but also of the distance to the wall,
through the parameter �. Using the exact asymptotic behav-
ior at the wall of the different quantities in a fully developed
channel flow, i.e., k�y2, ��1, and ��y, and assuming that
��yn, it is easy to show that �c�y3−n and thus

�p 1

�0�c
2/3 � ys, �58�

where s= p− 2
3 �3−n�. In order to have a correct asymptotic

behavior of r at the wall in Eq. �57� �i.e., r→1�, s�0 must
be imposed, which leads to

p �
2

3
�3 − n� . �59�

Since the near-wall zone is to be solved in RANS mode, it
can be assumed that �x�1, �z�1, and �y�y �near-wall
clustering�, implying n=1 /3 and p�16 /9. For simplicity, p
is chosen as an integer p=2. For this value of p, it is noticed
that Eq. �59� is satisfied for any positive value of n.

With formulations VK and CS, r decreases very quickly
with the wall distance, and thus, the transition to a LES
calculation is too close to the wall, explaining the severe
overestimation of the Reynolds stress �see Fig. 3�. Formula-
tions MIN and EB are very similar in the case considered
here, and have a satisfactory behavior in the vicinity of the
wall. Formulation EB will be chosen for all the tests done in
the following sections.

A range of values have been tested for the Cg parameter,
which enters the evaluation of �0 �Eq. �51��. Indeed, the
highest wavenumber that can be obtained on a given mesh
depends on the numerical scheme, and Ghosal62 recommends
the value Cg=6 for a second-order central-difference
scheme. For large values of Cg �Cg�10�, r=1 is obtained all
across the channel �with the formulation EB for r�, leading to
a RANS solution. When Cg is too low, the cutoff wavenum-
ber is increased, leading to a decrease in the modeled part of
the Reynolds stress and a consequent increase in the resolved
part, especially near the walls. Thus, for Cg�4.5, the total
Reynolds stresses are strongly overestimated. In the range
�4.5,10�, the turbulence statistics are weakly dependent on
the value of Cg. The optimal value is found to be Cg
6.5,
corresponding to �0=0.20, which is very close to the value
suggested by Ghosal.62

C. Length scale for the wall-blocking effect

The second modeling issue concerns the choice of the
correlation length scale LSGS for the wall effects. Theoretical
�e.g., Hunt and Graham63� and DNS studies64 showed that
the structures of the flow, and the associated length scales,
are strongly affected by the presence of a solid boundary
even in the absence of mean shear because of the blocking
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FIG. 2. �Color online� Profile of the parameter r given by the different
formulations for �0=0.20. See Table II for the definition of the acronyms.
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effect, which is nonlocal. Indeed, through the pressure field,
the kinematic impermeability condition at the wall affects the
flow up to an integral scale from the wall.63 The length scale
LSGS in Eq. �39� characterizes the distance at which the non-
local kinematic blocking of the wall is felt by the nonre-
solved motion. On the contrary, this effect is explicitly im-
posed on the resolved scales via the resolution of the
continuity equation. Therefore, in the hybrid context, the
length scale of the nonresolved fluctuations is dependent on
the filter width, and the modeling of the length scale must be
consequently modified. LSGS must be smaller than its RANS
counterpart L, in order to characterize only the modeled
scales.

In a RANS framework, the elliptic relaxation equation
�Eq. �39�� is solved, with the correlation length scale given
by

L = CL max� k3/2

�
,Lb	 . �60�

Lb is related to the Kolmogorov scale L� by Lb=C�L�. The
coefficients are CL=0.161 and C�=80. In order to illustrate
the influence of this length scale, it is noted that the solution
of Eq. �39� can be well approximated by

��y� = 1 − exp�−
y

LSGS
	 , �61�

with a constant length scale, where LSGS must be lower than
the admissible value for a RANS computation. Figure 4
shows the profile of the blending coefficient � calculated
with the EB-RSM in a RANS framework. It can be seen that
using the constant length scale L=0.06h yields a blending
coefficient very close to the one obtained using Eq. �60�.
When the length scale is reduced to L=0.04h, � reaches the
asymptotic value �=1 closer to the wall, such that the wall
blockage, active where ��1, is reduced. The effect of this
reduction on the anisotropy is shown in Fig. 5 by comparing
the wall-normal component of the Reynolds stress �resolved,
modeled, and total�, obtained with LSGS=0.04h and 0.06h. It
is seen that the decrease in LSGS modifies the anisotropy, by
reducing the blocking effect, i.e., the inhibition of the redis-
tribution from �11 to �22. As expected, the blocking effect
only affects the SGSs, leaving the resolved scales almost

unchanged. Reducing further the correlation length scale is
attractive, since R22 is underestimated. However, Fig. 6,
which compares the velocity profiles obtained with three val-
ues of LSGS, illustrates the fact that this length scale also
influences the mean velocity profile, through the blocking
imposed on �12.

By artificially imposing a constant length scale LSGS, it
has been shown that in the hybrid formulation, it is necessary
to reduce this length compared to the RANS value. This
reduction can be achieved in a natural way, by replacing the
integral length scale k3/2 /� in Eq. �60� by the length scale
characterizing the largest subgrid eddies kSGS

3/2 /�SGS. When
the cutoff wavenumber increases, the scale of the largest sub-
grid eddies decreases, such that the region over which the
blocking effect of the wall is felt by the SGSs progressively
vanishes, according to Eq. �39�. This behavior is consistent
with the analysis of Sec. III B 1 a, in particular Eq. �35�, in
which LSGS is defined from the two-point correlations for the
SGSs. As the integral length scale k3/2 /� is decreased by a
factor r3/2 to obtain kSGS

3/2 /�SGS in the hybrid context, it is
proposed to decrease the scale Lb by the same factor, leading
to
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FIG. 3. �Color online� Influence of the form of r on the resolved �RES=u�u�+�, modeled �SGS=�11
+�, and total �TOT=R11

+ =RES+SGS� streamwise
component of the Reynolds stress. Mesh M−, �0=0.20. Left: formulation CS �Eq. �53��. Right: formulation EB �Eq. �57��.
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FIG. 4. Profile of the blending coefficient � calculated with the EB-RSM in
a RANS framework. Comparison with Eq. �61� with LSGS=0.06h and
LSGS=0.04h.
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LSGS = CL max� kSGS
3/2

�SGS
,r3/2C�

�3/4

�SGS
1/4 	 . �62�

At the RANS limit �r=1�, Eq. �60� is recovered.
Using formulation �62�, Figs. 7 and 8 show the contri-

bution of the resolved and modeled scales to the total shear
stress and turbulent energy, respectively. It can be seen that
near the wall, the SGS part is dominant �RANS mode� and
decreases toward the center of the channel, where the re-
solved part in turn becomes dominant �LES mode�. When the
mesh is coarsened, the cutoff wavenumber, proportional to
the inverse of the cell size, is decreased, and the balance
modeled/resolved contributions is modified as expected: the
resolved large-scale part decreases and the modeled SGS part
increases. However, Figs. 7 and 8 also show that the contri-
bution of the SGSs is very small on the reference mesh M0,
leading to a pseudo-DNS �coarse DNS� at the center of the
channel. This behavior is identified to be due to the artificial
averaging in the homogeneous directions of the sources
terms of the subgrid-stress transport equations: with the dy-
namic procedure presented in Sec. V, the model will exhibit
a higher level of subgrid energy.

Figure 9 shows the normal components of the Reynolds
stress obtained using this formulation �Eq. �62��. It is ob-
served that the normal stresses are globally well reproduced,
even though the streamwise component is overestimated in

the central part of the channel, and the wall-normal and span-
wise component are underestimated. The main objective of
the introduction of elliptic blending in the model is reached,
i.e., the blockage of the wall-normal fluctuations, which is
necessary to obtain a correct reproduction of the anisotropy
in the near-wall region.

D. Modification of the pressure term

It is usual to assume that the small scales return to isot-
ropy faster than the large scales. When the cutoff wavenum-
ber is in the inertial range of the turbulent energy spectrum,
the structures can be considered as isotropic with a good
accuracy �e.g., Hinze57 or Pope58�. In the model, the pressure
term is decomposed into a rapid part, depending directly on
the velocity field, and a slow part. It is worth recalling that
the model for the slow part also accounts for the deviatoric
part of the dissipation term, as mentioned in Sec. III B 2. In
the hybrid context, Chaouat and Schiestel14 suggested a
modification of the slow part in order to increase the return
to isotropy of the small scales. Following Schiestel,65 they
proposed to introduce an empirical parameter fSGS�1 func-
tion of the cutoff wavenumber, with lim�c→0fSGS=1, in order
to remain consistent with the RANS limit.

It is recalled that in the elliptic-blending framework, the
pressure term �ijSGS

is decomposed into the homogeneous
contribution �ij

h , valid away from the wall, and the near-wall
contribution �ij

w, as shown by Eq. �40�. The former, given
here by the SSG model29 �Eq. �42��, can be decomposed into
a rapid part �ij

h,r and a slow part �ij
h,s, given by

�ij
h,s = − �g1 + g1

� PSGS

�SGS
	�SGSbij . �63�

In the hybrid elliptic-blending context, the homogeneous part
of the pressure term is modified as

�ij
h = fSGS�ij

h,s + �ij
h,r. �64�

Since the aim of the hybrid methodology is to perform a
RANS calculation near the wall, �ij

w does not require any
modification compared to the RANS model.

Two formulations of fSGS have been tested in the present
work. The first one, denoted as P-CS, was proposed by
Chaouat and Schiestel14
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FIG. 5. �Color online� Influence of LSGS on the resolved �RES=v�v�+�, modeled �SGS=�22
+�, and total �TOT=R22

+ =RES+SGS� wall-normal component of
the Reynolds stress. Left: LSGS=0.06h �RANS value�. Right: LSGS=0.04h.
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FIG. 6. �Color online� Influence of LSGS on the mean velocity profile. Mesh
M− and � given by Eq. �61�.
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fSGS =
1 + ��c

2

1 + �c
2 , �65�

where �=1.5 is a constant originating from the work of
Schiestel.65,66 Compatibility is guaranteed with the RANS
limit. In the LES regions, where �c is large, fSGS tends to �,
in order to increase the return to isotropy of the SGSs. The
profile of fSGS is given in Fig. 10. It is noticed that fSGS

reaches its maximum value very quickly and too close to the
wall, and that the total Reynolds stress is overestimated, due
to high values of the resolved part near the wall �figure not
shown here�. To better control the variations in fSGS in the
vicinity of the wall, similar to Eq. �57�, the following form is
proposed:

fSGS = max�1;�1 − �b� + �b ��c
2

1 + �c
2� , �66�

where b�0 is a constant. This formulation is denoted as
P-EB. The different proposals for fSGS tested in the present
work are summarized in Table III. In order to have a real
effect on the anisotropy, it is found that the value of b must
be less than one, and b=0.5 is chosen. At the wall, the RANS
limit is recovered since �=0. Far away from the wall ��
=1�, fSGS tends to �. Figure 10 compares the profiles of fSGS

obtained with the P-CS formulation and the P-EB formula-
tion with two values of b. In Fig. 11, the normal components
of the Reynolds stress obtained using the formulation P-EB

with b=0.5 are shown. Comparing this figure with Fig. 9, it
is observed that the normal components of the Reynolds
stress are slightly improved at the center of the channel, but
at the price of a deterioration of the prediction of the peak
value of R11 close to the wall. Figure 12 shows the shear
stress �resolved, modeled, and total� obtained with the for-
mulation P-EB, for the two meshes. Comparing this figure
with Fig. 7, it is seen that, surprisingly, the main effect of the
introduction of fSGS is a significant modification of the bal-
ance between resolved and modeled shear stress, in particu-
lar at the center of the channel, leading to an extension of the
LES region. Actually, by increasing the return to isotropy, the
parameter fSGS tends to decrease the amplitude of the mod-
eled shear stress −�12. As a consequence, the production of
subgrid energy is also decreased. Since the effect on the an-
isotropy of the normal stresses is marginal, and even detri-
mental, the use of this modification of the return to isotropy
is not recommended in the elliptic-blending framework.

V. DYNAMIC APPROACH

The main problem faced by the PITM approach is the
difficulty to reach the ratio modeled energy over total energy
that the model is supposed to reach: the parameter r entering
Eq. �18� provides the model with the energy ratio the user
targets, but this value is in general not observed in the solu-
tion. In particular, for flows that do not present inflexion
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FIG. 7. �Color online� Profile of resolved �RES=u�v�+�, modeled �SGS=�12
+�, and total �TOT=R12

+ =RES+SGS� shear stress. Formulation EB for r and LSGS

given by Eq. �62�. Left: mesh M0; Right: mesh M−.
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FIG. 8. �Color online� Same figure as Fig. 7 for the turbulent kinetic energy.
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points to trigger the growth of fluctuations in the resolved
field, such as the present channel flow, the model has a ten-
dency to underestimate the resolved energy, and to eventu-
ally tend to a steady solution. This problem is particularly
acute at the beginning of the computation, during the tran-
sient phase, and sustaining resolved fluctuations during this
phase is difficult.

The reason for this behavior probably lies in Eq. �18�,
which is true in a spatially average sense, since it is derived
in spectral space, but not locally. The consequence can be an
inappropriate level of dissipation in the SGS energy equa-
tion, possibly leading to a rapid decay of the resolved fluc-
tuations. This problem was circumvented in Sec. IV by av-
eraging the sources terms of the subgrid-stress transport
equations in homogeneous directions. However, this proce-
dure has been used to aid the development of the new model,
but is not justified from a physical point of view, and will not
be necessary anymore with the dynamic procedure described
below.

Therefore, the present section is devoted to the imple-
mentation of a dynamic procedure, whose purpose is two-
fold: avoiding the decay of the resolved fluctuations during
the transient phase of the computation and forcing the model

to better approach the expected energy ratio in the permanent
state. The latter point is desirable in general, and ensures the
internal consistency of the model. Moreover, as was shown
in Sec. III A 2, the modification of the length scale entering a
RANS model is sufficient to ensure that the turbulent viscos-
ity tends to a SGS viscosity, but this is not true anymore if
the observed energy ratio is different from the target energy
ratio, since Eq. �21� is not satisfied.

The method simply consists in a dynamical correction of
the coefficient C�2

� ,

C�2

� = C�1
+ r�C�2

− C�1
� ,

following three steps:

• The energy ratio is monitored during the calculation
by evaluating the resolved energy and the total energy.
This ratio is called the observed ratio ro.

• This ratio is compared to the ratio used in Eq. �18�,
which is called the target ratio rt.

• The coefficient C�2

� entering the dissipation equation is
replaced by C�2

� +�C�2

� , in order to drive the observed
ratio toward the target ratio.

This procedure is rather simple in principle, but requires
some criterion to determine the amplitude of the correction
�C�2

� . Obviously, this correction must vanish when the target
is approached. Therefore, an estimate of �C�2

� as a function
of ro and rt is necessary. Such an estimate can be obtained by
simply considering the modification of the level of SGS en-
ergy induced by a modification of the C�2

� coefficient.

TABLE III. Different empirical proposals for the function fSGS.

Acronym Formulation

P-CS
fSGS =

1 + ��c
2

1 + �c
2

P-EB fSGS = max�1;�1 − �b� + �b ��c
2

1 + �c
2�
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Indeed, in homogeneous turbulence, it is well known
that a system of equation such as Eqs. �15� and �16� tends to
a weak equilibrium solution at large times characterized by

�m
2 =

C�2
� − 1

C�C�1 − 1�
, �67�

where �m=Skm /� and S is the constant mean shear. This
equation shows that a small perturbation �C�2

� of the
C�2

� coefficient leads to a perturbation of �m at equilibrium
given by

2
��m

�m
=

�C�2

�

C�2

� − 1
. �68�

Now, at the RANS limit �C�2
� =C�2�, the equilibrium is char-

acterized by �=Sk /�. Therefore, the ratio r=km /k reads

r =
km

k
=

�m

�
, �69�

such that the perturbation �r of the ratio r is

�r

r
=

��m

�m
=

1

2

�C�2

�

C�2

� − 1
. �70�

In order to reach the target ratio rt, the desired variation �r is
rt−ro, such that the following relation is obtained:

�C�2

� = 2�C�2

� − 1�

�

� rt

ro − 1� . �71�

This relation merely provides an estimate of the dynamic
correction to be applied. In practice, the parameter � is con-
sidered a constant and adjusted in order to counteract the
above-mentioned drift of the computation toward a steady
solution during the transient phase. Using this dynamic pro-
cedure, the unphysical averaging of the source terms of Eq.
�8�, temporarily used in previous sections to help sustaining
an unsteady resolved field, is avoided. Averaging is only

used to evaluate the statistical quantities involved in the
model, i.e., the total energy k and the dissipation rate �,
entering the integral length scale in Eq. �57�, and the mod-
eled energy km entering the definition of ro. Note that in the
present case, averaging is performed in time and in homoge-
neous directions.

It is worth emphasizing that, although the dynamic pro-
cedure is, in practice, an important ingredient of the model, it
does not modify its rationale described in previous sections.
Indeed, when the permanent state is reached during the com-
putation, the observed ratio ro approaches the target ratio rt,
such that the dynamic correction equation �71� becomes
small. Thus, the parameter driving the partition among re-
solved and modeled energy remains rt, evaluated by Eq. �57�.

The model resulting from all the ingredients selected in
Sec. IV is finally applied using the dynamic procedure. The
final model thus consists of the filtered momentum equation
�7�, the SGS tensor transport equation �8�, using the elliptic-
blending model described in Sec. III B, the dissipation rate
transport equation �44�, and the elliptic relaxation equation
�39� for the blending coefficient �. According to the conclu-
sions drawn from Sec. IV and from the present section,

• The target energy ratio rt is provided by Eq. �57�, with
p=2 and �0=0.20. In this relation, the integral length
scale is initialized by the result of a RANS computa-
tion, and updated during the computation, after a tran-
sient phase.

• This ratio rt is used in Eq. �18� to evaluate C�2

� , and the
dynamic correction �C�2

� is applied.
• The length scale of the blocking effect in Eq. �39� is

modeled by Eq. �62�.
• The modification fSGS of the slow term described in

Sec. IV D is not used.

In this section, dedicated to the final validation of the
method, a third mesh, finer than the reference mesh M0, is
introduced, in order to investigate the behavior of the model
when LES is approached. This mesh, denoted by M+, is ob-
tained by refining the reference mesh M0 by a factor of 1.5 in
all directions. The results for the three meshes M−, M0, and
M+ are shown in Figs. 13–17. In Figs. 13 and 14, the shear
stress and the turbulent energy, respectively, are compared
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FIG. 12. �Color online� Influence of the function fSGS �formulation P-EB with b=0.5� on the resolved �RES=u�v�+�, modeled �SGS=�12
+�, and total

�TOT=R12
+ =RES+SGS� shear stress. Left: mesh M0. Right: mesh M−.
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against the DNS data, together with their two contributions
�resolved and modeled parts�. It is noted, compared to pre-
vious sections, in which the artificial averaging of the source
terms was used, that the computations using the dynamic
procedure do not exhibit a pseudo-DNS behavior in the cen-
ter of the channel because the partition between resolved and
modeled energy is better controlled. In Fig. 14, a remarkable
feature of the model can be observed: when the mesh is
progressively refined, the partition of turbulent kinetic en-
ergy among resolved and modeled scales is drastically modi-
fied, but the total of the two contributions remains almost
constant.

Figure 16 shows the evolution of the ratio modeled
energy/total energy measured in the solution �observed�, in
comparison with the target ratios, for the three meshes. It can
be seen that mesh refinement drives the computation toward
the LES mode in an increasing portion of the channel. With
the finest mesh M+, if Pope’s criterion is retained,58 i.e., if a

LES is characterized by 80% of resolved energy, the model
is in LES mode in about half of the channel. Note that since
the RANS mode is enforced in the near-wall region by Eq.
�57�, further refining the mesh in this region would not lead
to performing a full LES. With the other two meshes, the
computation can only be considered a VLES.

Moreover, this figure illustrates the difficulty to control
the energy partition, since the target value rt is never exactly
obtained, in particular in the central part of the channel,
where the difference can reach about 20% with mesh M0. In
the near-wall region, the ratio modeled energy/total energy
does not reach 1, which is due to the unsteadiness generated
by structures computed in the outer region.

Figure 15 shows the normal Reynolds stresses obtained
with the dynamic approach on the three meshes. It can be
seen that these components are more sensitive to mesh re-
finement than the turbulent energy, i.e., even if the total en-
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FIG. 13. �Color online� Dynamic approach. Profile of resolved �RES
=u�v�+�, modeled �SGS=�12

+�, and total �TOT=RES+SGS� shear stress.
From top to bottom: mesh M−; mesh M0; mesh M+.
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FIG. 14. �Color online� Same figure as Fig. 13 for the turbulent kinetic
energy.
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ergy is preserved, the anisotropy is modified. The streamwise
component is overestimated with the three meshes and, in
particular, with the finest mesh M+, in the region around
y+=100.

However, this misprediction does not affect the shear
stress �Fig. 13� and the mean velocity, which is shown in Fig.
17, for the three meshes. Comparison is done with DNS and
a RANS computation with the EB-RSM. Even though the
reproduction of the buffer and logarithmic regions is not as
satisfactory as with the RANS model, the mean velocity pro-
file is correctly reproduced. The noticeable independence of
the mesh, observed in this figure as well as in Fig. 14, illus-
trates the fact that the goal of the present work, which is to
develop a model able to provide acceptable results whatever
the mesh, is achieved.

These results are very similar to those obtained by

Chaouat and Schiestel14,44 using a different model for the
pressure-strain correlation and damping functions in the
near-wall region. The aim of the present work was not to
improve the results of these authors in channel flows, which
were already satisfactory, but to provide a model free of
damping functions. Similar to what has been shown during
the past two decades in RANS, it is expected that a near-wall
model based on a theoretical basis, such as the elliptic relax-
ation approach, will be of more general applicability than a
model based on empirical damping functions.

It must be pointed out that on a given mesh, solving the
eight differential equations used to model the subfilter
stresses increases the computational cost by a factor of about
1.6 compared to a Smagorinsky model. This higher cost is by
far compensated by the possibility of coarsening the mesh.
For example, in the case of a channel flow with fluid injec-
tions by the porous walls, Chaouat and Schiestel14 have ob-
tained the same results as a classical LES with a Smagorin-
sky model, but with a mesh seven times coarser with the
PITM approach. Actually, in the finite volume code used in
the present work, most of the computational cost is due to
the resolution of the velocity/pressure system. Therefore, the
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resolution of the additional equations for the subgrid stresses,
the dissipation rate and the elliptic-blending function is
affordable.

VI. CONCLUSIONS

A new seamless hybrid RANS-LES model has been de-
veloped, based on transport equations for the subgrid
stresses, and the elliptic-blending method to account for the
nonlocal kinematic blocking effect of the wall. The deriva-
tion is made in the framework of the PITM strategy proposed
by Schiestel and Dejoan13 and Chaouat and Schiestel.14 The
purpose of such a model is to obtain the unsteady character-
istics of the flow at a cost lower than LES, by going to a
RANS computation in the near-wall regions, and also by
making the use of coarse meshes possible �compared to LES
meshes�. However, when the grid is fine enough such that the
cutoff wavenumber is in the inertial range of the energy
spectrum, it has been shown that the PITM is equivalent to a
Smagorinsky-type model, and therefore compatibility with
the LES limit is guaranteed. When the grid is coarse, the
cutoff can be located in the productive zone of the spectrum,
and thus, the complex production and redistribution mecha-
nisms must be reproduced, due to high anisotropies. A
second-moment closure is believed to give a better represen-
tation of these physical processes, in comparison to eddy-
viscosity models, especially in an unsteady context �e.g.,
Carpy and Manceau22�. For this purpose, the elliptic-
blending hybrid model is used and based on transport equa-
tions for the SGS tensor and the dissipation rate. It is shown
that the elliptic relaxation strategy of Durbin26 is valid in a
RANS �steady� as well as a LES context �unsteady�. The
wall-blocking effect is reproduced by using an additional el-
liptic relaxation equation for the blending function �, which
drives the transition of the SGS pressure term from a near-
wall behavior to a quasihomogeneous behavior. A new form
of the parameter r, which provides the model with the target
ratio modeled/total kinetic energy, is proposed to better con-
trol the RANS-LES transition in the near-wall regions, and is
calibrated in the channel flow at Re�=395. A new formula-
tion of the correlation length scale for the elliptic relaxation
equation is also proposed, in order to account for the fact that
the kinematic blocking effect must be imposed only on the
SGSs. Finally, a dynamic correction of the variable coeffi-
cient C�2

� in the dissipation rate equation is proposed in order
to ensure that the ratio modeled/total kinetic energy observed
in the results is the same as the target ratio imposed in the
equations of the model. Comparisons with the DNS data38

show that the results in channel flow are very encouraging in
terms of turbulence statistics, and are remarkably indepen-
dent of the mesh. Near the wall, the SGS part is dominant
�RANS mode� and decreases toward the center of the chan-
nel, where the resolved part in turn becomes dominant �LES
mode�. As expected, a modification of the mesh modifies the
partition between modeled and resolved energy, but the total
turbulent energy remains nearly constant. Although the re-
sults are very encouraging, further validation of the model in
more complex flows is necessary.
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