Investigation of WDM VLC Using Standard 5 mm RGB LEDs
Andrew Burton, Stanislav Zvanovec, Zabih Ghassemlooy, Paul Anthony Haigh, Izzat Darwazeh, Hoa Le Minh

To cite this version:

HAL Id: hal-02131334
https://hal.archives-ouvertes.fr/hal-02131334
Submitted on 21 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Investigation of WDM VLC Using Standard 5 mm RGB LEDs

Andrew Burton
OCRG, Faculty of Engineering and Environment
Northumbria university
Newcastle upon Tyne, UK
andrew2.burton@northumbria.ac.uk

Zabih Ghassemlooy
OCRG, Faculty of Engineering and Environment
Northumbria university
Newcastle upon Tyne, UK
z.ghassemlooy@northumbria.ac.uk

Izzat Darwazeh
Department of Electronic and Electrical Engineering
University College London
London, UK
i.darwazeh@ucl.ac.uk

Stanislav Zvanovec
Department of Electromagnetic Field
Czech Technical University
in Prague
Prague, CR
xzvanove@fel.cvut.cz

Paul Anthony Haigh
Department of Electronic and Electrical Engineering
University College London
London, UK
p.haigh@ucl.ac.uk

Hoa Le Minh
OCRG, Faculty of Engineering and Environment
Northumbria university
Newcastle upon Tyne, UK
hoa.le-minh@northumbria.ac.uk

Abstract—This paper investigates wavelength division multiplexing (WDM) using standard off-the-shelf commercial 5 mm red, green, blue chip light-emitting diodes for visible light communications (VLC). From the initial observations of the illuminance footprint, it is found that the illumination overlap from each of the three colours is difficult to achieve a white light due to the physical layout of the emitting elements. We experimentally demonstrate that WDM is only achievable with a horizontal misalignment of +/- 0.5 cm or +/- 2 cm of the origin at a transmission span of 10 and 40 cm. Furthermore, with respect to the angular misalignment, WDM is achievable within a cone area of +5° of the origin at 10 cm distance and only along the origin at a distance of 40 cm.

Keywords—RGB LED, wavelength division multiplexing, visible light communications.

I. INTRODUCTION

As the demand for high-speed wireless data increases, the strain placed upon the traditional radio frequency (RF) infrastructure is becoming increasingly apparent. Cisco reports that global Internet traffic in 2021 will be equivalent to 127 times the volume of the entire global Internet in 2005 [1]. This is leading to an ‘RF spectrum crisis’ as the available spectra cannot satisfy demand. However, optical technologies are ready offload traffic, working in conjunction with RF technologies. For short-range (a few meters) indoor applications i.e. homes, offices, etc., optical wireless communications (OWC) using the visible spectrum (i.e., wavelengths of 380-760 nm) can be employed. This emerging wireless technology can provide the joint advantage, for the first time ever, of simultaneous data communications, indoor localization and illumination.

Visible light communications (VLC) brings together OWC with the existing lighting infrastructure, providing simultaneous data communications and solid-state lighting, and is driven by light-emitting diode (LED) technologies [2]. The traditional gallium nitride LEDs used for lighting are produced by either coating a single blue chip LED with a yellowish phosphor [3], or through the combination of separate red, green and blue (RGB) chip emitters. Clearly, the first option provides the simplest solution as no colour mixing is required, and the LED manufacturer can supply warm-to-cool white shades depending on the red-to-blue content, such as the Philips Luxeon Rebel range [4]. However, the phosphor coatings on the LEDs have a relatively slow temporal response with respect to the blue chip emitter, hence reducing the available bandwidth B_{LED} of the device by an order of magnitude [5]. This remains a major challenge in realising high-speed VLC systems, hence the requirement for the additional equalisation and spectrally efficient modulation schemes. The RGB type LEDs on the other hand, require additional support for the colour mixing, but do not suffer from the phosphor effect on the available B_{LED}. Additional advantages of RGB LEDs include the possibility to independently deploy each of the individual colour constituents for separate data streams to form wavelength division multiplexing (WDM) and to increase bit rate [6].

The deployment of WDM within VLC has been reported in the literature, supporting bit rates up to 4.05 Gb/s over a transmission link span of 1 m [7]. Furthermore, an aggregate data rate of 6.36 Gb/s has been reported over the same distance, employing a multiple-input multiple-output (MIMO) VLC system [8]. There are many more RGB WDM VLC systems and techniques published in prior art [9-13], however, none of these reports commentate on the colour mixing capabilities of the LEDs to produce white light with respect to spatial link properties. This paper aims to investigate the ability of WDM with an RGB LED for the VLC system. Particular attention has been paid to the illumination pattern provided by each of the emitters and the overlap between the footprints of the different wavelengths. We demonstrate through the use of a standard off-the-shelf 5 mm RGB LED (Kitronix Ltd, common anode [14]), the technical difficulties for combining the three colours and hence achieving true WDM off the link axis.

The rest of this paper is organised as follows; Section II demonstrates the set of original observations and measurements of the optical output to the RGB LED; Section
III describes WDM VLC experiments, Section IV provides discussion of the results, and finally, Section V draws all of the conclusions.

II. RGB LED INITIAL OBSERVATIONS AND CHARACTERISATION

A. Initial Observations

It is clear from observation of the RGB LED footprints that colour mixing of the three chips to produce white light is a challenge with respect to spatial distribution (see Fig. 1). The colour rendered to the observer is not constant; it changes based on the observer’s relative position to the LED. For instance, an observer to the geometric left of the LED experiences green shades, whereas and observer on the right encounters more blue tones. Fig. 1 demonstrates this effect, where Fig. 1(a) shows the experimental setup whereby the RGB LED illuminates a white surface (standard A4 paper) over a distance \(d\). Figs. 1(b)-(e) shows the resultant colour mixing and individual RGB illumination footprints, which are projected onto the surface from the transmitter (Tx) over a given range \(d\). It has been found that, each of the RGB footprints increases in size linearly with respect to \(d\). What is also interesting to note is that it would appear that each of the axes of the RGB LEDs are not perfectly aligned in parallel but are offset from each other. Hence, the white overlap becomes less and less the further the Tx is placed away from the illuminated surface.

B. LED characterisation

Fig. 2 (a) displays the measured and normalised (to blue) spectral output power for a fixed input drive current \(I_D\) of 20 mA applied to each of the coloured emitters (note that, the outputs have been normalised to the blue chip). The dotted line denotes the sum of the optical power over all wavelengths. The peak wavelengths, full width half maximum (FWHM) and their normalised peak amplitudes are given in Table 1.

![Figure 1(a) experimental setup. (b) illumination footprint at \(d = 0\) cm, (c) \(d = 5\) cm, (d) \(d = 10\) cm, and (e) \(d = 15\) cm](image)

![Figure 2 RGB LED: (a) spectral output, and (b) optical output power vs. drive current (inset normalised cd vs. \(I\) response of WPLED and RGB LED).](image)

Table 1 Measured spectral outputs of the RGB LED

<table>
<thead>
<tr>
<th>Colour</th>
<th>Peak spectral output (nm)</th>
<th>FWHM (nm)</th>
<th>Normalised peak amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>645</td>
<td>24</td>
<td>0.42</td>
</tr>
<tr>
<td>Green</td>
<td>526</td>
<td>35</td>
<td>0.61</td>
</tr>
<tr>
<td>Blue</td>
<td>471</td>
<td>30</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Hence, for the same \(I_D\) of 20 mA applied to each of the coloured emitters, the blue shows the highest power output with the green showing almost 60% of the blue, and the red at 40%. Likewise, the green shows the widest FWHM followed by the blue and red. In addition, it has been observed that inter colour interference (ICI) occurs between the blue and green emitters. Using the wavelength of 500 nm as a threshold value, 3% of the blue energy is mixing with the green, whereas approximately 3% of the green output is mixing into the blue.
Between the green and red emitters (using a wavelength of 600 nm as a threshold) 0.2% of the green energy is shared into the red, and conversely 0.5% of the total red output is shared with the green. Thus, cross talk between colours is more likely to occur between the blue and green, than the red and green.

Fig. 2 (b) shows the quasi-linear relationship between the input drive current \(I_D \) and the normalised output optical power \(P_W \), measured with a power meter (please note that the output power has been normalised to the maximum white RGB output). The fitted curves as a function of \(I_D \) are given for the purpose of electro-optic modelling as:

\[
P_{\text{Red}}(I_D) = -9.8e^{-7}I_D^3 + 2.9e^{-5}I_D^2 + 5.9e^{-3}I_D + 1.3e^{-3}. \tag{1}
\]

\[
P_{\text{Green}}(I_D) = 6.4e^{-7}I_D^3 - 1.2e^{-4}I_D^2 + 9.1e^{-3}I_D + 1.6e^{-2}. \tag{2}
\]

\[
P_{\text{Blue}}(I_D) = 6.1e^{-7}I_D^3 - 1.6e^{-4}I_D^2 + 1.6e^{-2}I_D + 1.8e^{-2}. \tag{3}
\]

\[
P_W(RGB)(I) = P_{\text{Red}}(I) + P_{\text{Green}}(I) + P_{\text{Blue}}(I) \tag{4}
\]

\[
P_W(RGB)(I_D) = 3.6e^{-7}I_D^3 - 2.5e^{-4}I_D^2 + 3.1e^{-2}I_D + 3.5e^{-2} \tag{5}
\]

For comparison, the inset curves of Fig. 2 (b) show the measured normalised luminous intensity (cd) as a function of the normalised input current \(I_n \) for the white response of the RGB LED and a standard white phosphor LED (WPLED). The curves are given by:

\[
cd_{WPLED}(I_n) = -1.5e^{-7}I_n^3 - 1.4e^{-1}I_n^2 + 1.3I_n - 3.2e^{-2} \tag{6}
\]

\[
cd_{RGB}(I_n) = -8.9e^{-1}I_n^3 - 2.7I_n^2 + 2.7I_n - 3.2e^{-2} \tag{7}
\]

From the \(P_W-I \) response of the LED, the quasi-linear dynamic regions (QLDR) of the emitters have been determined and are given in Table 2. The QLDR is defined where the output optical power is linearly proportional to the input drive current. For binary signalling with two levels (-1 and 1), the QLDR is less important than for multi-level binary signalling; whereby multiple QLDRs will lead to distortion and non-linear variations between signalling levels. Hence, from Table 2 the red emitter has the most linear response with only two QLDRs, and the blue has the least linear with four QLDRs. The total RGB response is given as the sum of the RGB responses, thus with highest appearance to the blue component. The second part of Table 2 compares the luminous intensity as a function of the drive current measured with a Lux metre and compares the RGB and a WPLED. For the white response, the Lux meter had to be used to measure the output as it is not wavelength dependent and the white light is the sum of all visible wavelengths. It must also be noted that both the axis for the inset of Fig. 2(b) have been normalised. The WPLED drive current has been normalised to the maximum WPLED drive current, and the output has been normalised to the maximum WPLED output, likewise the RGB drive current and output have been normalised to the maximum RGB drive current ad output, for ease of visual comparison between the two. Using this method (i.e., using Lux meter), we can see that the WPLED has a higher degree of linearity to the response in comparison to the combined colours of the RGB.

Fig. 3 displays the measured and fitted results of the polar plots for each of the RGB emitters, future work plans to include more examples of 5 mm RGB LEDs. Table 3 outlines the fitted half power angle (\(HP_A \)), Lambertian order \(m \) and the offset angle. The Lambertian illumination pattern is expressed by [15]:

\[
I(\theta) = I(0)cos^m(\theta), \tag{8}
\]

where \(\phi \) is the angle of irradiance with respect to the axis normal to the transmitter surface, \(I(0) \) is the centre luminous intensity, and \(m \) is given by:

\[
m = -\frac{\log(2)}{\log(HP_A)} \tag{9}
\]

<table>
<thead>
<tr>
<th>Colour</th>
<th>HP(A) (deg)</th>
<th>Lambertian order ((m))</th>
<th>Offset angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>22</td>
<td>9.2</td>
<td>0</td>
</tr>
<tr>
<td>Green</td>
<td>15</td>
<td>20.0</td>
<td>-15</td>
</tr>
<tr>
<td>Blue</td>
<td>15</td>
<td>20.0</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 3: Fitted parameters from polar measurements of the LED RGB

<table>
<thead>
<tr>
<th>Colour</th>
<th>QLDR1</th>
<th>QLDR2</th>
<th>QLDR3</th>
<th>QLDR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I(mA))</td>
<td>(P(W))</td>
<td>(I(mA))</td>
<td>(P(W))</td>
</tr>
<tr>
<td>Red</td>
<td>0-30</td>
<td>0.00-0.18</td>
<td>30-50</td>
<td>0.18-0.25</td>
</tr>
<tr>
<td>Green</td>
<td>0-14</td>
<td>0.00-0.12</td>
<td>14-40</td>
<td>0.12-0.23</td>
</tr>
<tr>
<td>Blue</td>
<td>0-10</td>
<td>0.00-0.16</td>
<td>10-22</td>
<td>0.16-0.30</td>
</tr>
<tr>
<td>RGB</td>
<td>0-12</td>
<td>0.00-0.37</td>
<td>12-24</td>
<td>0.37-0.64</td>
</tr>
<tr>
<td></td>
<td>(I(A))</td>
<td>(cd)</td>
<td>(I(A))</td>
<td>(cd)</td>
</tr>
<tr>
<td>WPLED</td>
<td>0.05-0.42</td>
<td>0.02-0.48</td>
<td>0.42-0.64</td>
<td>0.48-0.72</td>
</tr>
<tr>
<td>RGB</td>
<td>0.00-0.20</td>
<td>0.00-0.50</td>
<td>0.20-0.41</td>
<td>0.50-0.76</td>
</tr>
</tbody>
</table>

Table 2: QLDR of the emitters
Table 4 also highlights the B_{mod} capabilities of the three emitters with a standard WPLED. As expected, the WPLED has the poorest response due to the slow temporal response of the phosphor coating, whereas the green shows more than double the WPLED and the red and blue having three times greater B_{mod}.

<table>
<thead>
<tr>
<th>Colour</th>
<th>3dB Frequency response (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPLED</td>
<td>2.7</td>
</tr>
<tr>
<td>Red</td>
<td>9.0</td>
</tr>
<tr>
<td>Green</td>
<td>7.0</td>
</tr>
<tr>
<td>Blue</td>
<td>9.5</td>
</tr>
</tbody>
</table>

III. WDM EXPERIMENTS

A photograph of the WDM VLC experiments is shown in Fig. 4(a). A PC with LabVIEW software automates the control of an arbitrary function generator (AFG3252) and a digital oscilloscope (DSO-X 3034A). The on-off keying non-return to zero (OOK-NRZ) data format is employed for intensity modulating each wavelength at a speed of 10 Mbps, as this falls safely within the B_{mod} capability recorded in Table 4. For the experiments it must be noted that all three emitters were simultaneously illuminated, however only a single colour was modulated per test in order to gain understanding of the optimal performance-per-wavelength without the influence of crosstalk. In each test, a pre-determined data sequence of length 2^m was repeatedly transmitted through each of the coloured emitters. The received data is captured using a real time digital oscilloscope and stored for offline processing in MATLAB. Each binary bit is determined through midpoint sampling and thresholding of the captured signal, before being compared to an arbitrary data format. The system bit error rate (BER) performance. All of the fixed experimental parameters are outlined in Table 5.

Fig. 4(b) shows the experimental configurations for each of the three experiments. The first experiment was carried out to measure the BER as a function of distance d between the LED Tx and the Rx, with and without a lens. All measurements in this test were performed at a transmission/reception angle (ϕ/ψ) of 0° meaning that the receiver position must be adjusted for each wavelength, in order to maintain this condition. The second set of experiments carried out measurement of the BER as a function of the horizontal misalignment between the emitter and Rx (with and without a lens). The Rx is moved along the receiving plane, parallel to the Tx plane. At each test point in distance d_2, the BER is measured. The distance d_1 at $\phi = 0^\circ$ is kept constant throughout the experiments (10 cm w/o the lens and 40 cm width). The final set of experiments carried out measurement of the BER as a function of the angular misalignment between the Tx and the Rx (once again with and without a lens). For this experiment, the distance d_1 is once again constant (10 cm w/o the lens and 40 cm with), however the Tx’s angle ϕ is investigated for the effect on the BER performance.
The results of the WDM RGB LED experiments are shown in Fig. 5. Each experiment was performed with and without the lens at the receiver. Figs. 5(a) and (b) show the measured BER as a function of the transmission distance. The results show that the green emitter performs the lowest, as expected due to the fact that it offers the lowest bandwidth. Figs. 5(c)-(f) illustrate the BER as a function of horizontal and angular displacement, respectively. In Figs. 5(c) and (d) the effect of horizontal misalignment has been investigated at a set distance d_1. The distance has been chosen so that each colour maintains a BER of $\leq 1e^{-6}$ at $\psi = 0^\circ$. Both sets of results display that WDM of the three colours is only possible within a small region of off-axis misalignment. Fig. 5(e) shows an overlap where each of the three colours achieve a BER of $\leq 1e^{-6}$ to be only 0.5 cm either side of the origin. Whereas with the addition of a lens (Fig. 5(d)), the WDM region extends to +/- 2 cm either side of the origin. These findings are supported by Eqs. 8 – 11, whereby for the red wavelengths both ψ and ϕ (the angle of incidence and irradiance) are equal, hence the BER being semitrical about the origin. However, for both the green and blue wavelengths $\psi \neq \phi$ due to the offset shown in Fig. 3, and thus the resultant offset about the origin of their respective BER.

For the angular misalignment, Figs. 5(e) and (f) depict that for a fixed distance, WDM transmission is only possible over a small cone area. Without a lens at a distance of 10 cm, Fig. 5(e) shows that WDM is only achievable within $\pm 5^\circ$ of the origin. With the addition of the lens, the WDM communications has been limited to the origin at $\psi = 0^\circ$. As soon as the Rx moves outside of these limits, potential WDM transmission is no longer possible. Once again we see that this is a result of $\psi \neq \phi$. For the case of the red wavelengths $\psi = \phi$ hence the BER being semitrical about the origin, however for the blue and green wavelengths the offset of ϕ is either +/- about the Tx origin. As a result, the Rx and the Tx are no longer aligned and a drop in received optical power is experienced. The drop in the power level reduces the signal to noise ratio and hence increases the BER.

V. CONCLUSIONS

This paper has investigated the use of standard 5 mm RGB LEDs for WDM VLC. From initial observations of the luminance footprints, it was noted that, achieving white light from the mixing of the colours was only achievable within a limited region and the observed colour to the user changed with their relative position. Furthermore, measurements of the relative output power per colour with respect to the viewing angle showed that the red emitter faces the normal, however both the green and blue emitters are offset from the normal by -15° and $+20^\circ$ respectively. Hence when using the RGB LED for WDM, the physical layout of the emitters makes it very difficult to achieve. Measurements have shown that with no lens, WDM is achievable +/- 0.5 cm of the origin (at a distance of 10 cm) to achieve a BER of $\leq 1e^{-6}$; and with a lens (at a distance of 40 cm) the WDM region persists at +/- 2 cm of the
origin. With respect to the transmission/reception angle analysis, it was shown that without a lens (at a distance of 10 cm) WDM is achievable within a +5° cone of the origin; and with the addition of the lens the WDM cone (maintaining a BER of <=1e-6) was severely limited to the origin or 0°.

Figure 5 Experimental results of the WDM RGB LED showing: (a) BER as a function of distance between the Tx and Rx w/o lens, (b) with a lens, (c) horizontal displacement w/o lens, (d) with lens, (e) angular misalignment w/o lens, and (f) with lens.

ACKNOWLEDGEMENTS

This work is supported by UK EPSRC Grant EP/P006280/1: Multifunctional Polymer Light-Emitting Diodes with Visible Light Communications (MARVEL), and the EU H2020 Marie Sklodowska-Curie grant agreement no 764461 (VISION).

REFERENCES

