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Abstract—Artificial neuron network provides a promising 

solution for fault diagnosis of fuel cell systems. A recently 

proposed novel framework of recurrent neuron network named 

Reservoir Computing is focused with only its output weights to 

be trained, which is rather advantageous for online adaption in 

real-time applications. In a previous work, its simplicity and 

efficiency has been demonstrated. This paper focus on a novel 

attempt of performing fault diagnosis directly in the reservoir 

computing based model space (current-voltage model) instead of 

the original data space (voltage signal). No additional feature 

extraction procedure is needed and abnormal health states could 

be detected directly in the model space (in the form of evolution 

of output weights). 
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I.  INTRODUCTION 

Fault diagnosis plays a critical role in reinforcing the 
durability and reliability of polymer electrolyte membrane fuel 
cell (PEMFC) systems, which are regarded as two main 
bottlenecks for the commercialization phase. According to 
whether an analytical PEMFC model exists, existed fault 
diagnosis methods can be categorized into two general kinds: 
model-based and data-driven methods [1], [2]. Among the 
data-driven methods, artificial neural network (ANN), 
especially the recurrent neural network (RNN) type, provides a 
promising solution as it demonstrates a strong capability in the 
modeling or pattern recognition tasks of nonlinear dynamical 
systems, while no deep knowledge about the underlying 
physical processes is required [3]–[5]. Theoretically, it can 
approximate arbitrary dynamical systems with arbitrary 
precision, also called “the universal approximation property”, 
under mild and general assumptions. 

Concerning the practical applications especially for real-
time fault diagnosis of PEMFC systems, the online adaption 
capability of the method is highly desirable [6]. Traditional 
RNN methods generally suffer from a high computational 
complexity, a slow convergence rate and the existence of 
bifurcations (resulting in local optima or even non-converging 
of the training process). To overcome their limitations, a 
fundamentally novel framework for RNN design and training 
was proposed independently by Prof. Jaeger in 2001 under the 

name of Echo State Network (ESN) [7] and by Prof. Maass 
under the name of Liquide State Machine (LSM) [8]. Together 
with the later appearing Back-Propagation De-Correlation 
(BPDC) learning rule, they are collectively referred to as 
Reservoir Computing (RC). 

RC differs from traditional RNN in that a large number of 
neurons are used (tens to thousands vs. tens of neurons in 
traditional RNN) and in that only the output weights need to be 
trained (usually in a linear way, while all the connection 
weights are trained in the traditional RNN) [9]. Therefore, it 
can greatly facilitate the training phase and further the online 
adaptation process in the real-time applications. Excellent 
performances of RC are reported in the literature in various 
practical applications, including the speed recognition task 
(word error rate 0% vs. 0.6% of previous methods) [10], the 
non-linear wireless channel equalization task (improved by two 
orders of magnitude) [11], the prediction of the chaotic 
dynamics (improved by three orders of magnitude) [12]. 

Despite its simplicity and efficiency, it is still a novel 
concept in the fuel cell (FC) fault diagnosis domain. An initial 
attempt of applying RC for PEMFC system diagnosis was 
made in [13]. Four fault types were targeted, including CO 
poisoning, low air flow rate, defective cooling and natural 
degradation. An excellent classification rate of the 99.9% in the 
training phase and 93.4% in the testing phase was obtained 
respectively. Meanwhile, the influence of a set if RC key 
parameters was studied. Nevertheless, only the static operating 
conditions were studied. This work was further developed in 
[14], [15] under PEMFC dynamic profiles and with an 
automatic optimization procedure separately. These previous 
works considered the stack voltage as a reliable health indicator 
of the FC system and took it as the only RC input and 
performed pattern recognition in a supervised way (each fault 
corresponds to a certain voltage pattern). 

In this paper, an innovative framework of performing 
PEMFC fault diagnosis utilizing RC is developed, inspired by 
the idea of “learning in the model space” proposed in [16]. It 
differs from the previous works in that it performed fault 
diagnosis directly in the RC based model space instead of the 
original data space. A brief introduction of RC basics is made 
in the following section. The experimental work performed by 
the authors is introduced in section 3. Section 4 provides more 
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details on the RC based fault diagnosis methodology. The 
conclusion and perspectives is given in the final section. 

II. RESERVOIR COMPUTING BASICS

A. Principal of Rerservoir Computing (RC) 

RC differs from the traditional RNN training methods in 
two basic aspects. First, the internal connections are assumed to 
be fixed and are not updated during training. Second, only the 
output weights need to be determined in the training process 
and they can easily be calculated by linearly regression 
techniques [17]. The training process is thus strongly 
simplified, and for online adapting algorithm, this is rather 
advantageous. A schematic illustration is shown in Fig. 1. 

Fig. 1. Traditionnal RNN and RC paradigm: (A) Traditional gradient-descent 

based RNN training methods adapt all connection weights, including input-to-

RNN, RNN-internal, and RNN-to-output weights. (B) In RC, only the RNN-

to-output weights (bold arrows) are adapted ([13]). 

Generally, RC consists of three distinct parts: an input 
layer, a reservoir and an output layer. The input layer is 
connected to the reservoir via a randomly generated input 
weight matrix (Win), which remains unchanged during training. 
The reservoir contains many randomly interconnected nodes 
(via W) which are also left untrained [17]. When excited by the 
input signals, the reservoir exhibits complex transient 
dynamics, which are further read out by the output layer via an 
output weight matrix (Wout). As shown in Fig.1 (B), the update 
equations of a typical structure are 

 x̃(n) = tanh(Win[1; u(n)]+Wx(n-1)) 

 x(n) = (1-α)x(n-1)+αx̃(n)     (1) 

Where u(n) is the input vector, x(n) is a vector of reservoir 
neuron activations and x̃ (n) is its update at time step n. and Win 
and W are respectively the input matrix and recurrent matrix, α 
is the leakage rate. 

The linear readout layer is defined as 

   y(n) = Wout [1;u(n);x(n)]     (2) 

    Where y(n) is the output vector, Wout is the output weight 
matrix and it can be calculated by minimizing the Mean Square 
Error (MSE) between y(n) and ytarget (n). The most universal 
and stable solution to calculate Wout is the ridge regression, also 
known as regression with Tikhonov regularization [18]: 

Wout = YtargetXT(XXT + βI)-1 (3) 

Where β is the regularization coefficient and I is the 
identity matrix. 

B. RC model based fault diagnosis 

The fundamental idea of applying RC for fuel cell fault 
diagnosis is to represent directly the original data (e.g. stack 
voltage) by sliding RC models and to perform fault diagnosis 
directly in the obtained model space. Abnormal behaviors 
occurring in the PEMFC system will be reflected in the 
deviation of the output weight matrix. No additional feature 
extraction based on the data space is thus needed. A more 
robust representation of the fuel cell health behavior could be 
obtained. A framework of the proposed fault diagnosis 
methodology is illustrated in Fig. 2. In the initial stage of this 
work, stack current (Istk) and stack voltage (Vstk) are applied as 
RC input and output separately. The corresponding Wout is 
generated by a linear combination of different internal states 
(plotted in blue lines in the reservoir). Under different 
operating conditions, the evolution of Wout could be analyzed 
for fault diagnosis. More details are given in section IV. 

RC model
PEMFC 

measurements
Generation of 

model space 

 Istk

PEMFC stack Wout evolution Vstk, Istk

W
out

 VstkReservoir

Fig. 2. Framework of the proposed RC based fault diagnosis methodology 

III. PEMFC SYSEM DESCRIPTION

A. 1 kW experimental test bench 

A three-month experimental characterization of the ZSW 5-
cell fuel cell stack (BZ 100_13) was performed within the 
French FCLAB laboratory (FR CNRS 3539), with its active 
surface 96 cm2, taking into consideration the influence of the 
operating current Istk and seven operating parameters, 
including: the air/H2 stoichiometry (FSC/FSA), the air pressure 
(Pair), the stack temperature (Tstk), the anodic/cathodic relative 
humidity (RHH2/RHair) and the cooling water flow rate (Fwater). 

The influence of Istk, under both the static condition and the 
dynamic excitations was studied. Three forms of excitations 
were performed, i.e. sinusoidal, square and sawtooth, each 
form with 2 magnitudes respectively, i.e. 2A and 5A, and 5 
exciting frequencies, i.e. 1000 Hz, 100 Hz, 30 Hz, 10 Hz, 5 Hz, 

-

(A) 

(B) 
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1 Hz, 0.1 Hz. Sampling frequencies are 50 kHz, 5 kHz, 2 kHz, 
500 Hz, 250 Hz, 50 Hz and 5 Hz respectively. Corresponding 
Labview control surface is shown in Fig.3 left. 

Table 1 shows the nominal operating parameters of the 
studied PEMFC system. In the initial stage of this work, the 
influence of air stoichiometry (FSC) is firstly studied to verify 
the efficiency of the proposed methodology. 

Control & monitoring 

interface

Excitation signal 

generation and collection 

interface

Fig. 3. 1 kW test bench with its control interfaces 

TABLE I.  PEMFC SYSETEM OPERATING PARAMETERS 

System parameters Operating range 

Current Max 120A

Voltage Max 0.95*5 = 4.75V 

Power Max 45*5 = 225W 

Stack temperature 10-65°C at stack outlet 

Pressure Anode Max 2.0 barabs  

(0.1 1.0 barg) 

cathode Max 2.0 barabs  

(0.1 1.0 barg) 

Flow rate and utilization Hydrogen Min 0.2 l/min/cell 

Max 1.4 l/min/cell 

60-80 % utilization 

Air Min 0.7 l/min/cell 

Max 5 l/min/cell 

25 - 50 % gas utilisation 

Cathode relative humidity Humidified air 50-100% 

Dew point 25 - 55 °C 

Anode relative humidity hydrogen Dry to dew point 55 °C 

CO tolerance Max.10 ppm 

IV. FAULT DIAGNOSIS METHODOLOGIE USING RC

A. RC model 

The fuel cell stack is operated under a constant DC current 

40A with an additional and sinusoidal perturbation of low 

amplitude (typically 5% of the DC component). The voltage 

response of the stack is measured. Different operating 

conditions are applied, mimicking a fault in the air supply 

system (Fig. 4). As a matter of fact, the air stoichiometry 

factors are varied from high values to low values (from 4 to 

1.5, with 2.8 as nominal value).  

A one-input and one-output small RC model is trained to 

model the voltage response of the stack under different FSCs. 

The RC critical parameters are initially chosen as: number of 

internal nodes = 20, leakage rate α = 0.3, regularization 

parameter β = 1× 10-8, input matrix Win and internal recurrent 

matrix W are generated randomly in the range of [-0.5, 0.5]. It 

should be noted that these parameters can be further optimized 

to adapt a certain task. And global optimization methods, such 

as genetic algorithm, and big bang crunch algorithm can be 

selected to perform automatic optimization [15,18]. 
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Fig. 4. Stack current (normalized by divising 100) and voltage (normalized 

by divising 5) under different air stoichiometries (nominal condition 

FSC=2.8) with sinusoidal excitation 0.1 Hz 

Fig. 5 shows the trained RC output and Vstk under the 
nominal condition FSC = 2.8. It could be found that the RC 
output matches well the real stack voltage, and a Mean Square 
Error (MSE) is obtained less than 0.003%. Meanwhile, the 
corresponding output weight matrix Wout is calculated and 
plotted with its 22 elements (i.e. 1+1+20 as indicated in Eq (2)) 
in Fig. 6. Essentially, Wout could be regarded as a group of 
internal FC system parameters which reflect the nonlinear 
relationship between the Istk and Vstk under the dynamic 
excitations. This input-output relationship could certainly be 
established in other simpler nonlinear functions such as 
polynomial functions. RC model is selected herein considering 
its demonstrated capacity in dealing with temporal signals in 
dynamic systems. And this characteristic will be further 
explored in the following work for dealing with more complex 
multi-fault diagnosis under dynamic operating conditions. 
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Fig. 5. Stack voltage (FSC = 2.8) under sinusoidal excitation and RC output 
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Fig. 6. Output weight matrix elements under nominal operating condition 

B. RC model-space based fault diangosis 

The basic principal of RC model-space based fault 

diagnosis is to represent the original signals (i.e. Istk and Vstk in 

this initial work) by dynamic models (reservoirs with linear 

readouts) and perform diagnosis in the model space of the 

readouts (i.e. output weight elements). Alternatively, RC 

model can be regarded as a robust representation of FC system 

voltage-current behavior. Abnormal health states can result in 

the deviation of stack voltage from the normal behavior, and 

this deviation could be reflected in a more robust form of 

output weight matrix. 

Fig.7 shows the states of the neurons inside the reservoir 

and it gives an insight into the dynamic behavior of each 

neuron evolving with time (200 time steps are plotted). It can 

be observed that during the initial 50 time steps, the reservoir 

neurons demonstrate initial transient behavior, and this is 

called “washout layer”. They should be discarded in the 

training phase. 
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Fig. 7. Iinternal neuron states inside the reservoir 

The output weight matrix is obtained during the training 
phase and the distribution of its elements is given in Fig. 8. 
This distribution can be related to the air stoichiometry factors 
and used for diagnostic. To demonstrate more clearly the 
influence of the air stoichiometry factor, the 6th, 9th, and 20th 
elements of the output matrix are selected for further 
observation, as shown in Fig. 9. 

In Fig. 9, it can be observed that the lowest and highest air 
stoichiometries (i.e. 1.5 and 4, corresponding to number 1 and 
8 in the horizontal axis) deviate the most from the nominal 

condition (corresponding to number 6). The feasibility of 
utilizing the evolution of output weight matrix elements in the 
model-space is thus demonstrated. This is rather advantageous 
for real-time applications where the online adaption capability 
is highly required, as only linear readouts are needed to be 
recalculated in the proposed method. 

In the following work, supervised algorithms such as fuzzy 
logic, support vector machine can be further applied for fault 
classification [19]. 
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Fig. 8. Wout distribution under different FSC configurations 
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Fig. 9. Variation of the  6th, 9th and 20th element of Wout under 8 FSCs 

V. CONCLUSION 

In this paper, an initial attempt is made to perform PEMFC 
system fault diagnosis in the RC based model space. The RC 
model establishes a relationship between stack current and 
stack voltage under various dynamic excitations (sinusoidal 
type). An excellent performance for the modeling task is 
obtained (less than 0.003%). In the next step, abnormal health 
behavior could be detected in the distribution of the output 
weight distribution. This initial work demonstrates the 
feasibility of the idea of learning in the model space based on 
RC method. 

ACKNOWLEDGMENT 

The work was performed within the second phase of French 
ANR BIPHOPROC (Brain Inspired PHOtonic PROCessing) 
project, with the agreement number ANR-14-OHRI-0002-01. 
This project is also part of the DEMO 3 within the Labex 
ACTION project (laboratory of excellence, funded by the 

4



ANR). Great thanks go to my college Raffaele Petrone, with 
whom the experimental part was collaborated. Experimental 
supports from Fabien Harel and Xavier François are also 
greatly appreciated.  

REFERENCES 

[1] R. Petrone, Z. Zheng, D. Hissel, et al. A review on model-based 
diagnosis methodologies for PEMFCs[J]. International Journal of 
Hydrogen Energy, 2013, 38(17): 7077-7091.  

[2] Z. Zheng, R. Petrone, M.C. Péra, et al. A review on non-model based 
diagnosis methodologies for PEM fuel cell stacks and systems[J]. 
International Journal of Hydrogen Energy, 2013, 38(21): 8914-8926.  

[3] S. Jemei, D. Hissel, M.C. Péra, et al. A new modeling approach of 
embedded fuel-cell power generators based on artificial neural network. 
IEEE Transactions on Industrial Electronics, 2008, 55(1): 437-447. 

[4] N.Y. Steiner, D Hissel, P. Moçotéguy, et al. Diagnosis of polymer 
electrolyte fuel cells failure modes (flooding & drying out) by neural 
networks modeling. International Journal of Hydrogen Energy, 2011, 
36(4): 3067-3075. 

[5] M.M. Kamal, D.W. Yu, D.L. Yu. Fault detection and isolation for PEM 
fuel cell stack with independent RBF model. Engineering Applications 
of Artificial Intelligence, 2014, 28: 52-63. 

[6] Z. Li, R. Outbib, S. Giurgea, et al. Diagnosis for PEMFC systems: a 
data-driven approach with the capabilities of online adaptation and novel 
fault detection[J]. IEEE Transactions on Industrial Electronics, 2015, 
62(8): 5164-5174. 

[7] J. Herbert. "The “echo state” approach to analysing and training 
recurrent neural networks-with an erratum note." Bonn, Germany: 
German National Research Center for Information Technology GMD 
Technical Report 148.34 (2001): 13. 

[8] W. Maass, T. Natschläger, and H. Markram. Real-time computing 
without stable states: A new framework for neural computation based on 
perturbations. Neural computation 14.11 (2002): 2531-2560. 

[9] J. Herbert, and H. Haas. Harnessing nonlinearity: Predicting chaotic 
systems and saving energy in wireless communication. Science 
304.5667 (2004): 78-80. 

[10] D. Verstraeten, B. Schrauwen, and D. Stroobandt. Reservoir-based 
techniques for speech recognition. in International Joint Conference on 
Neural Networks, 2006. IJCNN ’06, 2006, pp. 1050–1053. 

[11] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization 
and applications of echo state networks with leaky- integrator neurons. 
Neural Netw., vol. 20, no. 3, pp. 335–352, Apr. 2007. 

[12] H. Jaeger and H. Haas. Harnessing Nonlinearity: Predicting Chaotic 
Systems and Saving Energy in Wireless Communication. Science, vol. 
304, no. 5667, pp. 78–80, Apr. 2004. 

[13] Z. Zheng, S. Morando, M. C Péra, D.Hissel, L.Larger, R. Martinenghi, 
and A. B. Fuentes, (2017). Brain-inspired computational paradigm 
dedicated to fault diagnosis of PEM fuel cell stack. International Journal 
of Hydrogen Energy, 42(8), 5410-5425. 

[14] S. Morando, M. C. Péra, , N. Y. Steiner, S. Jemei, D. Hissel, and L. 
Larger. Fuel Cells Fault Diagnosis under Dynamic Load Profile Using 
Reservoir Computing. In Vehicle Power and Propulsion Conference 
(VPPC), 2016 IEEE (pp. 1-6). IEEE. 

[15] S. Morando, M. C. Péra, N. Y. Steiner, S. Jemei, D. Hissel, and L. 
Larger, Reservoir Computing optimisation for PEM fuel cell fault 
diagnostic. In Vehicle Power and Propulsion Conference (VPPC), 2017. 

[16] H. Chen, P. Tino, A. Rodan, and X. Yao. Learning in the model space 
for cognitive fault diagnosis. IEEE transactions on neural networks and 
learning systems, 25(1), 124-136, 2014. 

[17] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to 
recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3, pp. 
127–149, Aug. 2009. 

[18] M. Lukoševičius. A practical guide to applying echo state networks. 
Neural networks: Tricks of the trade, pp. 659-686, Springer, Berlin, 
Heidelberg, 2012. 

[19] Z. Li, R. Outbib, S. Giurgea, et al. Online implementation of SVM based 
fault diagnosis strategy for PEMFC systems. Applied energy, 2016, 164: 
284-293. 

5


