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On the zero-dynamics of a class hybrid LTI systems: a geometric
approach

Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— The paper deals with the geometric characteri-
zation of the zero-dynamics for linear time-invariant systems
with aperiodic time-driven jumps. As the intuition suggests, it is
given by the restriction of the feedback dynamics to the largest
subspace over which the trajectories are constrained to ensure
zero output. Such a dynamics is characterized by a subset of the
flowing zeros and a subset of the zeros which can be fictitiously
associated to the jumping dynamics.

Index Terms— Hybrid systems; Algebraic/geometric meth-
ods; Linear systems.

I. INTRODUCTION

Nowadays, growing attention is devoted toward dynamics
characterized by the interaction of both continuous and
discrete-time behaviors. Those kind of systems are referred
to as hybrid systems and typically described by set inclusions
and the interconnection of suitable discrete and continuous-
time models characterizing the jumping and flowing evolu-
tions which are governing, in a combined way, the overall
dynamics [1]–[6]. Among these, hybrid systems with time-
driven state jumps (or impulsive systems) are of paramount
importance as they allow to fully describe, for example,
cyber-physical systems or dynamical analog systems inter-
connected to digital devices (e.g., sampled-data systems) by
simultaneously catching the heterogeneous behaviors acting
over the overall system. When jumps are periodic in time,
several works have been developed to address important
control problems such as, for example, hybrid regulation [7],
[8]. In those contributions, the notion of zero-dynamics has
been shown to be, as in purely continuous or discrete-time
systems, a fundamental issue that cannot be discarded [9]–
[11]. Still, a complete characterization of this behavior has
not been provided so that its analysis is typically lead (in
a conservative way) to the corresponding purely continuous
or discrete-time counterpart. The work in [12] represents a
first attempt toward the characterization of zeros of a hybrid
system via a suitably defined hybrid transfer function in
a hybrid frequency domain. However, such an approach is
quite involved and suffers from generalizability to a wider
context as direct integration of the trajectories is needed for
the definition of the zeros and thus motivating the periodic
context. Moreover, because the transfer function consists of
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Francese through the Vinci Grant 2018.

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale A. Ru-
berti (La Sapienza University of Rome); Via Ariosto 25, 00185 Rome, Italy
{mattia.mattioni,salvatore.monaco}@uniroma1.it.

2Laboratoire de Signaux et Systèmes (L2S, CNRS);
3, Rue Joliot Curie, 91192, Gif-sur-Yvette, France
dorothée.normand-cyrot@l2s.centralesupelec.fr

four components that are parametrized by two complex vari-
ables (for the flow and jump behaviors), explicitly exhibiting
the zeros might not be easy in general.

In this paper, we address the problem of defining the
zero-dynamics for linear hybrid systems with aperiodic time-
driven jumps in the geometric framework developed in [13],
[14] for general results and recently extended to this hybrid
context in, for example, [15], [16]. In doing so, no knowledge
of the jumping instants is assumed. In particular, instead
of focusing on the definition of the zeros, we investigate
the concept of zero-dynamics subspace allowing a revealing
study of the hybrid zero-dynamics as defined by a suit-
able combination of the zero-dynamics corresponding to the
flowing and jumping behaviors. Such an approach relies
upon the definition of a suitable controlled-invariant subspace
(the hybrid zero-subspace) that is contained into the null-
space of the output evolution and is, at the same time,
invariant under the flow and jump dynamics. Connections
with the hybrid zeros of the system are also established
as particular subsets of couples of the flowing and fictious
jumping zeros, associated to flowing and jumping dynamics
when considered as purely continuous and discrete-time
systems. In our context, the feedback laws inducing the zero-
dynamics is independent upon the jumping period sequence
and requires no integration of the trajectories contrarily to
what proposed in [12] or in the context of invariance at large
in [15].

The remaining of the paper is organized as follows: in
Section II the class of systems under study is defined and the
problem is settled. In Section III the hybrid zero-dynamics
is characterized based on the definition of the hybrid zero-
subspace which is controlled invariant under the hybrid
system. Insights on the hybrid zero-dynamics are investigated
in Section IV where the notion of hybrid zeros is also set.
Some examples illustrate the results in Section V whereas
conclusions and future perspectives are in Section VI.

II. PRELIMINARIES AND THE CLASS OF SYSTEMS UNDER
STUDY

A. Notations

MatR(n,m) defines the set of n×m matrices with real
entries. Given a square matrix A ∈ MatR(n,n) we denote
by |A| the determinant of A. The notation σ(A) = {λ ∈
C s.t. |A− λ I| = 0} defines the spectrum of A. Given a
matrix B ∈MatR(n,m), we say that V = span{s1, . . . ,sp} ⊂
Rn is (A,B)-invariant if, for all si ∈ V , Asi ∈ V + ImB or,
in short, AV ⊂ V + ImB. Moreover, we say that F is the



friend of a controlled invariant subspace V if (A+BF)V ⊂V .
We define the ordered set Π(A,B,C) := {V ⊂ Rn s.t. AV ⊂
V +ImB and V ⊂ kerC}. With a slight abuse of notations, R⊥n
denotes the dual space to Rn while ΩA denotes the subspace
of R⊥n generated by the rows of ωA for ω ∈ Ω. Given a
subspace V ⊂ Rn then Ω := V⊥ ⊂ R⊥n with ω ∈ Ω if, and
only if, for all si ∈ V , ωsi = 0. I and 0 denote respectively
the identity and zero matrices of suitable dimensions.

B. Hybrid systems under aperiodic jumps

Introduce the hybrid time domain T =∪∞
k=0[tk, tk+1]×{k}

with tk− tk−1 := δk for all k ∈ N. Accordingly, consider the
class of hybrid systems given by

x+ = Fx+Gv (1a)
ẋ = Ax+Bu (1b)
y =Cx (1c)

or, more explicitly, for t ∈ [tk, tk+1[

x(tk,k) = Fx(tk,k−1)+Gv(k), ẋ(t,k) = Ax(t,k)+Bu(t,k)

y(t,k) =Cx(t,k)

with x ∈ Rn, u,v,y ∈ Rp and

x(tk,k−1) =eAδk x(tk−1,k−1)+
∫ tk

tk−1

e(tk−s)ABu(s,k−1)ds

for x(t0,−1) = x(t0,0) = x0, x(tk,k−1) = limt→t−k
x(t,k−1).

In what follows, we denote C> =
(
c>1 . . . c>p

)
, B =(

b1 . . . bp
)
. We assume that the time domain is not

known in the sense that measures (or estimates) of the
jumping instants are not available. We underline that the class
of system (1) under study is also referred to as impulsive
systems (e.g., see [16]).

III. THE HYBRID ZERO-DYNAMICS

The zero-dynamics of (1) is the residual dynamics the
system evolves with when, for a suitable x0 ∈ Rn such that
y0 = 0 and a suitable feedback law, one has y(t,k) = 0
for all (t,k) ∈ T . From a geometric point of view [14], it
is the dynamics governing the evolutions over the largest
feedback-unobservable subspace. This is the point of view
we shall adopt, so that the following definition of hybrid
zero-dynamics will be assumed:

Definition 3.1: The zero-dynamics of (1) is the residual
dynamics the system evolves with when the trajectories are
constrained onto the zero-dynamics subspace (or, for brevity,
zero subspace) V ∗h ⊂ Rn that is the largest subspace made
unobservable under state feedback.

Accordingly, we shall characterize the zero-dynamics
through the definition of the zero subspace V ∗h . As a byprod-
uct, this will lead to a natural interpretation of the zeros of
some transfer function associated to (1) as defined, for the
periodical case, in [12].

To this end, when considering (1a) and (1b) as purely
continuous and discrete-time dynamics with corresponding
output (1c) one can define the subspaces Vc⊂Rn and Vd ⊂Rn

being the largest invariant subspaces that are, respectively,

(A,B)-invariant and (F,G)-invariant and contained in kerC;
namely, Vc and Vd verify, separately,

AVc ⊂Vc + ImB (3a)
FVd ⊂Vd + ImG. (3b)

with dim{Vc} = n− rc and dim{Vd} = n− rd for some
positive real constants rc,rd .

Remark 3.1: When the continuous and discrete-time dy-
namics associated to (1a) and (1b) admit well-defined vector
relative degrees rc = (r1

c . . .r
p
c ) and rd = (r1

d . . .r
p
d ) [17,

Chapter 5] with rc = ∑
p
i=1 ri

c and rd = ∑
p
i=1 ri

d [17], Vc and
Vd can be further specified as

Vc = ∩p
i=1ker


ci

ciA
...

ciAri
c−1

 , Vd = ∩p
i=1ker


ci

ciF
...

ciFri
d−1

 .

With this in mind, the zero-subspace V ∗h is thus the largest
subspace that is contained in the null-space of C and, at the
same time, (A,B) and (F,G)-invariant. By definition of Vc
and Vd , then one has that necessarily V ∗h ⊂Vc∩Vd ⊂ kerC so
that the following definition can be given.

Theorem 3.1: Consider the hybrid system (1) and the
subspaces Vc and Vd in (3). Denote Vint :=Vc∩Vd and define
V ∗h as the largest subspace contained in Vint ⊂ kerC verifying

AV ∗h ⊂V ∗h + ImB (4a)
FV ∗h ⊂V ∗h + ImG (4b)

with dim{V ∗h } = n− rh for some rh ∈ N. Then, V ∗h defines
the zero-subspace for the hybrid system (1); namely, there
exist K∗ and H∗ (the friends of V ∗h ) verifying

(A+BK∗)V ∗h ⊂V ∗h and (F +GH∗)V ∗h ⊂V ∗h (5)

so that, for all x0 ∈V ∗h , y(t,k) = 0 for all (t,k) ∈T .
The proof of Theorem 3.1 is quite straightforward. V ∗h

defines the zero-subspace associated to (1) as it is the largest
controlled-invariant under both (1a) and (1b) and contained
in kerC. In addition, when measures of the jumping times are
available, double invariance (4) is no longer necessary for the
definition of the zero-subspace. In that case, the necessary
and sufficient condition, together with the construction algo-
rithm, has been provided in [15] for controlled invariance of
impulsive systems at large. In that case, the friends of V ∗h
under (A,B) and (F,G) depend explicitly on δk for all k≥ 0.

As a consequence of Theorem 3.1, the zero-dynamics of
the hybrid system (1) can be defined as its restriction onto
the zero subspace V ∗h , as pointed out in Section III-A below.
This results from common characteristics of the underlying
geometry of the two possibly different zero-dynamics of (1a)
and (1b). This aspect is revealed by the proposed state-space
approach as it is not evident from the frequency domain
characterization proposed in [12].

Remark 3.2: When p = 1, that is (1) is SISO, then rh can
be interpreted as the hybrid relative degree of (1).



Remark 3.3: When p = 1 and V ∗h = {0} then rh = n and
there is no hybrid zero-dynamics, even if both Vc and Vd
are not {0}. On the other side, whenever rc = rd = 1 then
V ∗h = kerC regardless A and F and, thus, the internal structure
of the flow and hybrid dynamics.

In what follows, such a concept will be further clarified
by linking the notion of hybrid zeros of (1) to the zeros
of the single transfer functions associated to (1a) and (1b).
Before doing this, an algorithm for computing V ∗h is given
by extending the one in [13], [14] to this context based on
the ones in [15], [18], [19].

A. On the computation of V ∗h
Let Πh(A,B,F,G,C) := Π(A,B,C)∩Π(F,G,C) that is the

set of subspaces being, at the same time, (A,B) and (F,G)-
invariant and that are contained in Vint := Vc ∩Vd ⊂ kerC.
The set Πh(A,B,F,G,C) is closed under subspace addition
and ordered and, thus, possesses a supremal element V ∗h :=
supΠh(A,B,F,G,C) [14, Chapter 4] that can be deduced
starting from Vc and Vd being the maximum elements of,
respectively, Π(A,B,C) and Π(F,G,C) and verifying (3). To
this end, the following Lemma is thus useful to characterize
all V ∈Πh(A,B,F,G,C).

Lemma 3.1: Consider the matrices A,B,F,G,C defining
the hybrid dynamics (1) and Πh(A,B,F,G,C) :=Π(A,B,C)∩
Π(F,G,C). Let V ⊂ Rn and Ω := V⊥. V ∈ Πh(A,B,F,G,C)
if and only if

(Ω∩ (ImB)⊥)A+(Ω∩ (ImG)⊥)F ⊂Ω. (6)
Proof: : One needs to show that (6) is equivalent to (i)

V ⊂Vint ⊂ kerC; (ii) AV ⊂V + ImB; (iii) FV ⊂V + ImG. In
due dual space, one gets that V verifies (i), (ii) and (iii), if
and only if Ω verifies: (ib) (kerC)⊥⊂ (Vint)

⊥⊂Ω; (iib) (Ω∩
(ImB)⊥)A⊂Ω; (iiib) (Ω∩(ImG)⊥)F ⊂Ω. In particular, (ii)
and (iii) hold true at the same time if, and only if (iib)
and (iiib) do and, as a consequence, (6) holds true. As a
matter of fact, ∀ω1 ∈ Ω∩ (ImB)⊥ and ∀ω2 ∈ Ω∩ (ImG)⊥

one has ω1Av = 0 and ω2Fv = 0 for all v ∈ V if, and only
if, ∀ω1A ∈ (Ω∩ (ImB)⊥) and ∀ω2F ∈ (Ω∩ (ImG)⊥) that is
ω1A ∈ Ω and ω2F ∈ Ω. Setting now ω = ω1A+ω2F , ω ∈
(Ω∩ (ImB)⊥)A+(Ω∩ (ImG)⊥)F and ω ∈Ω holding if and
only if (6) does.

Starting from Lemma 3.1, the next result allows to con-
struct the maximal (A,B) and (F,G) invariant subspace V ∗h
that is contained in Vint ⊂ kerC and that defines the zero-
subspace of the hybrid system. As typical in the geometric
approach, V ∗h is deduced in the dual space by defining the
minimal dimension co-subspace Ω∗ verifying Lemma 3.1.

Theorem 3.2: Consider the hybrid dynamics (1) and
Πh(A,B,F,G,C) := Π(A,B,C)∩Π(F,G,C) with Vint :=Vc∩
Vd ⊂ kerC and Vc and Vd as in (3). Introduce the sequence
{Ω`} as Ω0 =V⊥int and

Ω
` =V⊥int +(Ω`−1∩ (ImB)⊥)A+(Ω`−1∩ (ImG)⊥)F

with ` = 1,2, . . . . Then, Ω` ⊂ Ω`−1 and, for some ` ≥ `∗

with `∗ ≤ dim(Vint), Ω∗ = Ω` = Ω`+1. As a consequence, the

zero-subspace V ∗h is given by

V ∗h := (Ω∗)⊥. (7)
Proof: By construction, one gets Ω0 ⊂ Ω1 ⊂ ·· · ⊂ Ω`

for ` = 1,2, . . . . Thus, there exists a `∗ ≤ dim(Vint) such
that Ω` = Ω`+1 for all ` ≥ `∗. Moreover, from Lemma
3.1, V ∗h = (Ω∗)⊥ ∈ Πh(A,B,F,G,C) and, by construction,
V ∗h = supΠh(A,B,F,G,C).

Remark 3.4: Theorems 3.1 and 3.2 (and all the results to
come) extend to the case in which the output mappings are
switching between flows and jumps, that is to systems of the
form (1) where (1c) is modified as follows

y(t,k) =

{
C f x(t,k−1) if t ∈ [tk−1, tk)
C jx(tk,k−1) if t = tk.

In that case, one computes Vc and Vd as the subspaces
associated to (A,B,C f ) and (F,G,C j) and proceeds along
the same lines.

Remark 3.5: When G = 0, the proposed algorithm recov-
ers the one presented in [18] for disturbance decoupling
under periodic jumps. In addition, it represents an alternative
to the one settled in [19] for regulation of aperiodically
jumping hybrid systems.

B. An invariance-based decomposition

From Theorem 3.1, dim{V ∗h }= n− rh so that, from The-
orem 3.2, dim{Ω∗} = rh. As a consequence, we rewrite
Ω∗ = span{ω1, . . . ,ωrh} with ωi being row vectors verifying,
for all s ∈ V ∗h that ωis = 0 for i = 1, . . . ,rh. Introduce now
the coordinate transformation(

z
η

)
= T x, T :=

(
ω>1 . . . ω>rh

T>2
)>

(9)

with T2 ∈MatR(n−rh,n) being a complement so that |T | 6= 0
and ω and z ∈ Rrh and η ∈ Rn−rh . Then, one gets

TAT−1 =

(
A11 A12
A21 A22

)
, T B =

(
B1
B2

)
T FT−1 =

(
F11 F12
F21 F22

)
, T G =

(
G1
G2

)
, CT−1 =

(
C1 0

)
with ImA12 ⊂ ImB1 and ImF12 ⊂ ImG1. Thus, in these new
coordinates, the friends of V ∗h under (A,B) and (F,G) are of
the form K∗ = (0 K∗r ) and H∗ = (0 H∗r ) and ensure

A12 +B1K∗r = 0, F12 +G1H∗r = 0. (10)

so that, when setting K∗r = −(B>1 B1)
−1B>1 A12, H∗r =

−(G>1 G1)
−1G>1 F12 and

u∗ = ū+K∗r η , v∗ = v̄+H∗r η (11)

the dynamics (1) get the form

z+ = F11z+G1v̄ (12a)
η
+ = F21z+(F22 +G2H∗r )η +G2v̄ (12b)

ż = A11z+B1ū (12c)
η̇ = A21z+(A22 +B2K∗r )η +B2ū (12d)
y =C1z (12e)



From the previous representation, it is clear that when x∈V ∗h ,
then z = 0 so that the residual dynamics governing (1) are

η
+ = Qdη , η̇ = Qcη (13)

with Qc := F22 +G2H∗r and Qd = A22 +B2K∗r . The hybrid
system (13) describes the hybrid zero-dynamics over V ∗h .

The form (12) underlines that the feedback (11) is the
one generating maximal unobservability of (1) by making
the subspace V ∗h defined in Theorem 3.1 unobservable.

Remark 3.6: Contrarily to previous results for hybrid sys-
tems (e.g., [8]), thanks to the geometric characterization, the
feedback laws (11) rendering the zero-dynamics invariant
do not require explicit computation of the trajectories of
(1) as they only depend on the matrices A,B,F,G,C and
the properties they yield. In addition, the knowledge of the
jumping period sequence {δ0,δ1, . . .} is not required.

Accordingly, the following definition is straightforward.
Definition 3.2 (Minimum-phase of hybrid LTI systems):

The hybrid system (1) is said to be minimum-phase when
the zero-dynamics (13) are asymptotically stable.

Conditions for investigating the stability of (13) are not
given as beyond the purpose of the paper. However, the
reader is referred to several references on the topics for
sufficient conditions and a deeper understanding on the
difficulties (e.g., [20], [21] and references therein).

In what follows, further comments on the characterization
of Qc and Qd are discussed with special emphasis on their
relations with the zeros of the transfer functions involved.

IV. INSIGHTS TO THE HYBRID ZERO DYNAMICS

A. Jumping and flowing zeros

Unless differently specified and for the sake of simplicity,
let (1) be a SISO system with u,v,y ∈ R. Assume the
couples (A,B) and (F,G) controllable and (A,C) and (F,C)
observable. Consider now the minimal transfer functions
associated with the individual flow and jump dynamics (1a)
and (1b) when considered as purely continuous and discrete-
time systems

P(s) =C(sI−A)−1B =
b0 + · · ·+bn−rcsn−rc

a0 + · · ·+an−1sn−1 + sn

L(s) =C(sI−F)−1G =
g0 + · · ·+gn−rd sn−rd

f0 + · · ·+ fn−1sn−1 + sn

(14)

with s ∈ C, possessing, respectively, n− rc and n− rd zeros
defined by the roots of the numerators of the corresponding
transfer function. The next result shows the relation among
the zeros of P(s) and L(s) with the rh eigenvalues of Qc and
the rh eigenvalues of Qd as given in (13). For the sake of
compactness denote by Zc and Zd , respectively, the zeros of
P(s) and L(s) that is

Zc = {s ∈ C s.t. b0 +b1s+ · · ·+bn−rcsn−rc = 0}
Zd = {s ∈ C s.t. g0 +g1s+ · · ·+gn−rd sn−rd = 0}

and referred to as the sets of flowing and jumping zeros. We
shall refer to si ∈ σ(Qc) and z j ∈ σ(Qd) as, respectively, the
hybrid-flowing and hybrid-jumping zeros.

Theorem 4.1: Consider the hybrid system (1) with p = 1
and zero-dynamics of dimension n−rh evolving as (13) over
the zero-subspace V ∗h . Consider the transfer functions (14)
and the corresponding flowing and jumping zeros in Zc and
Zd . Then, the following inclusions hold true

σ(Qc)⊂ Zc (15a)
σ(Qd)⊂ Zd . (15b)

Proof: The proof is given only for (15b) as it follows
the same lines for the flow dynamics. We first recall from
[17] that, given matrices (F,G,C) then the zeros Zd are given
by the roots of the polynomial∣∣∣(F− sI G

C 0

)∣∣∣= g0 +g1s+ · · ·+gn−rd sn−rd . (16)

The above polynomial is invariant under feedback and co-
ordinate transformations so that introducing T and H∗ as in
(9)-(11) and Qd = F22 +G2H∗ one has∣∣∣(F− sI G

C 0

)∣∣∣= ∣∣∣(F11− sI G1
C1 0

)∣∣∣ |Qd− sI|. (17)

Now, by applying the Schur complement, one gets∣∣∣(F11− sI G1
C1 0

)∣∣∣= |F11− sI| |C1(sI−F11)
−1G1)|.

The polynomial |F11− sI| defines the rh eigenvalues of the
matrix F11 whereas, in the SISO case det(C1(sI−F11)

−1G1)
is the transfer function associated to (F,G,C) under the
feedback H∗ so that∣∣∣(C1(sI−F11)

−1G1)
∣∣∣= ḡ0 + ḡ1s+ · · ·+ ḡm̄sm̄

det(F11− sI)

with the numerator defining the zeros with m̄ < rh. Thus, by
plugging now the above relation into (17) one gets∣∣∣(F− sI G

C 0

)∣∣∣= (ḡ0 + ḡ1s+ · · ·+ ḡm̄sm̄)|Qd− sI|. (18)

Equating the right-hand sides of (16) and (18) one gets

g0 +g1s+ · · ·+gn−rd sn−rd = |Qd− sI|(ḡ0 + ḡ1s+ · · ·+ ḡm̄sm̄)

so that necessarily, m̄= rh−rd with |Qd−sI| being a factor of
the polynomial identifying the zeros associated to (F,G,C).
Thus, one gets that σ(Qd)⊂ Zd .

It is worth to note that invariance of V ∗h (that is unobserv-
ability) under (1) is yielded under partial zero-cancelation
that is by erasing the zeros of P(s) and L(s) in (14) making
the jump and flow behaviour over V ∗h compatible. As a
consequence, one does not need Zc ∩Zd 6= ∅ as (13) does
not depend on the actual values of the zeros of (1a) and
(1b) but on the common subspaces induced by the hybrid
interconnection. Also, the definition of the hybrid zero-
dynamics is independent on the poles and eigenvalues of
the matrices A and F .

Remark 4.1: Those arguments extend to the MIMO case
by noticing that the numerator of

|C1(sI−F11)
−1G1|=

ḡ0 + ḡ1s+ · · ·+ ḡm̄sm̄

det(F11− sI)



defines the closed-loop transmission zeros with m̄ < rh. In
that case, σ(Qc) and σ(Qd) define the n− rh dimensional
subset of the transmission zeros associated to, respectively,
(A,B,C) and (F,G,C).

In this context, one can re-define the zero-dynamics via the
definition of a suitable exosystem whose series interconnec-
tion with (1) generates an identically zero output evolution,
under suitable initial condition. The following result is given
by extending the usual definition of zeros (e.g., [17]).

Proposition 4.1: Let the hybrid subsystem (1) possess
the zero-subspace V ∗h defined as in Theorem 3.1. Consider
the exosystem ξ+ = Qdξ , ξ̇ = Qcξ with ξ ∈ Rn−rh and
interconnected to (1) through u = K∗r ξ and v = H∗r ξ as in
(10). Then, for all x0 ∈V ∗h , there exists ξ0 ∈Rn−rh such that
y(t,k) = 0 for all (t,k) ∈ T . More in details, this is given
by ξ0 = T2x0 with T2 ∈MatR(n− rh,n) defined as in (9).

B. On the hybrid zero-sets

The results stated so far put in light that a notion of zero-
dynamics can be settled in the hybrid context: roughly speak-
ing such a notion is related to the maximal subspace, V ∗h ,
which can be rendered unobservable for both the flowing and
jumping dynamics under suitable state feedbacks u = H∗x
and v = K∗x. When constrained over such a subspace the hy-
brid dynamics evolve according to continuous and discrete-
time behaviors associated to σ(Qc) ⊂ Zc and σ(Qd) ⊂ Zd .
What is peculiar of these subsets of zeros which have the
same cardinality, is that they share the maximal unobservable
subspace under feedbacks. With this in mind, the definition
of zeros-set links the notion of hybrid zero-dynamics to the
zeros of the involved transfer functions.

Definition 4.1: The zeros-set of the hybrid system (1) is
defined as Z∗h = σ(Qc)×σ(Qd)⊂ Zc×Zd .

It must be noted that such notion of zeros-set is valid
for any system resulting from the interlink of different LTI
controlled continuous-time and/or discrete-time dynamics
defined over the same state space X ⊂ Rn, with the same
output y =Cx.

Definition 4.1 extends to the hybrid context the notion of
the set of zeros of a given transfer function. It is worth to
note that the equivalent notion of zero of a transfer function
does not have in general a hybrid counterpart since, for a
fixed pair (sk,zk) ∈ Z∗h , as any transfer function’s zero does,
the existence of a one-dimensional subspace which can be
rendered unobservable under feedback is not guaranteed.

The discussion about the possibility of computing zeros-
subsets of the zeros-set Z∗h (not developed here for the sake of
space) can be deepened starting from these simple elements
and the understanding is left to two elementary examples in
the sequel. Assuming that a given hybrid system has a zeros-
set of cardinality at least two, the presence of zeros-subsets
corresponds to the existence of feedback-unobservable sub-
spaces shared by the flowing and jumping dynamics of
dimensions less then (n− rh) (that is the maximal one); in
doing this, one takes into account that unobservability can
be generated only by cancelling couples of zeros in Z∗h .

V. SOME ILLUSTRATING EXAMPLES

A. Example 1

Consider the hybrid system (1) with

A =

0 1 0
0 0 1
0 0 0

 ,B =

0
0
1

 ,F =

1 1 0
0 1 1
0 0 1

 ,G =

 1
0
−1


and C =

(
−1 0 1

)
. Since rc = rd = 1 then rh = 1 and

V ∗h =Vc =Vd = span
{(

1 0 1
)>

,
(
0 1 0

)>}
.

Thus, the hybrid zero-dynamics (13) are characterized by

Qc =

(
0 1
1 0

)
, Qd =

(
1 1

2
1 1

)
.

Then the hybrid zeros-set results to be Z∗h = {(−1,1)} ×
{1−

√
2

2 ,1+
√

2
2 } with corresponding eigenvectors, under the

coordinate transformation above, w f
1 = (0 1 − 1)>, w f

2 =

(0 1 1)>, w j
1 = (0 1 −

√
2)>, w j

2 = (0 1
√

2)>. From this
computation, V ∗h is the unique subspace that is (A,B) and
(F,G) invariant so that Z∗h of cardinality two is the zeros-set
and no zeros-subset exists.

B. Example 2

Consider the hybrid system (1) with A and F as in
Example V-A and

B =

0
0
1

 , G =

 1
0√
3−3
6

 , C =
(√

3−3
6

√
3+3
6 1

)
.

As in the previous example, rh = rc = rd = 1 and

V ∗h =Vc =Vd = span
{(

1 0 3−
√

3
6

)>
,
(

0 1 −
√

3+3
6

)>}
.

In that case, one gets the hybrid zero-dynamics (13) with

Qc =

(
0 1

3−
√

3
6 − 3+

√
3

6

)
, Qd =

(√
3+15
4 − 5

√
3−3

12
3−
√

3
6

3−
√

3
6

)

so that the zeros-set is given by Z∗h = {−1,
√

3−3
6 } ×

{ 3−
√

3
3 , 3+

√
3

4 }. By computing the corresponding eigenvec-
tors, in this case the same eigenvector is associated to a
pair of a continuous-time and a discrete-time eigenvalues,
namely w j

2 = (0 3
√

3+4
2 1)>, w f

1 = w j
1 = (0 1 1)> and

w f
2 = (0 1 2−

√
3

6 )>. Since s1 = −1 and z1 = 3−
√

3
3 share

a one dimensional invariant subspace span{w f
1} (that is an

(A,B) and (F,G) invariant subspace in kerC), the system
also possesses the hybrid zeros-subset zh = {(−1, 3−

√
3

3 )} of
cardinality one; it should be assumed to define a zero-pair
as the counterpart of the zero for classical systems.



Fig. 1. x0 ∈V ∗h and y(t,k) = 0

C. Example 3

Consider the simple example deduced by (1) when

A =

0 1 0
0 0 1
0 0 0

 , B =

0
0
1

 , C =
(
2 3 1

)

F =

− 1
9

7
12 − 17

36
− 4

3 −1 4
3

− 1
9

1
3 − 2

9

 , G =

 1
0
−2

 .

From Theorem 3.1, the zero-subspace is

V ∗h =Vd = span

 1
−1
1

⊂Vc = span
{ 1

0
−2

 ,

 0
1
−3

}
that is, at the same time, (A,B) and (F,G)-invariant. Thus,
rh = 2 = max{rc,rd} with rc = 1, rd = 2, Zc = {−1,−2} and
Zd = {−1}). By specifying (9) with T2 = (0 1 0), ω1 = C
and ω2 =CF , one gets CT−1 =

(
1 0 0

)
T FT−1 =

 0 1 0
13
36 − 1

3 − 5
3

1
5

2
5 −1

 , T G =

 0
−10

0


TAT−1 =

 13
10

3
5 −1

− 13
20 − 3

10 − 17
6

13
30

1
5 −1

 , T B =

 1
17
6
0

 .

The friends (11) of V ∗h are given by H∗ = (0 0 − 1
6 ) and

K∗ = (0 0 − 1) so getting that the zero-dynamics (13)
evolve with Qc = −1 and Qd = −1. The hybrid system
is minimum-phase as long as δk > 0 for all k ≥ 0 as the
zero-dynamics is scalar. The zero-set Z∗h is given by the
only pair {(−1,−1)} (composed by flowing and jumping
zeros incidentally coincident) which is the zero-pair. For
completeness, a simulation is in Figure 1 when assuming a
random sequence of jumping times and x0 =(1 −1 1)> ∈V ∗h .

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, the notion of zero-dynamics has been
characterized for classes of linear time invariant hybrid
systems under aperiodic time-driven jumps. Following works
as [15], [22], the geometric framework contributes to a better
understanding on the zero dynamics of hybrid linear systems

under aperiodic jumps. Current work is toward the extension
to the nonlinear context and the definition of a weaker notion
of zero-dynamics revealed when constraining the output to
zero only at the jumping instants as emblematic for the
sampling zeros of aperiodic sampled dynamics.
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