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Observer Design for a Nonlinear Diffusion System Based
on the Kirchhoff Transformation

Abstract This paper deals with the state estimation

for a nonlinear diffusion system. An observer that re-

constructs the whole state, from the available measure-
ments, is proposed based on an equivalent linear diffu-

sion model obtained using the Kirchhoff tangent trans-

formation. This bijective mapping allows to apply the

available and powerful state estimation theory of lin-
ear distributed parameter systems and simplifies the

observer design. Hence, an observer can be designed

for the obtained equivalent linear diffusion system and

by using the Kirchhoff transformation, the whole state

of the original nonlinear diffusion system is recovered.
The observability analysis of the nonlinear diffusion sys-

tem and the convergence of the proposed observer are

also investigated based on the equivalent linear diffu-

sion system. The effectiveness of the proposed observer
is shown, through numerical simulation runs, in the case

of a heated steel rod by considering both an uniformly

distributed and a punctual boundary sensing.

Keywords distributed parameter system · nonlinear
diffusion · partial differential equation · Kirchhoff

tangent transformation · state estimation · observer.

1 Introduction

One of the important issues in control theory of dis-

tributed parameter systems (DPSs) is the state estima-
tion, that is, the design of an observer that provides

the whole state from the available measurements [24,4,

30,8]. DPSs, modeled by partial differential equations

(PDEs), are characterized by an infinite dimensional

state [6]. Hence, the design of controllers for DPSs, fol-
lowing either the early or late lumping approach [24],

leads to control laws of infinite dimensional nature [4].

Consequently, for implementation purposes, the whole

state must be available. In practice, due to both techni-

cal and economical issues, sensing all the state variables
of a distributed parameter system (DPS) is impossible.

Therefore, state estimation or design of an observer for

DPS is a challenging field [12,19,5,34,23]. State esti-

mation consists in reconstructing the whole state of the
system from limited available measurements using its

dynamical model.

Generally, there are two design approaches for an

infinite dimensional observer [30]. The first approach is

termed early lumping and consists in reducing the DPS

to a lumped parameter system (LPS), given by a set of

ordinary differential equations (ODEs), using reduction
techniques [15]. The objective is to take advantage of

the well developed state estimation theory of lumped

parameter systems (LPSs), that is, to use conventional

observers, such as a Luenberger observer and Kalman
filters. This approach is generally limited because the

reduction process often masks the distributed nature of

the system [24,4,25] and may lead to erroneous conclu-

sions about the system fundamental control theoretical

properties particularly its observability [24,25] which is
a primary issue for the observer design. In the second

approach, termed late lumping, the PDEs model is di-

rectly used both in the observability analysis and in the

observer design. This allows to keep the distributed na-
ture of the system and enhance the performance [24,4].

However, for nonlinear DPSs, manipulating the PDEs

model is a difficult task [16].

State estimation theory for DPSs following the late

lumping approach is an active research area with many

open questions. This theory is well established in the

case of linear DPSs [12] thanks to the semigroup theory
[10] that allows to generalize many theoretical concepts

developed for linear LPSs to linear DPSs [6]. For non-

linear DPSs, state estimation is an acute problem as the
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presence of strong nonlinearities [30,1] that capture im-

portant phenomena like diffusion makes the observabil-

ity analysis, the observer design and the convergence

analysis much more difficult. This explains the few con-

tributions reported in the literature [2,13,17,18,32].

In this paper, following the late lumping approach,
a state estimation strategy is developed for DPSs mod-

eled by a nonlinear diffusion equation. This important

class of parabolic PDEs describes nonlinear dynami-

cal behaviors such as heat and mass transfer, continu-
ous casting, filtration and phase transition, to mention

a few [11,35]. Thus, to take advantage from the well

developed observability analysis and the state estima-

tion theories of linear DPS [6], it is proposed to derive

an equivalent linear diffusion model using the Kirch-
hoff tangent transformation [28,3,21]. Then, a linear

observer is designed, in the framework of late lump-

ing approach, for the resulting equivalent linear diffu-

sion model. The whole state of the original nonlinear
diffusion system is reconstructed, using the Kirchhoff

transformation, from the estimated state of the equiv-

alent linear diffusion model provided by the designed

linear observer. The convergence of the proposed state

estimation strategy is demonstrated based on the bijec-
tive property of the Kirchhoff tangent transformation.

The example of a steel rod is considered to show the

effectiveness of the proposed state estimation strategy

in retrieving the whole state from either uniformly dis-
tributed noisy measurements or a punctual boundary

measurement.

Note that reducing the nonlinear diffusion system

to a linear one allows also to overcome the intractable

problem of observability analysis, that is, the location

of the measurements sensors for the nonlinear diffusion
system [30,7,33,31]. Therefore, the appropriate sensor

configuration for the nonlinear diffusion system can be

deduced from the observability analysis of the result-

ing equivalent linear model using the available powerful
tools [24,6].

The rest of the paper is organized as follows: In Sec-

tion 2, the state estimation problem for the nonlinear

diffusion system is formulated. Section 3 is devoted to

the Kirchhoff tangent transformation used to linearize

the nonlinear diffusion system. Section 4 gives a brief re-
view of the observer design for linear DPSs following the

late lumping approach. Section 5 introduces the state

estimation strategy proposed for the nonlinear diffusion

system and investigates the convergence problem. Sim-
ulation results obtained in the case of a steel rod are

reported and discussed in Section 6 whereas Section 7

concludes the paper.

2 Problem formulation

Nonlinear diffusion equation describes a variety of non-

linear diffusion phenomena [35]. Hence, for the sake of

simplicity, the following discussion is restricted to heat

conduction transfer. The evolution of the temperature

of a one dimensional rod, in the case of a temperature-
dependent thermal conductivity, is described by the fol-

lowing nonlinear diffusion equation [11]

ρCp(T (z, t))
∂T (z, t)

∂t
=

∂

∂z

(

k (T (z, t))
∂T (z, t)

∂z

)

(1)

with, without loss of generality, the following Dirichlet

boundary conditions (z ∈ ∂Ω)

T (0, t) = T0 (2)

T (l, t) = u(t) (3)

and the initial condition

T (z, 0) = Tinit(z) (4)

where z ∈ Ω = [0, l], ∂Ω = {0, l}, z ∈ Ω and t ∈

[0, ∞), are the spatial domain, spatial domain bound-

ary, independent space and time variables, respectively.
T (z, t) is the state of the system (the rod temperature)

that belongs to the Hilbert space L2(Ω) (L2(Ω) is the

space of square-integrable functions on Ω). ρ, Cp and

k, that depend on the temperature of the rod T (z, t),
are the density, heat capacity and thermal conductiv-

ity, respectively. The external manipulated heat source

u(t) ∈ L2(Ω, ℜ) (ℜ being the set of real numbers) is

assumed to be a smooth function of the time. T0 is a

constant temperature and Tinit(z) is the initial spatial
profile of the temperature.

The problem addressed in this work consists in esti-

mating the whole state T (z, t) from the available mea-

surements. The choice of the sensing points will be dis-
cussed in Subsection 5.1.

The thermal diffusivity α being equal to

α =
k(T (z, t))

ρCp(T (z, t))
(5)

it must be noted that, in many practical cases, its vari-

ation with respect to temperature T (z, t) is less impor-

tant than that of the thermal conductivity k(T (z, t)).
Consequently, assuming the thermal diffusivity α ap-

proximately constant is a physically reasonable approx-

imation [11,3]. In this work, it is assumed that this as-

sumption holds, which allows to derive an equivalent
linear model of the nonlinear diffusion system (1)–(4)

using the Kirchhoff tangent transformation [28,3] pre-

sented in the following section.
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Remark 1 In the formulated problem, a boundary con-

trol is considered but the development that follows can

be applied in the case of distributed control.

3 Kirchhoff tangent transformation

A tangent transformation is a mathematical tool used
to reduce a hard nonlinear PDE into a well-known and

understood linear one, for instance into simple heat or

wave equations [21]. Hence, the exact or the closed-form

solution of the nonlinear PDE can be easily deduced
from the solution of its equivalent linear one. Note that

simple linear PDEs can be solved using some power-

ful techniques like separation of variables, eigenfunction

expansions and integral transforms [11]. For a detailed

discussion about some tangent transformations (Legen-
dre, Cole-Hopf, Bäcklund and Laplace transformations)

with illustrative examples, the reader can refer to the

book by [21]. The Kirchhoff tangent transformation [3],

used in this work, which is a particular case of the Cole-
Hopf tangent transformation, is discussed at length by

[28] and illustrated by interesting application examples.

As pointed out above, in many practical situations,

the thermal diffusivity α can be assumed constant. Based

on this reasonable assumption, the nonlinear diffusion
system (1)–(4) can be linearized by the Kirchhoff tan-

gent transformation ϕ defined as follows

ϕ : L2(Ω) −→ L2(Ω) (6)

θ(z, t) 7−→ T (z, t) = ϕ(θ(z, t)) (7)

where θ(z, t) is the new temperature variable depend-
ing on time and space, of the resulting equivalent linear

diffusion model and ϕ is a bijective mapping, that is,

its inverse ϕ−1 exists and is defined as follows [28].

The thermal conductivity is often available in the
data literature as a nonlinear expression, for example a

polynomial, with respect to temperature Tc expressed

in Celsius

ka(Tc) = a0 + a1 Tc + a2 T
2
c (8)

if the polynomial is of order 2. It is also accompanied
by a validity domain. It can be rewritten as

kb(Tc) = a0 (1 + b1 Tc + b2 T
2
c ) (9)

However, in the following, temperature T will be

expressed in Kelvin so that the previous expression be-

comes

kc(T ) = c0 (1 + c1 T + c2 T
2) (10)

Note that the heat conductivity could be any func-

tion such as

kc(T ) = c0 (1 + fc(T )) (11)

In the literature, the Kirchhoff transformation that

allows to transform the nonlinear diffusive equation into

a linear equation is in general presented [14,22] as

θ(z, t) = ϕ−1
c (T (z, t)) (12)

=
1

kc(0)

∫ T (z, t)

0

kc(s) ds (13)

however the correlation of conductivity is in general not
valid at absolute zero temperature. Thus, it is more

appropriate to define the Kirchhoff transformation as

θ(z, t) = ϕ−1
c (T (z, t)) (14)

= Tref +
1

kc(Tref )

∫ T (z, t)

Tref

kc(s) ds (15)

where Tref is any temperature belonging to the va-
lidity domain of k(T ). Note that the previous defini-

tion differs slightly from [28] due to the introduction

of Tref , whereas [28] introduces a deviation variable

T̃ = T − Tref so that, with this notation, the thermal
conductivity is

kd(T̃ ) = d0 (1 + fd(T̃ )) (16)

and the Kirchhoff transformation writes as

θ(z, t) = ϕ−1
d (T̃ (z, t)) (17)

=
1

kd(0)

∫ T̃ (z, t)

0

kd(s) ds (18)

Indeed, Kirchhoff transformations (15) and (18) can 
be used equivalently, but eq.(18) will lead to simpler 
expressions. Consequently, we will retain the Kirchhoff 
transformation (18) in the following and omit the sub-
script ”d”.

Now, by using a Kirchhoff tangent transformation ϕ, 
the nonlinear diffusion system (1)–(4) is reduced to the 
following linear one

∂θ(z, t)

∂t
= α

∂2θ(z, t)

∂z2
(19)

with associated boundary and initial conditions

θ(0, t) = ϕ−1(T̃0) (20)

θ(l, t) = ϕ−1(ũ(t)) (21)

θ(z, 0) = ϕ−1(T̃init(z)) (22)

In this work, a state estimation strategy for the non-

linear diffusion system (1)–(4) is proposed based on the

use of the resulting equivalent linear diffusion model

(19)–(22). The idea is to reconstruct the whole state
of the nonlinear diffusion system T (z, t) from the esti-

mated state θ̂(z, t) of the linear diffusion system using

the Kirchhoff tangent transformation (7).
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Before presenting the proposed state estimation strat-

egy, let us review briefly the state estimation theory of

linear DPSs. A detailed discussion on the subject can be

found in [6] while [12] gives a full review of the different

linear observers proposed in the literature.

4 State estimation for linear DPSs

Let us consider a linear DPS described by an abstract

formulation [6,9]

θ̇(t) = A θ(t) + B u(t) (23)

y(t) = C θ(t) (24)

θ(0) = θinit (25)

where θ ∈ H is the state of the linear DPS, u(t) ∈ U

is the manipulated variable, y(t) ∈ Y is the output

and θ0 ∈ H is the initial condition. H, U and Y are

appropriate infinite dimensional spaces [9]. A ∈ L(H),
B ∈ L(U , H) and C ∈ L(H,Y) are linear operators. L

is the space of linear operators.

Assume that the linear DPS (23)–(25) is observable,

that is, the state θ(z, t) can be reconstructed from the

available measurements (24). In this case, the observer

takes the following form

˙̂
θ(t) = A θ̂(t) + B u(t) + L

(

y(t)− C θ̂(t)
)

(26)

θ̂(0) = θ̂init (27)

where θ̂  ∈ H is the estimate of the state θ. L is the 
observer gain operator which is designed so that the 
operator A − L C generates an exponential stable C0-

semigroup S(t), that is, ‖S(t)‖
H ≤ M e−α t with M ≥ 1 

and α > 0 [10]. This condition ensures that the estima-
tion error defined as follows (Pourquoi est-ce nécessaire 
que M > 1 ? J’aurais pensé simplement M > 0. Ce n’est 
pas très important, mais je me faisais la réflexion.)

ε(t) = θ(t)− θ̂(t) (28)

= S(t) ε(0) (29)

tends exponentially to zero as t → ∞ [6], i.e.,

‖ε(t)‖
H

≤ M ‖ε(0)‖
H

e−α t (30)

A complete review of different methods used to de-
sign an observer for a linear DPS can be found in [12]

and some application examples are reported in [24] and

[6].

5 State estimation strategy for the nonlinear

diffusion system

State estimation theory for a nonlinear DPS remains
a challenging field with many interesting open issues

among which the design of the observer occupies an im-

portant place. In this section, a state estimation strat-

egy is developed for the nonlinear diffusion system (1)–
(4).

5.1 Observability analysis

The observability analysis of the system is a primary
issue for state estimation. This fundamental control

property, in the case of DPSs, can be ensured by an

appropriate choice of the location of the sensing points

[24,33]. Note that the observability analysis of linear
DPSs is an established and developed area with many

interesting results [24,6] compared to nonlinear DPSs

for which the question is very complex. In the proposed

approach, the design of the observer for the nonlinear

diffusion system (1)–(4) is reduced to the design of an
observer for the resulting linear diffusion system (19)–

(22), therefore the observability condition concerns the

resulting linear diffusion system rather than the nonlin-

ear diffusion one. Thus, in the following, it is assumed
that the measurements (24) of the linear DPS (19)–

(22) are defined so that the observability condition is

met. Hence, using (18), the measurements (24) can be

expressed according to T (z, t) as follows

y(t) = Cϕ−1(T̃ (z, t))

which implies that the locations of the sensing points

of the nonlinear diffusion system (1)–(4) are the same

as those of linear diffusion (19)–(22).

5.2 Proposed state estimation strategy

The idea consists in taking advantage of the state esti-

mation theory of linear DPS, which has reached a high
degree of maturity with sound contributions [12]. The

proposed state estimation approach consists in the fol-

lowing steps:

– linearize the nonlinear diffusion system (1)–(4) us-

ing the Kirchhoff tangent transformation (7),

– design an observer for the resulting linear diffusion

system (19)–(22),
– reconstruct the estimated state, denoted T̂ (z, t), of

the nonlinear diffusion system (1)–(4) from the esti-

mated state θ̂(z, t) of the equivalent linear diffusion
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system (19)–(22) using the Kirchhoff tangent trans-

formation (7), that is,

ˆ̃T (z, t) = ϕ(θ̂(z, t)) (31)

The structure of the proposed observer is given by
the following proposition.

Proposition 1 The estimated state T̂ (z, t) of the non-

linear diffusion system (1)–(4) can be reconstructed,
based on the resulting linear diffusion system (19)–(22),

by the following observer

∂θ̂(z, t)

∂t
= α

∂2θ̂(z, t)

∂z2
+ L

(

y(t)− C θ̂(z, t)
)

(32)

y(t) = Cϕ−1(T̃ (z, t)) (33)

with the boundary and initial conditions (20)–(22). T (z, t)

is the measured temperature. The estimated temperature
results as

T̂ (z, t) = ϕ(θ̂(z, t)) + Tref (34)

Proof Recall that the operator L is designed based on

the state estimation theory of linear DPSs so that the

following operator

Â = α
∂2

∂z2
− LC (35)

generates an exponential stable C0-semigroup so that

lim
t→∞

(

y(t)− Cθ̂(z, t)
)

= lim
t→∞

C
(

θ(z, t)− θ̂(z, t)
)

= 0

(36)

and since the operator C is linear, it follows that the

state estimation error of the linear diffusion system

(19)–(22), i.e., ε(t) = θ(z, t)− θ̂(z, t) verifies

lim
t→∞

ε(t) = lim
t→∞

(

θ(z, t)− θ̂(z, t)
)

= 0 (37)

hence

lim
t→∞

ϕ−1(T̃ (z, t)) = lim
t→∞

ϕ−1( ˆ̃T (z, t)) (38)

and since ϕ is a bijective mapping, it follows that

lim
t→∞

T̃ (z, t) = lim
t→∞

ˆ̃T (z, t) (39)

or

lim
t→∞

T (z, t) = lim
t→∞

T̂ (z, t) (40)

or equivalently

lim
t→∞

(

T (z, t)− T̂ (z, t)
)

= 0 (41)

therefore, the state estimation error of the nonlinear

diffusion system e(t) = T (z, t) − T̂ (z, t) converges ex-

ponentially to zero as t → ∞. �

The state estimation strategy proposed for the non-

linear diffusion system is depicted in Figure 1 where v

represents the measurement noise.

Nonlinear Diffusion System

Linear observer

T̃

ϕ−1( . ) +
+ v

θ
C

y

θ̂

ϕ( . ) ˆ̃
T

u

Proposed observer

Fig. 1: Structure of the proposed observer for the non-

linear diffusion system.

6 Application example

To show the effectiveness of the proposed state estima-

tion strategy for the nonlinear diffusion system, a steel

rod of length l = 0.25m is considered as an application

example. The thermo-physical properties of carbon and

low-alloyed steels are [27]:

ρ = 7820
[

kg ·m−3
]

(42)

Cp(Tc) = 422 + 0.931Tc − 2.14× 10−3 T 2
c

+ 2.64× 10−6 T 3
c

[

J · kg−1 ·K−1
]

; 0 ≤ Tc ≤ 650

(43)

k(Tc) = 52.1− 0.0159Tc

− 1.86× 10−5 T 2
c

[

W ·m−1 ·K−1
]

; 0 ≤ Tc ≤ 650
(44)

where Tc is the temperature in Celsius. Under the poly-

nomial form (45)

k(T̃ ) = d0(1 + d1 T̃ + d2 T̃
2) (45)

the coefficients of the heat conductivity are d0 = 44.968,

d1 = −6.2244×10−4, d2 = −4.1363×10−7 when the de-

viation temperature T̃ = T−Tref is used. The reference
temperature Tref is taken as the mean of the validity

domain for the heat conductivity, i.e. Tref = 598.15K.

T (z, t) is the temperature (in K) of the steel rod

considered at any position and any time, i.e. T (z, t).
The dynamic behavior of the steel rod temperature is

described by the nonlinear diffusion equation (1). The

evolution of the non-constant thermal diffusivity α(T )

as a function of the temperature T , between 273.15K

and 923.15K, is given by Figure 2, which shows a low
variation of α(T ). Therefore, α can be assumed con-

stant. Thus, for the equivalent linear diffusion system,

the constant thermal diffusivity α is taken equal to

the mean value of the non-constant α(T ), hence α =
9.85× 10−6m2 · s−1.

To simplify the expression of θ, Kirchoff transfor-

mation (18) is preferred with regard to (15). According
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Fig. 2: Variation of the steel thermal diffusivity α(T )

as a function of the temperature T .

to the inverse Kirchhoff tangent transformation (18),

the state of the equivalent linear system θ(z, t) and

the state of the nonlinear diffusion system T (z, t) with
T̃ (z, t) = T (z, t)− Tref are linked by the following re-

lation

θ(z, t) = ϕ−1(T̃ (z, t)) (46)

= T̃ (z, t)− 3.1122× 10−4 T̃ 2(z, t)

− 1.3788× 10−7 T̃ 3(z, t) (47)

Clearly, the nonlinearity of the application ϕ or equiv-
alently ϕ−1 depends on the order of magnitude of the

coefficients of the first and second order terms of the ex-

pression of k(T̃ ) which intervene indirectly in (47). In

the particular case (47), this nonlinearity is extremely

small.
The performance of the proposed observer is eval-

uated through numerical simulation runs. Both system

and observer are implemented using the method of lines

[29]. The convergence of proposed observer is demon-
strated using the L2-norm of the estimation error de-

fined as follows

‖e(t)‖2L2(Ω) =

∫ l

0

[

T (z, t)− T̂ (z, t)
]2

dz (48)

In the following, two practical cases are studied.

6.1 Uniform distributed noisy sensing

In this case, it is assumed that the system is autonomous

(without external heat source u(t)), i.e., it is subject
to the initial spatial temperature profile T (z, 0). The

problem consists in reconstructing the whole state T (z, t)

from uniformly distributed measurements corrupted with

Gaussian white noise signal v(z, t) of standard devia-

tion σ = 50K.

The model is given as follows

ρCp(T (z, t))
∂T (z, t)

∂t
=

∂

∂z

(

k(T (z, t))
∂T (z, t)

∂z

)

(49)

T (0, t) = 450 [K] (50)

T (l, t) = 900 [K] (51)

T (z, 0) = 450 (4 z + 1) [K] (52)

The Kirchhoff tangent transformation yields the fol-

lowing linear diffusion system

∂θ(z, t)

∂t
= α

∂2θ(z, t)

∂z2
(53)

θ(0, t) = ϕ−1(T̃ (0, t)) (54)

θ(l, t) = ϕ−1(T̃ (l, t)) (55)

θ(z, 0) = ϕ−1(T̃ (z, 0)) (56)

which can be filtered by the following observer [20]

∂θ̂(z, t)

∂t
=α

∂2θ̂(z, t)

∂z2

+ 6 sin(πz)

∫ l

0

(

y(z, t)− θ̂(z, t)
)

dz (57)

where

y(z, t) = ϕ−1(T̃n(z, t)) (58)

and T̃n(z, t) is the measurement.

Let us express y(z, t), according to (46), as a func-

tion of the noisy state denoted Tn(z, t) as follows

y(z, t) = T̃n(z, t)− 3.1122× 10−4 T̃ 2
n(z, t)

− 1.3788× 10−7 T̃ 3
n(z, t) (59)

with Tn(z, t) = T (z, t) + v(z, t), and T̃n = Tn − Tref .

v(z, t) is a white noise. The proposed observer takes the

following form

∂θ̂(z, t)

∂t
=α

∂2θ̂(z, t)

∂z2

+ 6 sin(πz)

∫ l

0

(

y(z, t)− θ̂(z, t)
)

dz

θ̂(z, 0) =θinit (60)

ˆ̃T (z, t) =ϕ(θ̂(z, t)) (61)

with the boundary conditions (54) and (55).

The simulation results obtained, by taking θ̂init =
ϕ−1(T̃ (z, 0)) + 50 [K], i.e. an initial error of 50K, are

given by Figures 3–5. Figure 3 clearly shows that the

estimation error, which is bounded, converges towards
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Fig. 3: Uniformly distributed sensing with noisy mea-

surements: evolution of the L2−norm of the estimation

error e(t) = T (z, t)− T̂ (z, t).

zero without reaching it. This is expected because, with

noisy measurements, achieving a zero estimation error
is not possible.

The ability of the proposed observer in reconstruct-

ing the whole state T (z, t) despite the effects of mea-

surement noises v(z, t) is corroborated by Figures 4 and

5 that give the temporal and spatial profiles, respec-
tively. From these Figures, it follows that the proposed

observer enables to provide the estimated state of the

nonlinear diffusion system.

6.2 Punctual boundary sensing

In this case, it is assumed that the steel rod is heated by

an external heat source at the extremity l so that u(t) =
100

(

1− e−1/3500 t
)

+300 [K], applied at the right-hand

end boundary z = l, and the objective is to estimate

the whole state T (z, t) from the measurement of the

temperature at z = l.

The model is given as follows

ρCp(T (z, t))
∂T (z, t)

∂t
=

∂

∂z

(

k(T (z, t))
∂T (z, t)

∂z

)

(62)

∂T (z, t)

∂z

∣

∣

∣

∣

z=0

= −q T (0, t) [K ·m−1] (63)

T (l, t) = 100
(

1− e−1/3500 t
)

+ 300 [K]

(64)

T (z, 0) = 500 z2 − 27.5 z + 275 [K] (65)

with q = 0.1 [m−1].

(Pourquoi a-t’on u(t) = T (l, t): voir ce qui précède 
dans cette section. L’équation (62) correspond à (25) 
avec B = 0. Je ne vois pas de terme en u. L’équation
(62) correspond d’ailleurs à l’équation (66). Il faut vérifier
ces points pour que ce soit cohérent. Ne faudrait-il pas 
pour avoir cette cohérence écrire l’équation (64) comme 
T (l, t) = u(t) au lieu de la forme numérique actuelle 
pour bien faire apparâıtre le lien (je pense que c’est ce 
qu’il faut faire) ? Par contre, écrire T (l, t) = u(t)
(condition de Dirichlet) est vraiment une vision très 
mathématique, pas physique, car u correspond à un flux 
de chaleur (condition de Neumann) et T est une temp
érature, donc les deux n’ont pas la même dimen-sion. 
D’un vrai point de vue physique, on devrait écrire
u(t) = −k (∂T /∂z)z=l ce qui nous entrâıne un peu trop 
loin à quelques jours de l’envoi de l’article mais aurait pu 
très facilement être pis en compte.)

The Kirchhoff tangent transformation (7) yields the
following linear model

∂θ(z, t)

∂t
= α

∂2θ(z, t)

∂z2
(66)

∂θ(z, t)

∂z

∣

∣

∣

∣

z=0

= −q ϕ(θ(0, t)) (67)

θ(l, t) = ϕ−1(ũ(t)) (68)

θ(z, 0) = ϕ−1(T̃ (z, 0)) (69)

with ũ = u − Tref . Note that, though the nonlinear

diffusion equation is linearized, a nonlinearity, that is,
ϕ(θ(0, t)), appears in the right-side hand of the result-

ing boundary condition (67). The importance of the

nonlinear character can be evaluated from the expres-

sion of θ(z, t) in equation (47). Presently

T̃ (0, t) = ϕ(θ(0, t)) ≈ θ(0, t) (70)

The estimated state θ̂(z, t) can be provided using a
backstepping observer of the following form [26]

∂θ̂(z, t)

∂t
=α

∂2θ̂(z, t)

∂z2

− α q eq (1−z)

(

y(t)−
∂θ̂(l, t)

∂z

)

(71)

∂θ̂(z, t)

∂z

∣

∣

∣

∣

∣

z=0

=− q θ̂(0, t) (72)

θ̂(l, t) =ϕ−1(ũ(t)) (73)

θ̂(z, 0) =ϕ−1(T̃ (z, 0)) (74)

where y(t) is proportional to the heat flux at z = l given

as follows

y(t) =
∂ϕ−1(T̃ (z, t))

∂z

∣

∣

∣

∣

∣

z=l

(75)
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Fig. 4: Uniformly distributed sensing with noisy measurements: temporal profiles. Theoretical state T (z, t) (blue),

measured state Tn(z, t) (gray) and estimated state T̂ (z, t) (red).

Let us express the output (75) as a function of the

measurement T̃ (z, t). Taking into account (46), it re-

sults that

y(t) =
∂θ(z, t)

∂T̃ (z, t)

∣

∣

∣

∣

z=l

∂T̃ (z, t)

∂z

∣

∣

∣

∣

∣

z=l

(76)

=
∂ϕ−1(T̃ (z, t))

∂T̃ (z, t)

∣

∣

∣

∣

∣

z=l

∂T̃ (z, t)

∂z

∣

∣

∣

∣

∣

z=l

(77)

=

(

1− 6.224× 10−4 T̃ (l, t)

− 4.1363× 10−9 T̃ 2(l, t)

)

∂T̃ (l, t)

∂z

∣

∣

∣

∣

∣

z=l

(78)

hence the following proposed observer results

∂θ̂(z, t)

∂t
=α

∂2θ̂(z, t)

∂z2

− α q eq (1−z)

(

y(t)−
∂θ̂(l, t)

∂z

)

(79)

∂θ̂(z, t)

∂z

∣

∣

∣

∣

∣

z=0

=− q θ̂(0, t) (80)

θ̂(l, t) =ϕ−1(ũ(t)) (81)

θ̂(z, 0) =θ̂init (82)

ˆ̃T (z, t) =ϕ(θ̂(z, t)) (83)

The performance of the proposed observer in re-

trieving the state T (z, t), by assuming the initial profile
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Fig. 5: Uniformly distributed sensing with noisy measurements: spatial profiles. Theoretical state T (z, t) (blue),

measured state Tn(z, t) (gray) and estimated state T̂ (z, t) (red).

θ̂init = ϕ−1(T̃ (z, 0)) + 150 [K], is shown by Figures 6–8. 
The obtained simulation results show the convergence 
of the estimated state T̂ (z, t) towards the actual state 
T (z, t), that is, the estimation state error tends to zero 
as t → ∞ (Fig. 6) and both temporal and spatial pro-
files are accurately reconstructed (Figs. 7–8).

In the second simulation run, the performance of the 
proposed observer is evaluated again for a non-
monotonic smooth external heat source u(t) defined as a 
series of increasing and decreasing exponential signals

u(t) =







300 + 100
(

1 − e−t/3500
)

t < t1
300 + 100 −(t−t1)/3500 t1 ≤ t ≤ t2
300 + 100

e
(

1 − e−(t−t2)/3500
)

t > t2
(84)

The evolution of the theoretical test signal u(t) is 
depicted in Figure 9. The obtained results given by 
Figure 10 show the good agreement between the esti-
mate T̂(z, t) and the theoretical T (z, t) temperatures. 
This simulation run demonstrates the ability of the pro-
posed observer in reconstructing the whole state from 
the boundary measurement.

On a utilisé le mot ”non-monotonic” (croissant et d
écroissant, c’est-à-dire sa dérivée change de signe) pour 
qualifier l’évolution du signal test utilisé. Je ne sais pas 
s’il y a mieux comme qualificatif. J’ai rajouté ”as a se-
ries of increasing and decreasing exponential signals”
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7 Conclusion

In this paper, an observer is proposed to reconstruct the
state of a nonlinear diffusion system from the available

measurements. The proposed observer is developed by

exploiting the well established state estimation theory

of linear DPSs. Thus, instead of designing the observer

for the nonlinear diffusion system, which is a difficult
task, it is proposed to use the Kirchhoff tangent trans-

formation to linearize the nonlinear diffusion system

and an observer is designed for the obtained equivalent

linear diffusion system in the framework of the state
estimation theory of linear DPSs. The estimated state

of the nonlinear diffusion system is then retrieved from

the estimated state of the equivalent linear diffusion

model using the Kirchhoff tangent transformation. The

convergence of the proposed observer is demonstrated
based on the fact that the Kirchhoff tangent transfor-

mation is a bijective mapping. The performance of the

proposed observer in reconstructing the whole state of

the nonlinear diffusion system is demonstrated by the
obtained results concerning a heated steel rod taken as

an application example.

Note that the proposed approach presents remark-

able advantages, it allows to take full advantage from

the state estimation theory of linear DPSs. In addition,
the location of the sensors that ensures the observability

property deals with the linear diffusion system instead

of the nonlinear diffusion one. This allows, also, to avoid

an acute problem encountered with nonlinear DPSs.

The success of the use of the Kirchhoff tangent trans-

formation suggests to consider other tangent transfor-
mations to linearize some classes of nonlinear DPSs,

which is under investigation by the authors.

References

1. S. Afshar, K. Morris, and A. Khajepour. Comparison of
different observer designs for heat equation. In the Pro-
ceedings of the 54th IEEE Annual Conference on the Deci-
sion and Control (CDC), Osaka, Japan, pages 1136–1141,
December 15–18, 2015.

2. M. Bitzer and M. Zeitz. Design of a nonlinear distributed
parameter observer for a pressure swing adsorption plant.
Journal of Process Control, 12(4):533–543, 2002.

3. H.S. Carslaw and J.C. Jaeger. Conduction of Heat in
Solids. Oxford University Press, Oxford, UK, Second edi-
tion, 1959.

4. P.D. Christofides. Nonlinear and robust control of PDE
systems: methods and applications to transport-reaction pro-
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Fig. 6: Punctual boundary sensing: evolution of the L2-

norm of the estimation error e(t) = T (z, t)− T̂ (z, t).
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Fig. 7: Punctual boundary sensing: temporal profiles. Theoretical state T (z, t) (blue) and estimated state T̂ (z, t)

(red).
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Fig. 8: Punctual boundary sensing: spatial profiles. Theoretical state T (z, t) (blue) and estimated state T̂ (z, t)

(red).
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Fig. 9: Evolution of the test signal u(t).
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Fig. 10: Temporal profiles in the case of punctual boundary sensing for the test signal u(t) given by (84). Theoretical

state T (z, t) (blue) and estimated state T̂ (z, t) (red) in the case of .




