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A PROJECTION ALGORITHM ON THE SET OF
POLYNOMIALS WITH TWO BOUNDS

M. CAMPOS PINTO, F. CHARLES, B. DESPRÉS, AND M. HERDA

Abstract. The motivation of this work stems from the numerical approxi-
mation of bounded functions by polynomials satisfying the same bounds. The
present contribution makes use of the recent algebraic characterization found
in [B. Després, Numer. Algorithms, 76(3), (2017)] and [B. Després and M.
Herda, Numer. Algorithms, 77(1), (2018)] where an interpretation of mono-
variate polynomials with two bounds is provided in terms of a quaternion
algebra and the Euler four-squares formulas. Thanks to this structure, we gen-
erate a new nonlinear projection algorithm onto the set of polynomials with
two bounds. The numerical analysis of the method provides theoretical error
estimates showing stability and continuity of the projection. Some numerical
tests illustrate this novel algorithm for constrained polynomial approximation.

Keywords. Positive polynomials, Chebyshev polynomials, Quadratic pro-
gramming, Quaternions.

MSC2010 subject classification. 65D15, 41A29, 90C20.

1. Introduction

Given n P N we let Pn be the set of univariate polynomials of degree less or equal
to n, and set by convention P´1 “ t0u. A central result is the Lukàcs Theorem [9,
Sec. 1.21] which characterizes polynomials with one lower bound. Specifically, let
P`n Ă Pn be the subset of positive (or nonnegative) polynomials on the segment
r0, 1s, namely

P`n :“ tp P Pn, such that 0 ď ppxq for all x P r0, 1su.

In this article we will consider the case of even degrees. The extension to odd degrees
is essentially a question of technical matters, with no new ideas with respect to the
material presented in this work.

Theorem 1.1 (Even degree [9]). Take n P N and p P P`2n. Then there exists a P Pn
and b P Pn´1 such that ppxq “ a2pxq ` b2pxqwpxq with weight wpxq “ xp1´ xq.

The problem considered in this article is the design and analysis of a nonlinear
projection algorithm onto the set of polynomials with one lower bound and one
upper bound,

U2n :“ tp P Pn, such that 0 ď ppxq ď 1 for all x P r0, 1su.

Our approach is based on the observation that we have

U2n “ tp P P
`
2n | 1´ p P P`2nu.

MH acknowledges support by the Labex CEMPI (ANR-11-LABX-0007-01) and the Labex SMP
(ANR-10-LABX-0098).
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Given that there already exist projection algorithms on P`2n (see [2, 5]), our present
objective is to design a nonlinear algorithm that maps a pair pp0, 1´p1q P P`2nˆP

`
2n

into U2n. To do so we will first describe a specific parametrization of the set U2n

that heavily relies on the four-squares identity of Euler [6, p. 54]. This theoretical
framework will then be used to build a practical algorithm for bounded polynomial
approximation. To our knowledge, this work is the first attempt to use the algebraic
structure of Euler’s identity to build an algorithm with such advanced properties.

The organization is as follows. In the next section we introduce some elementary
concepts and notation, and we specify some of the aforementioned algebraic prop-
erties: the quaternion structure is recalled, its expression in the Chebychev basis is
given and some norms are defined. In Section 3 we then specify our approximation
problem with two bounds and define the nonlinear projection algorithm: it is an
extension of the theoretical decomposition method from [3, 4] with a new nonlinear
correction step. In Section 4 we perform the numerical analysis of the method and
state in Theorem 4.2 a continuity or stability result. Finally in the last section we
illustrate the method with some simple numerical tests.

2. Notations and basic properties of U2n

2.1. Representation of polynomials with two bounds. A polynomial p be-
longs to U2n if and only if p P P`2n and 1´ p P P`2n. Define the set of quadruplets

Qn :“ Pn ˆ Pn´1 ˆ Pn ˆ Pn´1.

By Theorem 1.1, for any p P U2n, there is a quadruplet q “ pa, b, c, dq P Qn such
that a2pxq ` b2pxqwpxq ` c2pxq ` d2pxqwpxq “ 1. It is convenient to define the
function M : Qn Ñ P2n by

(1) Mpqqpxq :“ a2pxq ` b2pxqwpxq ` c2pxq ` d2pxqwpxq ,

and the set
Un “ tq P Qn, such that Mpqq “ 1u .

The function pa, b, c, dq ÞÑ a2 ` b2w maps Un onto U2n, so it is sufficient to charac-
terize Un to get a characterization of the set of polynomials U2n.

A central tool will be a recent factorization result recalled in Theorem 2.1 below,
that involves a multiplication law on quadruplets based on Euler’s four-square iden-
tity [6]. Given two elements r “ pα, β, γ, δq and q “ pa, b, c, dq in Q8 “ YnPNQn,
we define rq :“ pA,B,C,Dq P Q8 with

(2)

$

’

’

’

’

&

’

’

’

’

%

A “ αa ´ β bw ´ γ c ´ δ dw ,

B “ β a ` α b ´ δ c ` γ d ,

C “ γ a ` δ bw ` α c ´ β dw ,

D “ δ a ´ γ b ` β c ` αd .

Note that this is actually a modified version of Euler’s four-square identity, where
the signs are different. The sign convention adopted here will make it simpler to
describe Q8 by quaternions. The neutral element for this multiplication law is
p1, 0, 0, 0q, and every element of U8 “ YnPNUn has an inverse. Indeed, define the
conjugate of q “ pa, b, c, dq in Q8 by

q “ pa,´b,´c,´dq.
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Then a direct application of formula (2) yields

qq “ qq “ pMpqq, 0, 0, 0q, @ q P Q8.

In particular,
qq “ qq “ p1, 0, 0, 0q, @ q P U8

so that U8 has indeed a non-commutative group structure. Note that q “ q and
that r q “ q r. Moreover M is a morphism, namely Mpqrq “ MpqqMprq for
any quadruplets q and r in Q8. With an additional natural addition defined
by pα, β, γ, δq ` pa, b, c, dq “ pα ` a, β ` b, γ ` c, δ ` dq and a scalar multipli-
cation λpa, b, c, dq “ pλa, λb, λc, λdq, Q8 is a non-commutative R-algebra which
inherits all its algebraic properties from the quaternions. Indeed if one repre-
sents the quadruplet pa, b, c, dq by the following quaternion-valued formal function
a` ib

?
w`jc`kd

?
w, then the usual quaternions operations based on the relations

i2 “ j2 “ k2 “ ijk “ ´1 coincide with those introduced here on our polynomial
quadruplets. In this sense, the equality holds

pa, b, c, dq “ a` ib
?
w ` jc` kd

?
w P Qn.

The interest of this algebraic formalism lies in the following factorization result.

Theorem 2.1 ([3, 4]). Let n P N. For any q P Un there is e P U1 such that
eq P Un´1. As a consequence, any quadruplet q P Un admits a factorization in at
most n elements e1, e2, . . . , en of U1

(3) q “ e1 e2 . . . en .

The structure of the proof [3, 4] is as follows. One starts from q P Un and shows
that there exists e1 P U1 such that e1q P Un´1. The construction of e1 is explicit
and based on the examination of the two dominant coefficients of each of the four
polynomial components of q. The proof is ended by iteration on n, n´ 1, . . .

On the basis of this result, one has a constructive characterization of polynomials
with bounds. The question addressed in the present work is the evaluation of this
structure for algorithmic purposes. Since (3) is a very nonlinear formula, it is not
easy to handle. However, in the rest of this article, we will show that it is possible
to obtain an efficient nonlinear projection onto Un using this structure.

2.2. Chebychev basis. It is well-known that Chebychev polynomials enjoy good
stability properties which make them suitable for numerical algorithms [8]. Indeed
some preliminary tests [4] for the application of Theorem 2.1 have confirmed that
the monomial basis may suffer from very poor numerical accuracy for high order
polynomials. Our findings are also that Chebychev bases are well adapted to the
expression of Euler’s four-square formula (2) along their coefficients. These rea-
sons explain why only Chebychev bases are considered in this work for algorithmic
purposes.

The shifted Chebychev polynomials of the first kind are the only polynomials
such that

Tn

ˆ

cospθq ` 1

2

˙

“ cospnθq, θ P R, n P N.

The polynomial Tn is of degree n and the definition actually extends to negative
indices, as T´n “ Tn. The shifted Chebychev polynomials of the second kind are
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the only polynomials such that

Un

ˆ

cospθq ` 1

2

˙

“
2 sinpnθq

sinpθq
, θ P RzπZ, n P N.

Now Un is of degree n ´ 1, recalling our convention P´1 “ t0u, and again we
may extend the definition to negative indices: one has U´n “ ´Un. Note that
the shifted Chebychev polynomials of second kind are usually defined without the
factor 2, and with an index that is the degree of the polynomial. Our notation will
allow to simplify some of the subsequent computations.

Chebychev polynomials enjoy natural orthogonality properties [1, 9]. Define the
scalar products

xf, gyT “

ż 1

0

fpxq gpxqwpxq
´1{2

dx , xf, gyU “

ż 1

0

fpxq gpxqwpxq
1{2

dx.

Then for any pi, jq P Z2ztp0, 0qu, one has xTi, TjyT “ xUi, UjyU “ π
2 δij where

δij is the Kronecker symbol and xT0, T0yT “ π. These formulas are established
by noticing that the weight is such that w

` cospθq`1
2

˘

“
sin2

pθq
4 .

Remark 2.2. One has the identity for all n P N

1 “ Tnpxq
2 ` Unpxq

2wpxq.

It underlines that the Lukàcs decomposition of a polynomial is non unique.

2.2.1. A Chebychev basis for the set Un. Any pa, b, c, dq P Un admits a Chebychev
representation

(4)
apxq “

n
ÿ

i“0

ai Tipxq , cpxq “

n
ÿ

i“0

ci Tipxq ,

bpxq “

n
ÿ

i“1

bi Uipxq , dpxq “

n
ÿ

i“1

di Uipxq ,

with

(5) ai “
2´ δi0
π

xapxq, TipxqyT , ci “
2´ δi0
π

xcpxq, TipxqyT , i P t0, 1, . . . , nu,

and

(6) bi “
2

π
xbpxq, UipxqyU , di “

2

π
xdpxq, UipxqyU , i P t1, . . . , nu.

It will be convenient to extend these coefficients for all i P Z, setting ai “ ci “ 0 or
bi “ di “ 0 when i is outside of the above ranges.

The coefficients of the product (2) of two quadruplets r and q can be expressed
quite handily in the Chebychev basis. Indeed, as a consequence of the De Moivre
formulas, for any pi, jq P Z2 one has

(7) TiTj “
Ti´j ` Ti`j

2
, UiUjw “

Ti´j ´ Ti`j
2

, UiTj “
Ui`j ` Ui´j

2
.

It is useful to consider the sign function sgnpxq “ 1 for x ą 0, sgnpxq “ ´1 for
x ă 0 and sgnp0q “ 0.
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Lemma 2.3. The coefficients of the polynomials in (2) can be expressed as
(8)
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

2Ak “
ÿ

i`j“k

pαi aj ` βi bj ´ γi cj ` δi djq `
ÿ

|i´j|“k

pαi aj ´ βi bj ´ γi cj ´ δi djq,

2Bk “
ÿ

i`j“k

pβi aj ` αi bj ´ δi cj ` γi djq `
ÿ

|i´j|“k

pβi aj ` sij αi bj ´ δi cj ` sij γi djq,

2Ck “
ÿ

i`j“k

pγi aj ´ δi bj ` αi cj ` βi djq `
ÿ

|i´j|“k

pγi aj ` δi bj ` αi cj ´ βi djq,

2Dk “
ÿ

i`j“k

pδi aj ´ γi bj ` βi cj ` αi djq `
ÿ

|i´j|“k

pδi aj ´ sij γi bj ` βi cj ` sij αi djq,

where sij “ sgnpj ´ iq.

Proof. Obtained from (2) and the De Moivre formulas (7). �

Lemma 2.4. Take q P Qn. One can writeMpqq “
ř2n
i“0MpqqiTi which is expressed

with the Chebychev basis of the first kind only. The dominant coefficient is

(9) Mpqq2n “
1

2
pa2n ´ b2n ` c2n ´ d2nq

and the next one is

(10) Mpqq2n´1 “

#

an an´1 ´ bn bn´1 ` cn cn´1 ´ dn dn´1 if n ě 2 ,

2 a1 a0 ` 2 c1 c0 if n “ 1 .

Proof. The expansion of Mpqq along the Chebyshev basis shows products TαTβ
and products UαUβ . The De Moivre formulas (7) yield that all products can be
expanded along the Tγ solely. Direct computations yield the coefficients Mpqq2n
and Mpqq2n´1. In formula (10), the case n “ 1 comes from the term δi0 in (5). �

For later use we define U piqn Ă Qn as the subset of quadruplets q such that the
2i dominant coefficients of Mpqq vanish,

(11) U piqn “M´1
`

P2n´2i

˘

XQn

Obviously, q P Qn is in U piqn if and only if Mpqq2n´2i`1 “ ¨ ¨ ¨ “Mpqq2n “ 0, and in
particular q P U pnqn iff Mpqq P R. Thus one has the embeddings

Un Ă U pnqn Ă ¨ ¨ ¨ Ă U p1qn Ă Qn.

2.3. Metrics. The continuity properties of the projection algorithm defined in the
next section will be analyzed with convenient norms which are defined below.

For any real polynomial p, we consider its weighted L1 norm

}p} :“

ż 1

0

|ppxq|
dx

a

wpxq
.

For quadruplets q “ pa, b, c, dq P Qn, we define a specific norm ~ ¨ ~

(12) ~q~2 :“ }Mpqq} “

ż 1

0

a2w´
1
2 `

ż 1

0

b2w
1
2 `

ż 1

0

c2w´
1
2 `

ż 1

0

d2w
1
2 .

The orthogonality of Chebychev polynomials yields the Plancherel-like equality

(13) ~q~2 “ π p|a0|
2 ` |c0|

2q `
π

2

n
ÿ

i“1

p|ai|
2 ` |bi|

2 ` |ci|
2 ` |di|

2q.
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Since M is a morphism and Mpeq “ 1 for e P U8, one has

(14) ~eq~ “ ~q~ for any e P U8, q P Q8.

This last property is very useful when dealing with the decomposition formulas of
Theorem 2.1.

3. The projection algorithm

In order to motivate our projection algorithm we consider the problem of com-
puting a polynomial approximation with two bounds to some given function f
assuming that, as a preliminary step, we are able to construct two polynomials
with one bound, p0 P P`2n and p1 P 1 ´ P`2n, which both approximate f in some
sense,

p0 “ a2 ` b2w « f and p1 “ 1´ c2 ´ d2w « f.

By construction, the polynomial p0 is non negative and the polynomial p1 is less
than 1. The point is that this preliminary step is doable: for example we refer to [2,
5] where effective algorithms are proposed to compute polynomial approximations
with one bound. The method [2] is restricted to monovariate polynomials, while
[5] is more general and adresses multivariate polynomials. In the numerical section
we shall use a third different method described in the appendix. In all cases, one
ends up with a quadruplet q “ pa, b, c, dq P Qn such that

Mpqq “ a2 ` b2w ` c2 ` d2w “ p0 ` 1´ p1 « 1.

In particular, the quadruplet q may not be in Un, so that neither p0 or p1 are in U2n.
The numerical illustrations at the end show it is indeed the case. Our objective is
then to construct an algorithm which projects q “ pa, b, c, dq into q̃ “ pra,rb,rc, rdq P Un
and thus provides a polynomial approximation

p̃ :“ ra2 `rb2w “ 1´ rc2 ´ rd2w « f with two bounds, p̃ P U2n.

To do so we will use the iterative decomposition technique developped in the theo-
retical proof of [3, 4] with an additional correction step.

3.1. Definition of the projection. The design principle of the algorithm is to
follow the iterative factorization structure developed in the proof of Theorem 2.1.
Since this procedure is applied to a quadruplet that is not in the set Un, the key
issue is to design a correction step that effectively allows to perform each iterative
factorization. Thus our construction involves two functions that will be properly
described below, see Definitions 3.4, 3.7 and 3.9.

‚ The new correction function χn : Qn Ñ U p1qn is a projection onto U p1qn ,
see (11). From q P Qn it creates pq “ χnpqq by modifying only the two
dominant coefficients of the four polynomials constituting q, in order for
the two dominant coefficients of Mppqq to vanish.

‚ The factorization function φn : U p1qn Ñ U1, which from a corrected quadru-
plet pq explicitly builds an element e “ φnppqq P U1 such that epq P Qn´1. It
relies on a technical adaptation of the proof of Theorem 2.1.

The structure of the algorithm is then as follows.
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Definition 3.1. The projection onto Un is defined by the factorized formula

(15) Πn :

#

Qn ÝÑ Un
q ÞÝÑ e1 e2 . . . en r0

where each factor is computed iteratively, setting qn :“ q and for i “ 0, . . . , n´ 1,

(16)

$

&

%

pqn´i :“ χn´ipqn´iq P U p1qn ,
ei`1 :“ φn´ippqn´iq P U1 ,

qn´pi`1q :“ ei`1pqn´i P Qn´pi`1q.

Here, χn´i is the correction function defined in Def. 3.4 and 3.7, φn´i is the factor-
ization function defined in Def. 3.9 and ei`1pqn´i is a quaternion product. Finally
the last term r0 P U0 in (15) is defined as

r0 :“

"

q0{Mpq0q
1{2 if q0 ‰ 0 ,

p1, 0, 0, 0q otherwise .

3.2. The correction function χn : Qn Ñ U p1qn for n ě 2. Let q “ pa, b, c, dq P Qn

and let us define χnpqq :“ pq “ ppa,pb,pc, pdq P U p1qn . The polynomials pa, pb, pc and pd are
defined by changing only the dominant coefficients of pa, b, c, dq in the Chebychev
basis (4). This is performed as follows.

The low order coefficients remain unchanged, namely

pai “ ai , pbi “ bi , pci “ ci , pai “ ai for all i ď n´ 2

In order for pq to be an element of U p1qn , the remaining high order coefficients must
satisfy the algebraic relations (9)-(10)

(17)

#

pa2n ´
pb2n ` pc2n ´

pd2n “ 0 ,

pan pan´1 ´ pbnpbn´1 ` pcn pcn´1 ´ pdn pdn´1 “ 0 .

Since we desire χnpqq to be as close as possible to q, we decide to project

(18) X “ pan, an´1, bn, bn´1, cn, cn´1, dn, dn´1q
t

onto the algebraic manifold V Ă R8 defined by (17). The problem is thus reduced
to building a projection χ : R8 Ñ V.

The mathematical issue is that the Euclidean projection on this non-convex set
cannot be properly defined. Indeed if one denotes by } ¨ } the euclidean norm in R8

the following quadratically constrained quadratic program

(19) inf
Y PV

1

2
}X ´ Y }2 ,

may have multiple solutions. Via a dual convex nonlinear program, we are never-
theless able to explicitly compute at least one solution, which reveals sufficient for
our algorithmic purposes. Once we are provided with a suitable candidate written
as

χpXq “
´

pan,pan´1,pbn,pbn´1,pcn,pcn´1, pdn, pdn´1

¯t

,

we may gather the coefficients to determine χnpqq. This will properly stated in
Definition 3.4.
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3.2.1. A dual convex program. The set of constraints of the optimization problem
(17) is written as

V “ tY P R8 such that Y tAY “ Y tBY “ 0u

with symmetric block diagonal matrices

A “ diagpS,´S, S,´Sq PM8pRq, B “ pT,´T, T,´T q PM8pRq
where

S “

ˆ

1 0
0 0

˙

, T “

ˆ

0 1
1 0

˙

.

The set V is also called the correction manifold in the following. The Lagrangian
associated to (19) is

LpY, λ, µq “
1

2

`

}X ´ Y }2 ` λY tAY ` µY tBY
˘

.

The triplets pY, λ, µq satisfying the first order optimality condition ∇L “ 0 are
those satisfying Y P V and

Mλ,µY “ X

with

(20) Mλ,µ “ I ` λA` µB .

The conditions of invertibility of Mλ,µ reduce to the invertibility of I ˘ pλS ` µT q.
The four eigenvalues of the symmetric matrix Mλ,µ “M t

λ,µ PM8pRq are 1˘ pλ˘
a

|λ|2 ` 4|µ|2q{2 and 1˘pλ¯
a

|λ|2 ` 4|µ|2q{2. It is natural to define the open and
convex set

D “ tpλ, µq P R2 such that Mλ,µ ą 0u “ t|λ| ` µ2 ă 1u.

This set is bounded with boundary BD “ t|λ| ` µ2 “ 1u. Moreover, on D it holds

I ˘ pλS ` µT q ě 0, hence }λS ` µT } ď 1

in the matrix 2-norm over R2, which results in a uniform bound

}Mλ,µ} ď 2, pλ, µq P D
in the matrix 2-norm over R8. Let us now consider the dual optimization problem

(21) pλ˚pXq, µ˚pXqq P arg inf
pλ,µqPD

GXpλ, µq

with

(22) GXpλ, µq “ XtM´1
λ,µX .

The function GX enjoys the following nice property.

Lemma 3.2. Assume GX has a critical point pλ˚, µ˚q P D, in the sense that
∇GXpλ˚, µ˚q “ 0. Then Y ˚ “M´1

λ˚,µ˚X is in the correction manifold V.

Proof. One has the differential formula dM´1 “ ´M´1dMM´1 which holds for
matrices M ą 0. So an explicit calculation shows that

BλGXpλ
˚, µ˚q “ ´XtM´1

λ˚,µ˚AM
´1
λ˚,µ˚X “ ´Y ˚

t
AY ˚ “ 0.

Similarly BµGXpλ˚, µ˚q “ ´Y ˚
tBY ˚ “ 0, hence Y ˚ P V. In particular, V ‰ H. �

The following result shows that, generically, pλ˚, µ˚q exists and is a global min-
imum of the functional GX .
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Lemma 3.3. For any X P R8, the function GX : D Ñ R` is convex and C1.
Moreover there is a dense open subset S Ă R8 such that whenever X P S, the
function GX tends to `8 on the boundary of D (namely, it is coercive).

Proof. The convexity stems from the non-negativity of Mλ,µ since for α, β P R2

ˆ

α

β

˙t

HessGXpλ, µq

ˆ

α

β

˙

“ XtM´1
λ,µpαA` βBqM

´1
λ,µpαA` βBqM

´1
λ,µX ě 0.

By explicitly inverting Mλ,µ and using the notation (18), one has that

GXpλ, µq “
pan ´ µan´1q

2

1` λ´ µ2
` a2n´1 `

pbn ` µbn´1q
2

1´ λ´ µ2
` b2n´1

`
pcn ´ µcn´1q

2

1` λ´ µ2
` c2n´1 `

pdn ` µdn´1q
2

1´ λ´ µ2
` d2n´1.

This shows that GX is C1 on D and goes to `8 on BD “ tpλ, µq s.t. |λ| ` µ2 “ 1u
as soon as the terms between parenthesis do not vanish (uniformly in µ). It is the
case for

X P S “ tancn´1 ‰ an´1cn and bndn´1 ‰ bn´1dnu Ă R8.

The set S is an open and dense subset of R8. �

At this point, for any X in the dense set S of Lemma 3.3, we know that the dual
optimization problem admits at least one solution pλ˚, µ˚q P D that is a critical
point of GX . We can then define

(23)
χpXq : S ÝÑ V,

X ÞÝÑ χpXq “M´1
λ˚pXq,µ˚pXqX

where pλ˚pXq, µ˚pXqq is a global minimizer of GX obtained by a given convex op-
timization method. Of course, the definition of χ may vary since there are possibly
several global minima (the precise implementation is detailed in Section 5). Also
by perturbation around S, the function χ can defined

χpXq : R8 ÝÑ V

with the same restrictions concerning the choice of the minimizer which is non
unique as well and the choice of the perturbation. Regardless of these choices, we
may now state the complete definition of χn when n ě 2.

Definition 3.4. The function χn : Qn Ñ U p1qn takes q “ papxq, bpxq, cpxq, dpxqq as
argument and returns

χnpqq “ pq “ ppapxq, pbpxq, pcpxq, pdpxqq

with
pai “ ai , pbi “ bi , pci “ ci , pdi “ di for all i ď n´ 2

and
´

pan,pan´1,pbn,pbn´1,pcn,pcn´1, pdn, pdn´1

¯

“ χ pan, an´1, bn, bn´1, cn, cn´1, dn, dn´1q

where the projection χ is defined in (21)-(23).
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3.2.2. Properties of the non convex optimization problem.

Proposition 3.5. The function χ has values in the correction manifold V, and
(i) it is nonincreasing in the euclidean norm of R8, namely

}χpXq} ď }X};

(ii) it satisfies the estimate

}X ´ χpXq} ď 2
3
4 }X}1{2p

ˇ

ˇXtAX
ˇ

ˇ`
ˇ

ˇXtBX
ˇ

ˇq1{4

where the right hand side vanishes for X P V;
(iii) it is idempotent, i.e. χ ˝ χ “ χ.

These estimates are uniform with respect to the choice of the minimizer in (21).

Proof. Let X P S and Y ˚ “ χpXq “M´1
λ˚,µ˚X as defined in Lemma 3.2. We know

that Y ˚ P V.
(i) One has

XtY ˚ “ Y ˚
t
Mλ˚,µ˚Y

˚ “ Y ˚
t
pI ` λ˚A` µ˚BqY ˚ “ }Y ˚}2

which yields the first estimate }Y ˚} ď }X}.
(ii) A Taylor formula with integral remainder expansion yields

GXpλ
˚, µ˚q “ GXp0, 0q ´ pλ

˚XtAX ` µ˚XtBXq

`2

ż 1

0

XtM´1
sλ˚,sµ˚pλ

˚A` µ˚BqM´1
sλ˚,sµ˚pλ

˚A` µ˚BqM´1
sλ˚,sµ˚Xp1´ sqds.

Since GXpλ˚, µ˚q ď GXp0, 0q and the matrices commute

M´1
sλ˚,sµ˚pλ

˚A` µ˚Bq “ pλ˚A` µ˚BqM´1
sλ˚,sµ˚ ,

one has the inequality

2

ż 1

0

pZ˚qtM´3
sλ˚,sµ˚Z

˚p1´ sqds ď pλ˚XtAX ` µ˚XtBXq

where Z˚ “ pλ˚A` µ˚BqX. It yields

}Z˚}2 “ 2

ż 1

0

pM
´3{2
sλ˚,sµ˚Z

˚qtM3
sλ˚,sµ˚M

´3{2
sλ˚,sµ˚Z

˚p1´ sqds

ď 2

ż 1

0

}Msλ˚,sµ˚}
3
›

›

›
M
´3{2
sλ˚,sµ˚Z

˚
›

›

›

2

p1´ sqds

ď 2

ż 1

0

23
›

›

›
M
´3{2
sλ˚,sµ˚Z

˚
›

›

›

2

p1´ sqds

ď 24
ż 1

0

pZ˚qtM´3
sλ˚,sµ˚Z

˚p1´ sqds

ď 23pλ˚XtAX ` µ˚XtBXq.

Using |λ˚| ` pµ˚q2 ă 1, one gets the technical bound

}Z˚} ď 2
3
2 p
ˇ

ˇXtAX
ˇ

ˇ`
ˇ

ˇXtBX
ˇ

ˇq1{2.
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By definition of Y ˚ one has X ´ Y ˚ “ pλ˚A` µ˚BqY ˚. So

}X ´ Y ˚}2 “ Y ˚tpλ˚A` µ˚BqpX ´ Y ˚q

“ Y ˚tpλ˚A` µ˚BqX

“ Y ˚tZ˚ ď }Y ˚} }Z˚}.

So }X ´ Y ˚} ď }Y ˚}
1
2 }Z˚}

1
2 . One concludes with (i) and the previous

technical bound.
(iii) The estimate in (ii) yields }χ ˝ χpXq ´ χpXq} “ 0 since χpXq P V.

The proof is ended. �

Corollary 3.6. Let n ě 2. The correction function χn : Qn Ñ U p1qn satisfies

(i) ~χnpqq~ ď ~q~, q P Qn,

(ii) ~q ´ χnpqq~ ď C ~q~1{2p|Mpqq2n| ` |Mpqq2n´1|q
1{4, q P Qn,

(iii) χn ˝ χn “ χn.

for some constant C ą 1.

Proof. These properties follow from Proposition 3.5, observing that the non zero
coefficients of q ´ χnpqq coincide with those of X ´ χpXq: using (13) this gives

~q~2 ´ ~χnpqq~
2 “

π

2

`

}X}2 ´ }χpXq}2
˘

ě 0

and for estimate (ii) we use |Mpqq2n| ` |Mpqq2n´1| “
1
2

`

|XtAX| ` |XtBX|
˘

. �

3.3. The correction function χ1 : Q1 Ñ U p1q1 . For n “ 1, the correction function
χn needs a specific definition. Indeed, in order for pq “ χ1pqq to be in U p1q1 , the
following relations must hold

(24)

#

pa21 ´
pb21 ` pc21 ´

pd21 “ 0,

pa1 pa0 ` pc1 pc0 “ 0,

and they slightly differ from the previous ones (17). However the method and
results are essentially the same. Specifically, (24) define a slightly different set of
constraints

rV “ tỸ “ ppa1,pa0,pb1,pc1,pc0, pd1q P R6 such that Ỹ tÃỸ “ Ỹ tB̃Ỹ “ 0u

with symmetric block diagonal matrices

Ã “ diagpS,´1, S,´1q PM6pRq, B̃ “ pT, 0, T, 0q PM6pRq.

This leads to the dual optimization problem

(25) pλ˚pX̃q, µ˚pX̃qq P arg inf
pλ,µqP rD

G̃X̃pλ, µq with G̃X̃pλ, µq “ X̃t M̃´1
λ,µ X̃

with a matrix M̃λ,µ “ I ` λÃ` µB̃ and a bounded convex domain now defined as
rD “ tpλ, µq P R2 : µ2 ´ 1 ď λ ď 1u. Thus we define

(26)
χ̃ : R6 ÝÑ rV,

X̃ ÞÝÑ χ̃pX̃q “ M̃´1

λ˚pX̃q,µ˚pX̃q
X̃
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where pλ˚pX̃q, µ˚pX̃qq is the global minima of the convex and coercive nonlinear
program (25) obtained by a given optimization method.

Definition 3.7. The function χ1 : Q1 Ñ U p1q1 takes q “ pa1T1pxq`a0, b1U1, c1T1pxq`
c0, d1U1q as argument and returns

χ1pqq “ pq “ ppa1 T1pxq ` pa0,pb1 U1,pc1 T1pxq ` pc0, pd1 U1q

with ppa1,pa0,pb1,pc1,pc0, pd1q “ χ̃pa1, a0, b1, c1, c0, d1q and χ̃ defined by (25-26).

The function χ1 has the same properties as χn for n ě 2. In particular the results
of Corollary 3.6 can be established also for n “ 1. We state this as a proposition
for later reference.

Proposition 3.8. Let n ě 1. The correction function χn : Qn Ñ U p1qn satisfies

(i) ~χnpqq~ ď ~q~, q P Qn,

(ii) ~q ´ χnpqq~ ď C ~q~1{2p|Mpqq2n| ` |Mpqq2n´1|q
1{4, q P Qn,

(iii) χn ˝ χn “ χn.

for some constant C ą 1.

3.4. The factorization function φn : U p1qn Ñ U1 for n ě 1.

Definition 3.9. The factorization function φn : U p1qn Ñ U1 takes pq “ ppa,pb,pc, pdq as
argument. If pa2n ` pc2n “ 0, it returns φnppqq “ p1, 0, 0, 0q. Otherwise it is defined as
follows.
Case n ě 2: then φnppqq “ K pα1T1 ` α0, β1 U1, γ1 T1 ` γ0, δ1 U1q where

(27) α1 “ pan , β1 “ ´pbn , γ1 “ ´pcn , δ1 “ ´ pdn ,

(28) α0 “
pan´1

2
´

pbnpbn´1 ` pdn pdn´1

2ppa2n ` pc2nq
pan `

pbn pdn´1 ´ pdnpbn´1

2ppa2n ` pc2nq
pcn ,

(29) γ0 “ ´
pcn´1

2
`

pbnpbn´1 ` pdn pdn´1

2ppa2n ` pc2nq
pcn `

pbn pdn´1 ´ pdnpbn´1

2ppa2n ` pc2nq
pan ,

and K “
`

α2
0 ` γ

2
0 `

1
2 pα

2
1 ` β

2
1 ` γ

2
1 ` δ

2
1q
˘´1{2 which is correctly defined

since α2
1 ` γ

2
1 ą 0.

Case n “ 1: then φ1ppqq “ Kpq with

K “Mppqq´1{2 “

ˆ

pa20 ` pc20 `
1

2
ppa21 `

pb21 ` pc21 `
pd21q

˙´1{2

.

Remark 3.10. If pa2n`pc2n “ 0 then pq P U p1qn . So by (17) (or (24) if n “ 1), one has
also pb2n` pd2n “ 0 and thus pq P Qn´1. This explains why these cases are distinguished
in the definition.

Proposition 3.11. For all pq P U p1qn , one has φnppqq P U1 and φnppqqpq P Qn´1.

Proof. If n “ 1, then since pq P U p1q1 , one has Mppqq2 “ Mppqq1 “ 0, so clearly
φ1ppqq P U1 and φ1ppqqpq P Q0. Consider the product formulas (8). Regardless
of the values of α0 and γ0, the product pA,B,C,Dq “ pα, β, γ, δq pq is such that
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Bn`1 “ Cn`1 “ Dn`1 “ 0; thanks to (17) one also has An`1 “ 0. The next
coefficients of pA,B,C,Dq are

2An “

´

pan pan´1 ´pbnpbn´1 ` pcn pcn´1 ´ pdn pdn´1

¯

` 2 pα0 pan ´ γ0 pcnq ,

2Bn “

´

´ pbn pan´1 ` panpbn´1 ` pdn pcn´1 ´ pcn pdn´1

¯

` 2 pα0
pbn ` γ0 pdnq ,

2Cn “

´

´ pcn pan´1 ` pdnpbn´1 ` pan pcn´1 ´pbn pdn´1

¯

` 2 pγ0 pan ` α0 pcnq ,

2Dn “

´

´ pdn pan´1 ` pcnpbn´1 ´pbn pcn´1 ` pan pdn´1

¯

` 2 p´ γ0pbn ` α0
pdnq .

Thanks to the choice of α0 and γ0 in (28) and (29), all these coefficients vanish too.
To simplify the computation of Bn and Dn, notice that since pa2n ` pc2n “

pb2n `
pd2n,

the coefficients α0 and γ0 rewrite

α0 “
pan´1

2
`

pcn pdn´1 ´ panpbn´1

2ppb2n `
pd2nq

pbn ´
pan pdn´1 ` pcnpbn´1

2ppb2n `
pd2nq

pdn ,

and

γ0 “ ´
pcn´1

2
`

pcn pdn´1 ´ panpbn´1

2ppb2n `
pd2nq

pdn `
pan pdn´1 ` pcnpbn´1

2ppb2n `
pd2nq

pbn .

Thus φnppqqpq P Qn´1. Finally φnppqq P U1 since

M pKpα, β, γ, δqq pxq “
K2

2
ppa2n ´

pb2n ` pc2n ´
pd2nqT2pxq

`
K2

2
ppanpan´1 ´ pbnpbn´1 ` pcn pcn´1 ´ pdn pdn´1qT1pxq

`K2

ˆ

α2
0 ` γ

2
0 `

1

2
ppa2n `

pb2n ` pc2n `
pd2nq

˙

T0 “ 1 .

This ends the proof. �

Remark 3.12. The factorization built in the previous proof provides a constructive
proof of Theorem 2.1. Indeed if Mpqq “ 1, one can check that the correction step is
not active in the projection algorithm (16), i.e., pqn´i “ qn´i for all i. One recovers
the decomposition formulas of Theorem 2.1.

4. Error estimates

With the material developed above, one can now use the projection and consider
Πnpqq “ pã, b̃, c̃, d̃q P Un for q “ pa, b, c, dq P Qn. But for practical purposes,
which ultimately is our concern, such a procedure would have little interest if the
difference q´Πnpqq was large. It is precisely the purpose of this section to analyze
this difference.

Since the projection algorithm is very nonlinear, one can expect technical diffi-
culties in proving sharp error estimates. In what follows, we explain how the various
estimates and properties already obtained combine to show some continuity prop-
erties of the projection Πn.

In order to quantify the distance to Un, we define the difference

(30) εpqq “Mpqq ´ 1.

The main theoretical result of this work is as follows.
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Theorem 4.1. Let n P N and H ą 0. For any quadruplet q P Qn satisfying
~q~ ď H, one has

~q ´Πnpqq~ ď pn` 1qCpHq max
!

}εpqq}, }εpqq}2
´p2n`1q

)

.

for some constant CpHq ą 0 depending only on H.

It is instructive to reformulate Theorem 4.1 in terms of polynomials rather than
in terms of quaternions.

Corollary 4.2 (of Theorem 4.1). Let n P N, H ą 0 and q “ pa, b, c, dq P Qn an
arbitrary quadruplet satisfying ~q~ ď H. Note p0 “ a2`b2w and p1 “ 1´c2´d2w

and consider pã, b̃, c̃, d̃q “ Πnpqq. There exists a constant CpHq ą 0 such that the
polynomial with two bounds

p̃ :“ ã2 ` b̃2w “ 1´ c̃2 ´ d̃2w P U2n

satisfies

}p0 ´ p̃} ď pn` 1qCpHq max
!

}p0 ´ p1}, }p0 ´ p1}
2´p2n`1q

)

.

Proof. Using the definition of the norms } ¨ }, ~ ¨ ~ and two Cauchy-Schwarz in-
equalities, we write

}p0 ´ p̃} “ }pa` ãqpa´ ãq ` pb` b̃qpb´ b̃qw}

“
ş1

0
|pa` ãqpa´ ãqw´

1
2 ` pb` b̃qpb´ b̃qw

1
2 |

ď }pa` ãq2 ` pb` b̃q2w}
1
2 }pa´ ãq2 ` pb´ b̃q2w}

1
2

ď ~q `Πnpqq~ ~q ´Πnpqq~

ď pH ` ~Πnpqq~q ~q ´Πnpqq~.

The result follows by combining the estimate of Theorem 4.1 with the equality
εpqq “ Mpqq ´ 1 “ p0 ´ p1 and the observation that ~Πnpqq~ “ }MpΠnpqqq}

1{2 “

}1}1{2 “
?
π.

�

To prove Theorem 4.1 we begin by establishing a couple of elementary estimates.

Proposition 4.3. There is a constant C ą 1 such that for any integer n ě 1 and
any q P Qn, the nonlinear correction operator χn satisfies

(31) ~q ´ χnpqq~ ď C ~q~1{2 }εpqq}1{4

as well as

(32) }εpχnpqqq} ď C p1` ~q~3{2q }εpqq}1{4.

Proof. Let q “ pa, b, c, dq and pq “ ppa,pb,pc, pdq “ χnpqq. The first estimate follows
from Proposition 3.8, and the observation that the i-th coefficients of Mpqq and
εpqq “Mpqq ´ 1 in the pTnq Chebyshev basis coincide for i ě 1, thus

|Mpqqi| “ |εpqqi| “
2
π | xεpqq, TiyT | ď

2
π }εpqq}}Ti}L8p0,1q “

2
π }εpqq}.
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For the second estimate we compute

}εppqq} “ }pa2 ` wpb2 ` pc2 ` w pd2 ´ 1}

“ }εpqq ` ppa` aqppa´ aq ` wppb` bqppb´ bq ` ppc` cqppc´ cq ` wppd` dqppd´ dq}

ď }εpqq} ` ~q ` pq~~q ´ pq~

ď C
`

}εpqq}3{4 ` ~q ` pq~~q~1{2
˘

}εpqq}1{4

where the first inequality is obtained like in the proof of Corollary 4.2, and the
second one is (31). Finally estimate (32) is obtained by using ~pq~ ď ~q~ from
Proposition 3.8, and the bound }εpqq} ď }1} ` }Mpqq} “

?
π ` ~q~2. �

With the estimates of Proposition 4.3 in hand, we can now prove Theorem 4.1.

Proof of Theorem 4.1. For q P Qn we write Πnpqq “ e1 e2 . . . en r0, according to
Definition 3.1. Using that ~eq~ “ ~q~ for e P U1, see (14), one notes that

(33) ~q ´Πnpqq~ “ ~en en´1 . . . e1 qn ´ r0~ .

Denoting next qn “ q and qn´pi`1q “ ei`1 χn´ipqn´iq as in Definition 3.1, we write
a telescopic decomposition

q0 “ enχ1pq1q “ en q1 ` en pχ1pq1q ´ q1q “ ¨ ¨ ¨

“ en en´1 . . . e1 qn `
n´1
ÿ

i“0

en en´1 . . . ei`1 pχn´ipqn´iq ´ qn´iq

rewritten as

en en´1 . . . e1 qn ´ r0 “ ´

˜

n´1
ÿ

i“0

en en´1 . . . ei`1 pχn´ipqn´iq ´ qn´iq

¸

` pq0 ´ r0q .

The identity (33) and the triangular inequality yield

~q ´Πnpqq~ ď
n´1
ÿ

i“0

~en en´1 . . . ei`1 pqn´i ´ χn´ipqn´iqq~ ` ~q0 ´ r0~ .

Using again (14) and the fact that r̄0q0 “Mpq0q
1{2 (still from Definition 3.1), one

gets

~q ´Πnpqq~ ď

n´1
ÿ

i“0

~qn´i ´ χn´ipqn´iq~ ` ~r0q0 ´ p1, 0, 0, 0q~

ď C
n´1
ÿ

i“0

~qn´i~
3{2 }εpqn´iq}

1{4 ` |Mpq0q
1{2 ´ 1|

where the last inequality uses (31). Since the correction functions χn´i are non-
increasing in the ~ ¨ ~ norm (see again Proposition 3.8), one has ~qn´i~ ď H and
thus

~q ´Πnpqq~ ď CpHq
n´1
ÿ

i“0

}εpqn´iq}
1{4 ` C }εpq0q}

1{2

where we have also used that |
?
M ´ 1| ď

a

|M ´ 1| for all M ě 0. Using the
morphism property Mpeipqq “Mppqq and Estimate (32), we finally write

}εpqn´iq} “ }εpχn´i`1pqn´i`1qq} ď CpHq}εpqn´i`1q}
1{4 ď ¨ ¨ ¨ ď CpHq}εpqq}1{4

i
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which, combined with the previous estimate, yields

~q ´Πnpqq~ ď CpHq
n´1
ÿ

i“0

}εpqq}1{4
i

` CpHq}εpqq}1{4
n`1{2

.

This is enough to conclude. �

5. Numerical illustration

To illustrate the properties of our projection algorithm we have implemented a
global polynomial approximation method. Given some data pxr, yrqr“1,...,2n`1, our
method builds a polynomial with two bounds, p̃ P U2n, such that the values pp̃pxrqqr
are a good approximation to pyrqr. For this purpose we begin by interpolating the
data pxr, yrqr by their Lagrange polynomial p P P2n, and use p as an effective target
function. Ne note that in general p may be outside of the desired bounds.

The method is divided in three stages.
‚ In the first stage, one computes a polynomial approximation with one lower bound,
p0 “ a2` b2w P P`2n. The goal is to compute explicitly a, b and not just p0. Several
methods related to this problem have been proposed by the authors in previous
contributions [5, 2]. Here, we use another technique described in Appendix A.

‚ In the second stage we apply the same method as in the first stage to the data
pxr, 1´ yrqr“1,...,2n`1. This yields another polynomial 1´ p1 “ c2` d2w P P`2n and
hence a second approximation p1 to the data, now with one upper bound.

‚ The third stage consists of applying the projection algorithm defined in Section 3.
From the polynomials pa, b, c, dq this computes pã, b̃, c̃, d̃q “ Πnpa, b, c, dq and pro-
vides a polynomial approximation with two bounds p̃ “ ã2 ` b̃2w, as described in
Corollary 4.2. The minimization of the dual convex problem which is necessary to
compute χn is performed with a Newton conjugate gradient trust-region algorithm
[7]. In our tests, the minimum is reached between 2 and 5 iterations. This operation
is repeated n times (see Definition 3.1). The cost of one iteration does not depend
on n.

In the following, we take n “ 5 so that we are looking for approximations of
degree 10. On the horizontal axis the values correspond to Chebyshev nodes,
xr “ 0.0051, 0.0452, 0.1221, 0.2297, 0.3591, 0.5000, 0.6409, 0.7703, 0.8779, 0.9548,
0.9949.

In the first three test cases we choose different values of pyrqr, so that the cor-
responding Lagrange polynomials p have larger amplitudes and exceed the desired
bounds. The goal here is to compare qualitatively p with the projected polynomial
p̃, in order to witness the quality of the projection. The last test case is an exper-
imental error analysis. We project a series of polynomials at given distances from
the set U2n and compare the numerical convergence rate with the theoretical result
of Theorem 4.1.

5.1. First test case. In this first test case we choose yr “ 0.1500, 0.2402, 0.1101,
0.0997, 0.9062, 0.5877, 0.5548, 0.1095, 0.8883, 0.6343 and 0.3360. Althougt yr P
p0, 1q, the Lagrange polynomial p may not be within the bounds. Indeed it exceeds
the bounds for x « 0.2 and x « 0.9. The results are displayed in Figure 1. One
observes that as expected p0 ě 0, p1 ď 1. Finally the projected polynomial is truly
between 0 and 1, and seems to be a satisfactory approximation of p.
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Figure 1. First test case: Bottom right: Lagrange polynomial
p; Bottom left: Upper bound Lukacs approximation; Top right:
Lower bound Lukacs approximation; Top left: Projection p̃; Even
if the polynomial p0 and p1 are marginally out of bounds, a perfect
satisfaction of the bounds is observed for p̃.

5.2. Second test case. Now yr “ 0.3326, 0.5950, ´0.0938, ´0.1245, 0.5431,
0.8908, 1.1076, ´0.0181, 0.5964, 0.4571 and ´0.1833. The results are displayed
on Figure 2. Despite the large overshoot and undershoot of p0 and p1 respectively,
one sees that the projected polynomial yields a satisfactory approximation of p.

5.3. Third test case. In this third test case yr “ 0.0114, ´0.5135, 1.3829, ´0.0664,
0.5856, ´0.5031, 0.8059, ´0.2111, 0.9622, 1.0676 and 1.2445. This is a much more
severe test in terms of accuracy since the violation of the upper and lower bounds
are extreme, and indeed of similar amplitude than the bounds themselves. However
we observe in Figure 3 a perfect behavior in terms of satisfaction of the bounds for
the projected polynomial, moreover the qualitative profile of the curve seems to be
preserved.

5.4. Fourth test case: error analysis. In this last numerical test, we want to
discuss the estimate of Theorem 4.1 numerically. To proceed we start by defining

yrptq “ tpyr ´ ȳq ` ȳ ,
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Figure 2. Second test case: Bottom right: Lagrange polyno-
mial p; Bottom left: Upper bound Lukacs approximation; Top
right: Lower bound Lukacs approximation; Top left: Projection
p̃; Even if the polynomial p0 and p1 are slightly out of bounds, a
perfect satisfaction of the bounds is observed for p̃.

where the values yr are those of the previous test case (Section 5.3), ȳ is their average
and t P r0, 1s. From xr and yrptq we define the associated Lagrange polynomial
pt. Clearly pt “ tp ` p1 ´ tqȳ with p the Lagrange polynomial associated with
pxr, yrqr. Thus, since ȳ P r0, 1s and p R r0, 1s (see Figure 3), there is some t˚ P p0, 1q
such that pptq P r0, 1s if t ď t˚. Above the critical value of t the polynomial pt
violates the bounds. We denote by qt the quaternion corresponding to the Lukacs
approximations of pt and we compare }εpqtq} and ~qt ´Πnpqtq~ for various values
of t. In our numerical test we chose t “ 1., 0.8, 0.6, 0.5, 0.43, 0.38, 0.35, 0.33,
0.32, 0.31, 0.305, 0.301, 0.298, 0.296, 0.294, 0.293, 0.292, 0.291, 0.2908, 0.2906,
0.2904 and 0.29. The results are showed on Figure 4. The slope is approximately
equal to 1 in logarithmic scale which suggests that ~qt´Πnpqtq~ “ Op}εpqtq}q. This
emphasizes that the error estimate of Theorem 4.1 is probably far from being sharp.
Moreover, we see on this test case the convergence and stability of the method.



PROJECTION ON POLYNOMIALS WITH TWO BOUNDS 19

0 0.2 0.4 0.6 0.8 1
´1

0

1

2

Projection p̃
pxr, yrq

0 0.2 0.4 0.6 0.8 1
´1

0

1

2

p0
pxr, yrq

0 0.2 0.4 0.6 0.8 1
´1

0

1

2

p1
pxr, yrq

0 0.2 0.4 0.6 0.8 1
´1

0

1

2

p

pxr, yrq

Figure 3. Third test case: Bottom right: Lagrange polynomial
p; Bottom left: Upper bound Lukacs approximation; Top right:
Lower bound Lukacs approximation; Top left: Projection p̃; Even
if the polynomials p0 and p1 are largely out of bounds, a perfect
satisfaction of the bounds is observed for p̃.
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Appendix A. An algorithm for positive polynomial approximation

Here we briefly describe the method used in the numerical tests to compute the
positive (or nonnegative) polynomial approximations in Lukacs form. The problem
is to find two polynomials a P Pn and b P Pn´1 defining a positive polynomial
p0pxq “ apxq2 ` bpxq2wpxq such that given some data pxr, yrqr“1,...,R (in general
with R “ dimpP2nq “ 2n ` 1) the images pp0pxrqqr are a good approximation of
pyrqr.

Our algorithm consists in a least-square minimization where a and b are “oscil-
lating polynomials” parametrized by their roots. This parametrization is motivated
by the method of [2] where a similar technique has been developped and analysed
for positive interpolation.

Mathematically the method relies on the following optimization problem. Find

pα˚, β˚q P argminαPRn`1,βPRnJtpα, βq

where the objective function is

Jpα, βq “
R
ÿ

r“1

|arαspxrq
2 ` brβspxrq

2wpxrq ´ yr|
2 ,



PROJECTION ON POLYNOMIALS WITH TWO BOUNDS 21

with a and b parametrized as follows,

arαspxq “ 2n´1 α0

n
ź

i“1

px´ αiq , brβspxq “ 2n´1 β0

n´1
ź

i“1

px´ βiq .

The factor 2n´1 is taken so that α0 and β0 are of the same order as the other
components of α and β. Then the approximation polynomial p is defined by

p0pxq “ arα˚spxq2 ` brβ˚spxq2wpxq

The optimization problem is nonlinear and non-convex. However, it can be solved
efficiently in practice. Indeed, one can compute explicitely both the gradient and
hessian of the functional J . In the numerical tests of Section 5, we used a Newton
conjugate gradient trust-region algorithm. The initial couple pα, βq is taken to be
appropriate roots of Chebychev polynomials. In this way, the initial polynomials
arαs and brβs are proportional to Tn and Un, yielding arαs2pxq`brβs2pxqwpxq being
some constant polynomial. In all the cases of Section 5, n “ 5 and the algorithm
converges after around 30 iterations.
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