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Abstract

In this article we de�ne and investigate statistical operators and an
entropy functional for Bernstein stochastic processes associated with hi-
erarchies of forward-backward systems of decoupled deterministic linear
parabolic partial di¤erential equations. The systems under consideration
are de�ned on open bounded domains D � Rd of Euclidean space where
d 2 N+ is arbitrary, and are subject to Neumann boundary conditions.
We assume that the elliptic part of the parabolic operator in the equa-
tions is a self-adjoint Schrödinger operator, bounded from below and with
compact resolvent in L2(D). The statistical operators we consider are
then trace-class operators de�ned from sequences of probabilities associ-
ated with the point spectrum of the elliptic part in question, which allow
the distinction between pure and mixed processes. We prove in particu-
lar that the Bernstein processes of maximal entropy are those for which
the associated sequences of probabilities are of Gibbs type. We illustrate
our results by considering processes associated with a speci�c hierarchy
of forward-backward heat equations de�ned in a two-dimensional disk.

1 Introduction and outline

The theory of Bernstein (or reciprocal) processes was launched many years ago
in [1] following the seminal contribution put forward in the last section of [13].
At the very end of [13], Schrödinger indeed gave a positive answer to the ques-
tion whether it is possible to generate a reversible di¤usion process from a pair
of adjoint, deterministic, linear parabolic partial di¤erential equations whose
solutions typically display irreversible behavior. The considerations of [13] were
based on entropy arguments, and have had many important rami�cations and
generalizations over the years up to this day, including connections with Optimal
Transport Theory and Stochastic Geometric Mechanics (see, e.g., [2], [4], [9],
[10], [15], [21] and the many references therein). On the other hand, a system-
atic and abstract investigation of continuous time versions of the processes was
carried out in [8], according to which it became clear that Bernstein processes
may exist without any reference to partial di¤erential equations and may admit
as state space any topological space countable at in�nity. In spite of that, a
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great deal of attention has recently been paid to the way that such processes
may be generated in Euclidean space of arbitrary dimension from certain partic-
ular systems of parabolic partial di¤erential equations, thereby allowing one to
recast things within the original framework of [13] with the goal of investigating
those processes that are not Markovian (see, e.g., [17]-[19]).
It is our purpose here to continue and deepen our analysis of such processes,

and accordingly we shall organize the remaining part of this article in the follow-
ing way: in Section 2 we introduce a hierarchy of forward-backward systems of
decoupled, deterministic, linear parabolic partial di¤erential equations de�ned
on open bounded domains of Euclidean space. Those systems are characterized
by the fact that the elliptic part of the parabolic operator is, up to a sign, a self-
adjoint Schrödinger operator bounded from below and with compact resolvent
in standard L2-space. The hierarchy comes about by associating with each level
of the pure point spectrum of the elliptic part a suitable pair of initial-�nal data.
We then proceed by de�ning what a Bernstein process is, and show how we can
construct from the hierarchy we just alluded to a sequence of such processes
that are Markovian. This requires the existence of probability measures of a
very speci�c form which we obtain from the initial-�nal data and the heat ker-
nel of the given system. In Section 2 we also associate with the spectrum of the
elliptic part a sequence of probabilities which eventually allows us to construct
non-Markovian processes by means of a suitable averaging procedure, as well as
the related statistical operators and the entropy functional which we investigate
in detail. Those operators are important in that they allow the classi�cation of
the processes as pure or mixed, and we prove in particular that the Bernstein
processes of maximal entropy are those for which the probabilities in question
are of Gibbs type. In Section 3 we illustrate some of our results by consider-
ing Bernstein processes generated by a speci�c hierarchy of forward-backward
heat equations and wandering in a two-dimensional disk, ending up with fairly
explicit formulae for the corresponding probabilities and expectation values. Fi-
nally, we devote Appendix A to the analysis of statistical operators which are
more general than that investigated in Section 2, and Appendix B to stating
a general result regarding the very existence of Bernstein processes that goes
back to [8] and [18], which we slightly reformulated for the needs of this article.
We conclude Appendix B with a brief remark regarding the connection between
Bernstein processes, Schrödinger�s problem and Optimal Transport Theory.

2 Statistical operators and an entropy functional
for Bernstein processes

Let D � Rd with d 2 N+be an open bounded domain with a su¢ ciently smooth
boundary @D and let L2(D) be the standard Hilbert space of all Lebesgue-
measurable, square-integrable complex-valued functions on D with respect to
Lebesgue measure, whose inner product and induced norm we shall denote by
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(:; :)2 and k:k2, respectively. Let us consider the di¤erential operator

H = �1
2
�x + V (1)

where �x stands for Neumann�s Laplacian on D and where the following hy-
pothesis holds for the additional term:

(H1) The function V : D 7! R satis�es V 2 Lp(D) where

p 2

8>>>><>>>>:
[1;+1] if d = 1;

(1;+1] if d = 2;�
d
2 ;+1

�
if d � 3

and is bounded from below.

Under these conditions it is well known that (1) admits a self-adjoint re-
alization with compact resolvent in L2(D) and thereby a pure point spectrum
(�m)m2Nd such that �m ! +1 as jmj :=

Pd
j=1mj ! +1, whose correspond-

ing eigenfunctions (fm)m2Nd constitute an orthonormal basis of L
2(D) and are

assumed to be real (see, e.g., Chapter VI in [5], particularly Theorem 1.9).
For each m 2 Nd and T 2 (0;+1) arbitrary, we then introduce the system of
adjoint, deterministic, linear parabolic partial di¤erential equations given by

@tu(x; t) =
1

2
�xu(x; t)� V (x)u(x; t); (x; t) 2 D � (0; T ] ;

u(x; 0) = '0;m(x); x 2 D; (2)

@u(x; t)

@n(x)
= 0; (x; t) 2 @D � (0; T ]

and

�@tv(x; t) =
1

2
�xv(x; t)� V (x)v(x; t); (x; t) 2 D � [0; T ) ;

v(x;T ) =  T;m(x); x 2 D; (3)

@v(x; t)

@n(x)
= 0; (x; t) 2 @D � [0; T ) ;

respectively, where n(x) stands for the unit outer normal to @D at the point x
and where '0;m,  T;m are real-valued functions to be speci�ed below. In this
way we are thus considering a hierarchy of problems of the form (2)-(3), that
is, an in�nite sequence of pairs of such equations where each pair is associated
with a level of the spectrum of (1) through the initial-�nal data. Furthermore,
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an essential ingredient in the forthcoming considerations will be the heat kernel
(or fundamental solution) associated with (2)-(3), which satis�es8><>:

g(x; t; y) = g(y; t; x);

0 < g(x; t; y) � c1t
� d

2 exp
h
�c2 jx�yj

2

t

i (4)

for all x; y 2 D and every t 2 (0; T ] for some c1;2 > 0. It is indeed the knowledge
of '0;m,  T;m and (4) that will allow us to construct sequences of Bernstein
processes Zm�2[0;T ] wandering in D. We begin with the following:

De�nition 1. We say the D-valued process Z�2[0;T ] de�ned on the complete
probability space (
;F ;P) is a Bernstein process if

E
�
b(Zr)

��F+s _ F�t � = E (b(Zr) jZs; Zt ) (5)

P-almost everywhere for every bounded Borel measurable function b : D 7!
C, and for all r; s; t satisfying r 2 (s; t) � [0; T ], where E (: j: ) denotes the
conditional expectation on (
;F ;P). The �-algebras in (5) are

F+s := �
�
Z�1� (F ) : � � s; F 2 B(D)

	
and

F�t := �
�
Z�1� (F ) : � � t; F 2 B(D)

	
;

respectively, where B(D) stands for the Borel �-algebra over D.

The preceding de�nition is just one out of many equivalent ways of de�ning a
Bernstein process (see, e.g. [8]). It shows that as soon as Zs and Zt are known,
the behavior of such a process for � 2 [s; t] is independent of the statistical
information available prior to time s and after time t as encoded in F+s and
F�t , respectively. In fact, a simple probabilistic argument implies that Relation
(5) is equivalent to the statement that the �-algebra

F[s;t] := �
�
Z�1� (F ) : � 2 [s; t] ; F 2 B(D)

	
is conditionally independent of F+s _ F�t when

Ffs;tg := �
�
Z�1s (F ) ; Z�1t (F ) : F 2 B(D)

	
is given (see, e.g., Section 25 of Chapter VII in [11] for the notion of conditionally
independent �-algebra). Aside from this property which generalizes Markov�s,
it is also clear that the above de�nition maintains a perfect symmetry between
past and future in that the �-algebras F+s and F�t play an identical rôle. Let
us now assume that 'm;0 > 0 and  m;T > 0 are su¢ ciently smooth on D and
let us consider the probability measures

�m(G) =

Z
G

dxdy'm;0(x)g(x; T; y) m;T (y) (6)
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for every G 2 B(D)� B(D), which satisfyZ
D�D

dxdy'm;0(x)g(x; T; y) m;T (y) = 1 (7)

where g is the heat kernel (4) pinned down at the terminal time T . Then,
writing

um(x; t) =

Z
D

dyg(x; t; y)'m;0(y) > 0 (8)

for the solution to (2) and

vm(x; t) =

Z
D

dyg(x; T � t; y) m;T (y) > 0 (9)

for the solution to (3), we have the following result which follows from the
substitution of (6) into the formulae of Theorem B.1 of Appendix B, and from
Theorem 2 in [18] as far as the Markov property is concerned:

Theorem 1. Assume that Hypothesis (H1) holds. Then for every m 2 Nd
there exists a probability space

�

;F ;P�m

�
supporting a D-valued Bernstein

process Zm�2[0;T ] such that the following statements are valid:
(a) The process Zm�2[0;T ] is a forward Markov process whose �nite-dimensional

distributions are

P�m
�
Zmt1 2 F1; :::; Z

m
tn 2 Fn

�
=

Z
D

dx�m;0(x)

Z
F1

dx1:::

Z
Fn

dxn

nY
k=1

w�m (xk�1; tk�1; xk; tk) (10)

for every n 2 N+, all F1; :::; Fn 2 B(D) and all 0 = t0 < t1 < ::: < tn < T , with
x0 = x. In the preceding expression the density of the forward Markov transition
function is

w�m(x; s; y; t) = g(x; t� s; y) vm(y; t)
vm(x; s)

(11)

for all x; y 2 D and all s; t 2 [0; T ] with t > s, while the initial distribution of
the process reads

�m;0(x) = 'm;0(x)vm(x; 0): (12)

(b) The process Zm�2[0;T ] may also be viewed as a backward Markov process
since the �nite-dimensional distributions (10) may also be written as

P�m
�
Zmt1 2 F1; :::; Z

m
tn 2 Fn

�
=

Z
D

dx�m;T (x)

Z
F1

dx1:::

Z
Fn

dxn

nY
k=1

wm (xk+1; tk+1; xk; tk) (13)
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for every n 2 N+, all F1; :::; Fn 2 B(D) and all 0 < t1 < ::: < tn < tn+1 = T ,
with xn+1 = x. In the preceding expression the density of the backward Markov
transition function is

wm(x; t; y; s) = g(x; t� s; y)um(y; s)
um(x; t)

(14)

for all x; y 2 D and all s; t 2 [0; T ] with t > s, while the �nal distribution of the
process reads

�m;T (x) =  m;T (x)um(x; T ):

(c) We have

P�m (Z
m
t 2 F ) =

Z
F

dxum(x; t)vm(x; t) (15)

for each t 2 [0; T ] and every F 2 B(D).
(d) Finally,

E�m (b(Z
m
t )) =

Z
D

dxb(x)um(x; t)vm(x; t) (16)

for each bounded Borel measurable function b : D 7! C and every t 2 [0; T ].

Remarks. (1) The fact that Zm�2[0;T ] is a Markov process for each m may
be read o¤ Relations (10) and (13), inasmuch as (11) and (14) are the densities
of transition functions that satisfy the Chapman-Kolmogorov equation (see,
e.g., Lemmas 1 and 2 in [18], and for more general comments Section 2.4 in
Chapter 2 of [7]). Alternatively, the Markov property of Zm�2[0;T ] is an immediate
consequence of the form (6) of the underlying probability measures through
Theorem 3.1 in [8]. Furthermore, the fact that Zm�2[0;T ] is both a forward and
a backward Markov process is related to the perfect symmetry between past
and future which we alluded to above, also encoded in (15) where (8) and (9)
play an equivalent rôle. We refer the reader to [18] for further considerations
on this issue, where a general notion of reversibility was put forward in order to
deal with processes generated by systems of non-autonomous forward-backward
parabolic equations. Finally, we note that the processes Zm�2[0;T ] are in general
non-stationary (see, e.g., our construction in Section 3).
(2) Theorem 3.1 in [8] actually says much more than what we just referred

to in the preceding remark. Indeed, when applied to the present situation, it
asserts that one may generate a Markovian Bernstein process from a probability
measure � on B(D)�B(D) if, and only if, there exist positive measures �0 and
�T on B(D) such that

� (G) =

Z
G

d (�0 
 �T ) (x; y) g(x; T; y) (17)

for every G 2 B(D) � B(D), with � (D �D) = 1. It provides therefore a
very simple and practical criterion to decide whether a Bernstein process is
Markovian or not.
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It is consequently easy to generate non-Markovian processes out of those
constructed in Theorem 1. One possible way to achieve that and eventually
de�ne the statistical operators and the entropy functional we are interested in
amounts to associating a sequence (pm)m2Nd of probabilities with the pure point
spectrum of (1), that is, a sequence of numbers satisfying

pm � 0;
X
m2Nd

pm = 1; (18)

and to consider weighted averages of the form

� (G) =
X
m2Nd

pm�m(G) (19)

where �m(G) is given by (6). We note that the preceding series is indeed con-
vergent and de�nes a genuine probability measure by virtue of (7) and (18).
However, in order to generate non-Markovian processes from (19) we ought to
identify its joint probability density in view of Remark 2. To this end and aside
from having the smoothness of 'm;0 > 0 and  m;T > 0 on D, the following
additional hypothesis turns out to be su¢ cient:

(H2) We have
sup
m2Nd

sup
x2D

'm;0 (x) < +1

and
sup
m2Nd

sup
x2D

 m;T (x) < +1:

This hypothesis indeed clearly implies thatX
m2Nd

pm'm;0 (x) m;T (y) < +1 (20)

for all x; y 2D; so that the joint probability density associated with (19) may be
written as

� (x; y) = g(x; T; y)
X
m2Nd

pm'm;0(x) m;T (y): (21)

Then the following result holds:

Theorem 2. Assume that Hypotheses (H1) and (H2) hold, and for every
m 2 Nd let Zm�2[0;T ] be the process of Theorem 1. Let Z�2[0;T ] be the Bernstein
process obtained by substituting (19) into the formulae of Theorem B.1. Then
the following statements are valid:
(a) The �nite-dimensional distributions of the process Z�2[0;T ] are

P�
�
Zt1 2 F1; :::; Ztn 2 Fn

�
=

X
m2Nd

pmP�m
�
Zmt1 2 F1; :::; Z

m
tn 2 Fn

�
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for every n 2 N+ and all F1; :::; Fn 2 B(D), where P�m
�
Zmt1 2 F1; :::; Z

m
tn 2 Fn

�
is given either by (10) or (13). In addition, if (20) is not of the form �0 
 �T
where �0 and �T are as in (17) then Z�2[0;T ] is non-Markovian.
(b) We have

P�
�
Zt 2 F

�
=
X
m2Nd

pmP�m (Z
m
t 2 F ) (22)

for each t 2 [0; T ] and every F 2 B(D), where P�m (Zmt 2 F ) is given by (15).
(c) We have

E�
�
b(Zt)

�
=
X
m2Nd

pmE�m (b(Z
m
t )) (23)

for each bounded Borel measurable function b : D 7! C and every t 2 [0; T ],
where E�m (b(Z

m
t )) is given by (16).

Proof. It follows from Theorem B.1 of the Appendix that a Bernstein
process generated from a statistical mixture of probability measures coincides
with the statistical mixture of the processes generated from those measures, so
that Theorem 2 follows immediately from Theorem 1 and (19). The fact that
the process Z�2[0;T ] is non-Markovian when the structural hypothesis regarding
(20) holds is a direct consequence of Remark 2. �

Remark. The structural hypothesis we just referred to is necessary in that
it allows one to disregard cases like 'm;0 = '0 or  m;T =  T for every m, or
the situation where pm� = 1 for some m� 2 Nd, among others. Indeed, initial or
�nal data that are identical for each level of the spectrum still lead to a joint
density like that of (17) with �0 = '0 or �T =  T , and hence to a Markovian
process as is the case when pm� = 1 for some m� 2 Nd. We shall dwell a bit
more on this further below when we deal with the example in Section 3.

We now enquire about the possibility of choosing8<:
'm;0 = fm;

 m;T = exp [T�m] fm

(24)

as initial-�nal-data in (8) and (9), where (�m)m2Nd and (fm)m2Nd stand for the
eigenvalues and eigenfunctions of (1), respectively. The di¢ culty is that the
eigenfunctions fm are not positive in general with the possible exception of f0,
so that the �m are no longer positive measures with the possible exception of
�0. Therefore, we may not associate a Bernstein process with each level of the
spectrum as we did in Theorem 1. Nevertheless, we proceed by showing that the
above averaging method still allows us to get genuine probability measures in
certain cases. We begin by proving that the �m satisfy the correct normalization
condition under an additional hypothesis:
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Lemma 1. For each m 2 Nd, let us consider measures �m of the form
(6) where 'm;0 and  m;T are given by (24). Then �m is a signed measure.
Moreover, if

Z(T ) :=
X
n2Nd

exp [�T�n] < +1 (25)

we have
�m (D �D) = 1: (26)

Proof. We have just explained why �m is not a positive measure, so that
we need only prove (26). Since (25) holds we have the spectral decomposition

g(x; T; y) =
X
n2Nd

exp [�T�n] fn(x)fn(y) (27)

as a strongly convergent series in L2(D � D) for heat kernel (4). Therefore,
from (6) and (24) we obtain

�m(D �D) = exp [T�m]

Z
D�D

dxdyfm(x)g(x; T; y)fm(y)

=
X
n2Nd

exp [T (�m � �n)] (fm; fn)22 = 1

as a consequence of the orthogonality properties of (fm)m2Nd . �

Sequences of Gibbs probabilities of the form

pm = Z�1(T ) exp [�T�m] (28)

will play an important rôle in the sequel. In fact, with (28) the joint probability
density of the statistical mixture of the �m in Lemma 1 reads

�(x; y) = g(x; T; y)
X
m2Nd

pm exp [T�m] fm(x)fm(y)

= Z�1(T )g(x; T; y)
X
m2Nd

fm(x)fm(y)

= Z�1(T )g(x; T; y)�(x� y) (29)

as a consequence of the completeness of the basis (fm)m2Nd : Thus, having (4)
and (29) at our disposal, the latter obviously not being of the form (17), and
substituting (29) into Theorem B.1 of Appendix B we obtain:

Theorem 3. Let us assume that Hypothesis (H1) holds, and let �Z�2[0;T ] be
the Bernstein generated by (29). Then the following statements are valid:
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(a) The process �Z�2[0;T ] is stationary, non-Markovian and for every n 2 N+
with n � 2 its �nite-dimensional distributions are

P��
�
�Zt1 2 F1; :::; �Ztn 2 Fn

�
= Z�1(T )

Z
F1

dx1:::

Z
Fn

dxn

�
nY
k=2

g (xk; tk � tk�1; xk�1)� g (x1; T � (tn � t1); xn) (30)

for all F1; :::; Fn 2 B(D) and all 0 < t1 < ::: < tn < T .
(b) We have

P��
�
�Zt 2 F

�
= Z�1(T )

Z
F

dxg (x; T; x) (31)

for each F 2 B(D) and every t 2 [0; T ].

(c) We have

E��

�
b( �Zt)

�
= Z�1(T )

Z
D

dxb(x)g (x; T; x) (32)

for each bounded Borel measurable function b : D 7! C and every t 2 [0; T ].

Remark. The fact that the process of the preceding result is stationary
is tied up with the structure of the �nite-dimensional distributions (30), which
di¤ers from those in Theorems 1 and 2. Indeed, for any � > 0 su¢ ciently small
such that 0 < t1 + � < ::: < tn + � < T we have

P��
�
�Zt1+� 2 F1; :::; �Ztn+� 2 Fn

�
= P��

�
�Zt1 2 F1; :::; �Ztn 2 Fn

�
;

as well as the time independence of (31) and (32). Furthermore we also note
that since P��

�
�Zt 2 D

�
= 1, Relation (31) provides yet another expression for

(25), namely

Z(T ) =
Z
D

dxg (x; T; x)

which, of course, also follows from (27) and the fact that kfmk2 = 1 for every
m 2 Nd.

The preceding results thus reveal the possibility of having at least two types
of Bernstein processes, namely, on the one hand Markovian processes associated
with each level of the spectrum of (1), and on the other hand typically non-
Markovian processes obtained by averaging Zm�2[0;T ] over the whole spectrum for
a given sequence (pm)m2Nd , or by averaging signed measures. In order to better
characterize those processes by means of entropy considerations, we now proceed
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by introducing a statistical operator and an entropy functional by analogy with
Quantum Statistical Mechanics. We de�ne

Rf :=
X
m2Nd

pm (f; fm)2 fm (33)

for each f 2 L2(D). The following result is elementary, so that we only sketch
the proof of the trace-class property which will reappear in Appendix A:

Proposition 1. Let us assume that Hypothesis (H1) holds. Then the fol-
lowing statements are valid:
(a) Expression (33) de�nes a self-adjoint, positive trace-class operator in

L2 (D) such that the inequalities

0 � R2 � R � I

hold in the sense of quadratic forms, where I stands for the identity in L2 (D).
More speci�cally we have

TrR =
X
m2Nd

pm = 1 (34)

and
TrR2 =

X
m2Nd

p2m � 1: (35)

In particular we have
TrR2 = 1

if, and only if, pm� = 1 for some m� 2 Nd and thus pm = 0 for every m 6= m�.
(b) The eigenvalue equation

Rfm = pmfm (36)

holds for each m 2 Nd and the spectrum of R is either pure point with �(R) =
(pm)m2Nd if pm = 0 for at least one m, or �(R) = (pm)m2Nd [f0g if 0 < pm < 1
for every m, in which case zero is not an eigenvalue.
(c) If B is a linear bounded self-adjoint operator on L2(D) we have

Tr (RB) =
X
m2Nd

pm (Bfm; fm)2 : (37)

In particular, if B is the multiplication operator given by Bf = bf where b 2
L1(D) is real-valued, we have

Tr (RB)=
X
m2Nd

pm

Z
D

dxb(x) jfm(x)j2 : (38)

Proof. Owing to the properties of pm and fm it is immediate that (33)
de�nes a linear bounded operator in L2(D). Now let (hn)n2Nd be an arbitrary
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orthonormal basis in L2(D). In order to prove that R is trace-class, it is then
necessary and su¢ cient to show thatX

n2Nd
(Rhn; hn)2 < +1

(see, e.g., Theorem 8.1 in Chapter III of [6]). To this end let us introduce the
function

a(m; n) := pm (hn; fm)2 (fm; hn)2 (39)

so that X
m2Nd

a(m; n) = (Rhn; hn)2 (40)

for every �xed n. Moreover, for any �xed m we haveX
n2Nd

a(m; n) = pm (41)

since kfmk2 = 1. Furthermore, the preceding series converges absolutely since
from (39) we have for any choice of positive integers N1; :::; Nd the estimateX

n:0�nj�Nj

ja(m; n)j

� pm

0@X
n2Nd

j(hn; fm)2j
2

1A 1
2
0@X
n2Nd

j(fm; hn)2j
2

1A 1
2

= pm

for any �xed m. Consequently we haveX
m2Nd

X
n2Nd

ja(m; n)j �
X
m2Nd

pm = 1;

from which we infer according to well-known criterias that the associated iter-
ated series are equal, that is,X

n2Nd

X
m2Nd

a(m; n) =
X
m2Nd

X
n2Nd

a(m; n):

Equivalently, this means that

TrR :=
X
n2Nd

(Rhn; hn)2 =
X
m2Nd

pm = 1

according to (40) and (41), which proves (34). The proof of (35) is similar with

R2f =
X
m2Nd

p2m (f; fm)2 fm:

The remaining statements are immediate from elementary arguments. �

12



Remark. Regarding expression (38) we note that when the pm are given by
(28) we have

Tr (RB) = E
��

�
b( �Zt)

�
(42)

for every t 2 [0; T ], where the right-hand side is given by (32). This is an
immediate consequence of (27), so that the statistical average (38) calculated
by means of Gibbs probabilities coincides with the expectation of some function
of the process of Theorem 3. This is of course only possible because that process
is stationary, the right-hand side of (42) then being time-independent as the left-
hand side is. It is therefore reasonable to ask whether relations such as (42) may
exist in more general cases, for instance for the averaged processes of Theorem
2 which are in general non-stationary. This is indeed possible as we shall show
in the appendix, provided we have at our disposal a class of time-dependent
statistical operators which generalize (33).

By analogy with Quantum Statistical Mechanics from which we also borrow
the terminology (see, e.g., Section 3 in Chapter V of [16]), Proposition 1 allows
us to establish a preliminary classi�cation of the Bernstein processes constructed
above, according to the following:

De�nition 2. For a given sequence (pm)m2Nd let Z�2[0;T ] be the Bernstein
process of Theorem 2, and let R be the statistical operator given by (33). If
TrR2 = 1 we say that Z�2[0;T ] is a pure process, whereas if TrR2 < 1 we say
that Z�2[0;T ] is a mixed process.

We note that in the �rst case we necessarily have Z�2[0;T ] = Zm
�

�2[0;T ] for

some m� 2 Nd according to the second part of (a) in Proposition 1, so that
Z�2[0;T ] reduces to a Markovian process according to Theorem 1 or the remark
following the proof of Theorem 2. On the other hand, an important example
which illustrates the second case is that of Gibbs probability measures (28).

We now introduce the entropy functional

S : =
X
m2Nd

pm ln

�
1

pm

�
(43)

where we de�ne x ln
�
1
x

�
to be zero at x = 0 so that S = 0 if, and only if, pm = 0

or pm = 1 for every m, the latter value being associated with pure processes
according to De�nition 2. It is plain that we may have S = +1 despite the
normalization (18), a case in point being that of the Gibbs probabilities (28).
Indeed, the substitution of (28) into (43) shows that S < +1 if, and only if, the
additional condition X

m2Nd
exp [�T�m]�m < +1

13



holds. From now on we shall therefore assume that the pm are chosen in such a
way that 0 < pm < 1 with X

m2Nd
pm ln

�
1

pm

�
< +1: (44)

The following result is then our desired optimization statement for (43). Gen-
erally speaking the proof of such results requires the Fréchet di¤erentiability
of the functionals involved in some appropriate space (see, e.g., Chapter IV in
[14]). However, the simple structure of (43) allows us to bypass that require-
ment, so that we shall provide an independent proof of our theorem for the sake
of completeness. In addition we note that we only consider probabilities which
assign an a priori prescribed value to the average of the spectrum of (1):

Theorem 4. Let us consider the set of all sequences (pm)m2Nd satisfying
0 < pm < 1 for every m, along withX

m2Nd
pm = 1 (45)

and (44). Moreover, let � 2 R be given and let us assume thatX
m2Nd

pm�m = �: (46)

Then the following statements are valid:
(a) There exists a �nite constant �(�) > 0 such that

Z(�) :=
X
m2Nd

exp [���m] < +1 (47)

and
Z�1(�)

X
m2Nd

exp [���m]�m < +1 (48)

for every � 2 [�(�);+1).
(b) Among all the mixed processes obtained from sequences of the above type

by the method of Theorem 2, the process of maximal entropy is that generated
from probabilities given by

pm = Z�1(�(�)) exp [��(�)�m] (49)

for every m 2 Nd. Moreover we have

Z�1(�(�))
X
m2Nd

exp [��(�)�m]�m = �: (50)

(c) If we assume in addition that
P

m2Nd exp [���m]�m < +1 for every
� 2 (0; �(�)), then � 7! Z(�) is di¤erentiable at � = �(�) and we have

Smax (�) = lnZ(�(�))� �(�)
d

d�
lnZ(�)j�=�(�) (51)

14



for the maximal entropy of part (b).

Proof. Since �m ! +1 as jmj ! +1 and since (45) holds, there exist
n; n0 2 Nd with n 6= n0 such that �n 6= �n0 and pn 6= pn0 . We then consider the
inhomogeneous system

�+ ��n = � (ln pn + 1) ; (52)

�+ ��n0 = � (ln pn0 + 1) (53)

in the two unknowns � and �, whose unique solution pair reads

� = (�n0 � �n)�1 (�n (ln pn0 + 1)� �n0 (ln pn + 1)) ; (54)

� = (�n0 � �n)�1 ln
pn
pn0

: (55)

Furthermore, let us write (45) and (46) as

pn + pn0 = 1�
X

m2Nd; m6=n; n0
pm;

pn�n + pn0�n0 = ��
X

m2Nd; m6=n; n0
pm�m;

respectively, which gives

pn = (�n0 � �n)�1
0@�n0

0@1� X
m2Nd; m6=n; n0

pm

1A� �+ X
m2Nd; m6=n; n0

pm�m

1A
and

pn0 = (�n0 � �n)�1
0@�� X

m2Nd; m6=n; n0
pm�m � �n

0@1� X
m2Nd; m6=n; n0

pm

1A1A :

The substitution of these expressions into (54) and (55) shows that � = � (�)
and � = � (�) depend on �, and that

ln pm + 1 = �� (�)� � (�)�m (56)

for m = n and m = n0 according to (52) and (53). Now for every j 2Nd with
j 6= n; n0 we have

@pn
@pj

= (�n0 � �n)�1 (�j � �n0) ; (57)

@pn0

@pj
= (�n0 � �n)�1 (�n � �j) : (58)

Furthermore, let us de�ne

S := pn ln pn + pn0 ln pn0 +
X

m2Nd; m6=n; n0
pm ln pm (59)
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where pn and pn0 are given by the above expressions. From (57) and (58) followed
by the use of (54) and (55) we get

@S

@pj
= (�n0 � �n)�1 ((�j � �n0) (ln pn + 1) + (�n � �j) (ln pn0 + 1)) + ln pj + 1

= � (�) + � (�)�j + ln pj + 1; (60)

so that @S
@pj
= 0 if, and only if,

ln pj + 1 = �� (�)� � (�)�j:

We now combine this with (56) to conclude that for every choice of probabilities
which satisfy the hypotheses of the theorem and which annihilate (60) we have

ln pm + 1 = �� (�)� � (�)�m

for every m 2 Nd, that is,

pm = exp [� (1 + � (�))] exp [�� (�)�m] :

Consequently, since �m ! +1 as jmj ! +1 we obtain (47) and (48) from
(45) and (46), respectively, where � (�) > 0 and � 2 [�(�);+1). This proves
Statement (a) and gives (49) for every m 2 Nd along with (50).
In order to prove the remaining part of Statement (b) we now choose a large

enough M := (M1;:::;Md) 2 Nd in such a way that nj < Mj and n0j < Mj for
every j 2 f1; :::; dg, where nj and n0j are the components of n and n0, respectively.
We then consider the partial sums

SM : =
MX

m=(0;:::;0)

pm ln

�
1

pm

�
; (61)

ZM(�) : =

MX
m=(0;:::;0)

exp [���m]

of (43) and (47), respectively, where mj 2 f0; :::;Mjg for each j. In a similar
way we de�ne SM from (59), so that the partial derivatives @SM

@pj
given by (60)

now de�ne a genuine �nite-dimensional gradient. Therefore, the fact that (61)
satis�es

SM � SM;max (62)

where SM;max is evaluated by means of

pm; M := Z�1M (�(�)) exp [��(�)�m]

follows from well-known considerations (see, e.g., Section 8 in Chapter 4 of [3]).
Letting jMj ! +1 in (62) then proves the desired result.
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The di¤erentiability of � 7! Z(�) at � = �(�) under the stated conditions
as well as (51) are consequences of elementary arguments and of the direct
substitution of (49) into (43). �

Remarks. (1) As is the case in Quantum Statistical Mechanics, Relation
(46) has to be viewed as a further restriction on the class of admissible probabil-
ities, which of course must be such that pm�m ! 0 as jmj ! +1. Furthermore,
the choice of the preassigned value � must be consistent with the nature of those
eigenvalues. Thus if for instance �m � 0 for every m, one must then impose
� 2 R+ for (46) to make sense. We present an example of that kind in Section
3, where we also have

P
m2Nd exp [���m]�m < +1 for every � 2 (0;+1).

(2) Whereas the preceding considerations may be viewed as describing equi-
librium situations in that (43) does not depend explicitly on time, there are many
other entropy functionals associated with non-equilibrium situations which we
may associate with Bernstein processes, for instance

Sm(t) :=

Z
D�D

dxdywm(x; t; y; 0) ln

�
1

wm(x; t; y; 0)

�
(63)

in case of the Markovian processes of Theorem 1, where wm given by (14) satis�es
a speci�c Kolmogorov or Fokker-Planck equation. We defer the derivation of
such equations, the analyses of the related entropy functionals such as (63) and
their consequences to a separate publication.

We devote the next section to illustrating some of the above results.

3 A hierarchy of Bernstein processes in a two-
dimensional disk

We consider here forward-backward problems of the form (2)-(3) with V = 0
identically, de�ned in the open two-dimensional disk of radius one centered
at the origin, so that Hypothesis (H1) trivially holds. We limit ourselves to an
illustration of a few properties listed in the preceding section regarding Bernstein
processes generated by certain radially symmetric solutions to such problems.
Thus, we �rst switch to polar coordinates and start out with the hierarchy

@tu(r; t) =
1

2

�
@2

@r2
+
1

r

@

@r

�
u(r; t); (r; t) 2 (0; 1]� (0; T ] ;

u(r; 0) = '0;m(r); r 2 [0; 1] ; (64)

@ru(1; t) = 0; t 2 [0; T ]
and

�@tv(r; t) =
1

2

�
@2

@r2
+
1

r

@

@r

�
v(r; t); (r; t) 2 (0; 1]� [0; T ) ;

v(r; 0) =  T;m(r); r 2 [0; 1] ; (65)

@rv(1; t) = 0; t 2 [0; T ] :
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In this case the index m 2 N labels the discrete spectrum of the radial part of
Neumann�s Laplacian � 1

2�x on the disk, which consists exclusively of eigenval-
ues �m � 0 determined by the condition

J1

�p
2�m

�
= 0 (66)

where J1 stands for the Bessel function of the �rst kind of order one. For
convenience we order these eigenvalues as

0 = �0 < �1 < �2 < ::::: , (67)

and recall that there exists a �nite constant c > 0 such that

c (m� 1)2 < �m < c (m+ 1)2 (68)

for every m 2 N+. Moreover, the corresponding orthonormal basis (fm)m2N of
eigenfunctions in the space of all complex-valued, square-integrable functions
with respect to the measure rdr on (0; 1) is given by

fm (r) =

p
2��J0 �p2�m���J0

�p
2�mr

�
(69)

where J0 stands for the Bessel function of the �rst kind of order zero. All
these properties follow from standard Sturm-Liouville theory and from related
properties of Bessel functions (it is worth recalling here that (66) is Neumann�s
boundary condition at r = 1 for the problem under consideration since J 00 =
�J1, see, e.g., Section 40 in Chapter VII of [20], and that the factor two in (66)
and (69) is due to the factor one-half in (64)-(65)). For every m 2 N let us now
choose the initial-�nal data as

'0;m(r) =

8<:
1
� for m = 0;

1
�

�
1 + J0

�p
2�mr

��
for m 2 N+

(70)

and
 T;m(r) = 1; (71)

respectively. It follows from (70) and (71) that Hypothesis (H2) holds, a conse-
quence of elementary properties of J0 including its uniform boundedness in case
of (70). The corresponding solutions to (64) and (65) then read

um(r; t) =

8<:
1
� for m = 0;

1
�

�
1 + exp [�t�m] J0

�p
2�mr

��
for m 2 N+

(72)

and
vm(r; t) = 1 (73)
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for each r 2 [0; 1] and every t 2 [0; T ], respectively. Moreover, as a consequence
of (9), (70) and (73) we also haveZ

jxj<1
dx'm;0(x)

Z
jxj<1

dyg(x; T; y) m;T (y)

=

Z
jxj<1

dx'm;0(x) = 2�

Z 1

0

drr'm;0(r) = 1

so that (7) is veri�ed. We may therefore apply all the results of the preced-
ing section to the present situation, some of which we state in the following
proposition where

D :=
�
x 2 R2 : jxj < 1

	
:

Proposition 2. For each m 2 N let �m be the measure of the form (6) with
the initial-�nal data given by (70) and (71), respectively. Then, there exists
a D-valued, non-stationary Markovian Bernstein process Zm�2[0;T ] such that the
following properties hold:
(a) For each Borel subset F � D of Lebesgue measure jF j and for every

t 2 [0; T ] we have

P�m (Z
m
t 2 F ) =

8<:
jF j
� for m = 0;

1
�

�
jF j+ exp [�t�m]

R
F
dxJ0

�p
2�m jxj

��
for m 2 N+:

Thus, the function t! P�m (Z
m
t 2 F ) is non-increasing on [0; T ].

(b) For each bounded Borel measurable function b : D 7! C and every t 2
[0; T ] we have

E�m (b(Z
m
t )) =

8<:
1
�

R
jxj<1 dxb(x) for m = 0;

1
�

R
jxj<1 dxb(x)

�
1 + exp [�t�m] J0

�p
2�m jxj

��
for m 2 N+:

(c) Let � 2 R+ be given. Then, the process �Z�2[0;T ] of maximal entropy
within D in the sense of Theorem 4 is obtained by averaging the Zm�2[0;T ] with
probabilities of the form

pm = Z�1(� (�)) exp [�� (�)�m]

where Z(� (�)) is given by (47). Moreover, �Z�2[0;T ] is Markovian and its en-
tropy may be evaluated from (51).

The proof is a direct application of the corresponding formulae in Section
2 combined with those of this section. We note that we must have � > 0 for
the preassigned value in Statement (c) since �m � 0 for every m 2 N according
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to (67). We also have
P

m2Nd exp [���m]�m < +1 for every � 2 (0;+1) as a
consequence of (68), so that expression (51) may indeed be applied in this case.

Remarks. (1) Although the mixed processes obtained by the averaging
method described in Section 2 are not Markovian in general (see the remark
following the proof of Theorem 2), the reason why �Z�2[0;T ] possesses the Markov
property is due to our choice of the �nal condition (71), which implies that the
averaged joint density (21) becomes

� (x; y) = g(x; T; y)
X
m2N

pm'm;0 (x)

where 'm;0 is given by (70). Indeed, the preceding relation is then of the form
(17) with an obvious choice for �0 and �1. For more details and examples
regarding the time evolution of Bernstein processes that possess the Markov
property we refer the reader to [17].
(2) We can obtain similar results for radially symmetric forward-backward

problems of the form (2)-(3) with V = 0 de�ned in the open ball Bd � Rd of
radius one centered at the origin where d � 3. The eigenfunctions of the radial
part of the Laplacian then involve the Bessel function J d

2�1
rather than J0,

while Neumann�s boundary condition is expressed in terms of J d
2
instead of J1

(the case d = 1 can be dealt with directly in terms of trigonometric functions).
However, the corresponding formulae for the probabilities and the expectation
values of the underlying processes become much more involved.

Appendix A. A class of time-dependent statistical operators
In this appendix we de�ne and investigate statistical operators which are

more general than that de�ned by (33), in view of getting expressions such as
(42) for the averaged processes of Theorem 2 which are as a rule non-stationary.
This, however, requires some additional structure. Let us write

exp [�tH] f (:) :=

8<: f(:) if t = 0;R
D
dyg(:; t; y)f(y) if t 2 (0; T ]

(74)

for the positivity preserving, symmetric semigroup generated by (1) on L2(D),
where g is given by (4). In addition to Hypothesis (H2) regarding the initial-�nal
data we shall now impose the following requirement:

(H3) The sequences
�
'm;0

�
m2Nd and

�
exp [�TH] m;T

�
m2Nd form a biortho-

normal system in L2(D), that is,�
'm;0; exp [�TH] n;T

�
2
= �m;n

for all m; n 2Nd.

First we have:
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Lemma 2. Let us assume that Hypotheses (H2) and (H3) hold. Then the
sequences of solutions (um(:; t))m2Nd , (vm(:; t))m2Nd given by (8) and (9), re-
spectively, form a biorthonormal system in L2(D) for every t 2 [0; T ].

Proof. From (8), (9) and (74) we have

(um(:; t); vn(:; t))2
=

�
exp [�tH]'m;0; exp [�(T � t)H] n;T

�
2

(75)

=
�
'm;0; exp [�TH] n;T

�
2
= �m;n

from the symmetry of the semigroup and (H3), for all m; n 2Nd. �

We then de�ne

R (t) f :=
X
m2Nd

pm (f; um(:; t))2 vm(:; t) (76)

for each f 2 L2(D) and every t 2 [0; T ]. The following result shows that (76)
possesses several properties similar to those stated in Proposition 1:

Proposition A.1. Let us assume that Hypotheses (H1), (H2) and (H3)
hold. Then the following statements are valid:
(a) Expression (76) de�nes a linear trace-class operator in L2 (D) such that

TrR =
X
m2Nd

pm = 1 (77)

and
TrR2 =

X
m2Nd

p2m � 1 (78)

for every t 2 [0; T ].
(b) The eigenvalue equation

R (t) vm(:; t) = pmvm(:; t) (79)

holds for each m 2Nd and every t 2 [0; T ].
(c) If B is a linear bounded self-adjoint operator on L2(D) we have

Tr (R(t)B) =
X
m2Nd

pm (Bum(:; t); vm(:; t))2 (80)

for every t 2 [0; T ]. In particular, if B is the same multiplication operator as
in Part (c) of Proposition 1 we have

Tr (R(t)B)=E
��

�
b( �Zt)

�
(81)

where the right-hand side of (81) is given by (23).
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Proof. The proof of the trace-class property is similar to that given in
Proposition 1. Thus, we �rst remark that there exists a �nite constant c > 0
such that the estimates

kum(:; t)k2 � c

and
kvm(:; t)k2 � c

hold uniformly in m and t as a consequence of (4), (8), (9) and Hypothesis (H2),
which makes a linear bounded operator out of (76) on L2(D). The relevant
auxiliary function for the remaining part of the argument is then given by

a (m; n; t) := pm (hn; um(:; t))2 (vm(:; t); hn)2 (82)

for every t 2 [0; T ], with (hn)n2Nd an arbitrary orthogonal basis as before. It is
indeed easily seen that the properties of (82) are similar to those of (39), the
key point in getting (77) and (78) being the biorthogonality relation (75) which
replaces the orthogonality properties of (fm)m2Nd . The same observation applies
for the proof of (79), while (80) follows from the relation

(R(t)Bhn; hn)2 =
X
m2Nd

pm (hn; Bum(:; t))2 (vm(:; t); hn)2

valid for every n 2Nd, Relation (80) then implying (81). �

Remarks. (1) As a consequence of (74) and elementary spectral theory, it
is plain that the forward and backward solutions (8) and (9) become

um(:; t) = exp [�tEm] fm

and
vm(:; t) = exp [tEm] fm;

respectively, for initial-�nal data given by (24). The substitution of these ex-
pressions into (76) then gives (33), so that the former operators are indeed
time-dependent generalizations of the latter. Moreover, thanks to Statement
(a) of Proposition A.1 the classi�cation of processes as pure or mixed according
to De�nition 2 still holds for the more general form (76).
(2) We may write (76) as

R (t) f =
X
m2Nd

pmPm (t) f

where the operators given by

Pm (t) f := (f; um(:; t))2 vm(:; t)

satisfy
P2m (t) = Pm (t)
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for each m 2Nd and every t 2 [0; T ] as a consequence of the biorthogonality
property. Therefore, we may view R (t) as a statistical mixture of oblique
projections as the Pm (t) are not self-adjoint in the general case. In fact, the
adjoint of (76) in L2(D) is obtained by swapping the rôles of um(:; t) and vm(:; t),
that is,

R� (t) f :=
X
m2Nd

pm (f; vm(:; t))2 um(:; t): (83)

We note that (83) enjoys the very same properties as (76), with the exception
of (79) which has to be replaced by

R� (t)um(:; t) = pmum(:; t):

We could therefore have chosen (83) as statistical operators instead of (76).
Finally, we remark that R (t) and R� (t) both involve (8) and (9), in agreement
with the fact that there are two time directions in the theory from the outset.
(3) It is reasonable to ask whether it is always possible to choose initial-�nal

data so that Hypothesis (H3) holds. The answer is a¢ rmative provided the func-
tions exp [�TH] m;T remain close to the orthonormal basis (fm)m2Nd in some
very speci�c L2(D)-sense. This follows from a direct application of the general-
ization of a theorem by Paley and Wiener as stated in Section 86 of Chapter V
in [12]. In that case the sequences

�
'm;0

�
m2Nd and

�
exp [�TH] m;T

�
m2Nd form

a complete biorthogonal system.

Appendix B. On the existence of Bernstein processes and their
relation with Schrödinger�s problem and Optimal Transport Theory
The typical construction of a Bernstein process with state space D requires

a probability measure � on B(D)�B(D) and a transition function Q, as is the
case for Markov processes. We provide below a general theorem which is a direct
consequence of a more abstract construction carried out in [8], or with a more
analytical �avor in [18], to which we refer the reader for details. The theorem
shows that all the basic quantities that characterize a Bernstein process can be
expressed exclusively in terms of � and the heat kernel g, which is all we needed
in the preceding sections.
Since there are two time directions provided by (2)-(3), the natural choice

for the transition function we alluded to is

Q (x; t;F; r; y; s) :=

Z
F

dzq (x; t; z; r; y; s) (84)

for every F 2 B(D), where

q (x; t; z; r; y; s) :=
g(x; t� r; z)g(z; r � s; y)

g(x; t� s; y) : (85)

Both functions are well de�ned and positive for all x; y; z 2 Rd and all r; s; t
satisfying r 2 (s; t) � [0; T ] by virtue of (4), and moreover the normalization
condition

Q (x; t;D; r; y; s) = 1
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holds as a consequence of the semigroup composition law for g. The result we
have in mind is the following:

Theorem B.1. Let � be a probability measure on B(D)�B(D), and let Q
be given by (84). Then there exists a probability space (
;F ;P�) supporting an
D-valued Bernstein process Z�2[0;T ] such that the following properties are valid:
(a) The function Q is the two-sided transition function of Z�2[0;T ] in the

sense that
P� (Zr 2 F jZs; Zt ) = Q (Zt; t;F; r;Zs; s) (86)

for each F 2 B(D) and all r; s; t satisfying r 2 (s; t) � [0; T ]. Moreover,

P� (Z0 2 F0; ZT 2 FT ) = � (F0 � FT ) (87)

for all F0; FT 2 B(D), that is, � is the joint probability distribution of Z0 and
ZT . In particular, the marginal distributions are given by

P� (Z0 2 F ) = �
�
F �D

�
(88)

and
P� (ZT 2 F ) = �

�
D � F

�
(89)

for each F 2 B(D), respectively.
(b) For every n 2 N+ the �nite-dimensional distributions of the process are

given by

P� (Zt1 2 F1; :::; Ztn 2 Fn)

=

Z
D�D

d�(x; y)

g(x; T; y)

Z
F1

dx1:::

Z
Fn

dxn

�
nY
k=1

g (xk; tk � tk�1; xk�1)� g (y; T � tn; xn) (90)

for all F1; :::; Fn 2 B(D) and all t0 = 0 < t1 < ::: < tn < T , where x0 = x. In
particular we have

P� (Zt 2 F )

=

Z
D�D

d�(x; y)

g(x; T; y)

Z
F

dzg (x; t; z) g (z; T � t; y) (91)

for each F 2 B(D) and every t 2 (0; T ).
(c) P� is the only probability measure leading to the above properties.

As we saw in Section 2, Theorems 1, 2 and 3 were obtained by substituting
the respective measures in the formulae of Theorem B.1.

We conclude this appendix with a very brief remark which establishes the
connection between Markovian Bernstein processes on the one hand, Schrödinger�s
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problem and Optimal Transport Theory on the other hand. From Section 2 we
know that in the Markovian case the relevant probability measures to be sub-
stituted into the formulae of Theorem B.1 are necessarily of the form

�(G) =

Z
G

dxdy'0(x)g(x; T; y) T (y)

where G 2 B(D) � B(D), and where '0 > 0 and  T > 0. In particular, the
marginal distributions are

�(F �D) =
Z
F

dx'0(x)

Z
D

dyg(x; T; y) T (y)

and

�(D � F ) =
Z
D

dx'0(x)g(x; T; y)

Z
F

dy T (y)

where F 2 B(D), which gives rise to the respective densities

�0(x) := '0(x)

Z
D

dyg(x; T; y) T (y) (92)

and

�T (y) :=  T (y)

Z
D

dx'0(x)g(x; T; y): (93)

Thus, the considerations of this article show that these marginal densities are
entirely determined by the initial-�nal data once the heat kernel is known. It is,
however, the inverse point of view that prevails in Schrödinger�s problem and
in the related Optimal Transport Theory, which �rst amounts to prescribing �0
and �T and then consider (92) and (93) as a nonlinear inhomogeneous system of
integral equations in the two unknowns '0 and  T . That is actually what was
developed by Schrödinger in the last part of [13] by using entropy arguments.
Moreover, given �0 and �T continuous, a very general existence and uniqueness
result for the pair ('0;  T ) satisfying (92) and (93) was proved in [2]. In the
context of Optimal Transport Theory, arguments that allow the minimization
of the so-called cost functions using entropy related methods are often used. We
refer the reader fro instance to [9] and to the references therein for details.

Acknowledgements. The author would like to thank the Fundação para
a Ciência e Tecnologia (FCT) of the Portuguese Government for its �nancial
support under Grant PTDC/MAT-STA/0975/2014. He is also indebted to L.
Monsaingeon and J.-C. Zambrini for stimulating discussions regarding some as-
pects of this article. Parts of this work were presented as an invited contributed
talk at the 2nd Conference of the European Physical Society Statistical and
Nonlinear Physics Division, which took place at Nordita, Stockholm, in May
of 2019. The author would like to thank the organizers for their very kind
invitation.

25



References

[1] Bernstein, S., Sur les liaisons entre les grandeurs aléatoires, in: Ver-
handlungen des Internationalen Mathematikerkongress 1 (1932) 288-309.

[2] Beurling, A., An automorphism of product measures, Annals of Mathe-
matics 72, 189-200 (1960).

[3] Brillouin, L., Science and Information Theory, Academic Press, New
York (1967).

[4] Cruzeiro, A. B., Wu, L., Zambrini, J. C., Bernstein processes asso-
ciated with Markov processes, in: Stochastic Analysis and Mathematical
Physics (R. Rebolledo, editor), Birkhäuser, Basel (2000).

[5] Edmunds, D. E., Evans, W. D., Spectral Theory and Di¤erential Oper-
ators, Oxford Mathematical Monographs, Clarendon Press, Oxford (1987).

[6] Gohberg, I. C., Krein, M. G., Introduction to the Theory of Linear
Nonselfadjoint Operators in Hilbert Space, Translations of Mathematical
Monographs 18, American Mathematical Society, Providence, (1969).

[7] Itô, K., Stochastic Processes, in: Lectures given at Aarhus University (O.
E. Barndor¤-Nielsen and K. Sato, editors), Springer, New York (2004).

[8] Jamison, B., Reciprocal processes, Zeitschrift für Wahrscheinlichkeitsthe-
orie und verwandte Gebiete 30 (1974) 65-86.

[9] Léonard, C., A survey of the Schrödinger problem and some of its connec-
tions with optimal transport, Discrete and Continuous Dynamical Systems,
Series A 34 (2014) 1533-1574.

[10] Léonard, C., Roelly, S., Zambrini, J. C., Reciprocal processes. A
measure-theoretical point of view, Probability Surveys 11 (2014) 237-269.

[11] Loève, M., Probability Theory, Van Nostrand Publishing Company,
Princeton (1963).

[12] Riesz, F., Nagy, B., Sz., Functional Analysis, Dover Books on Mathe-
matics, Dover (1990).

[13] Schrödinger, E., Sur la théorie relativiste de l�électron et l�interprétation
de la mécanique quantique, Annales de l�Institut Henri Poincaré 2 (1932)
269-310.

[14] Vainberg, M, M., Variational Methods for the Study of Nonlinear Oper-
ators, Holden-Day Series in Mathematical Physics, Holden-Day, Inc., San
Francisco (1964).

[15] Villani, C., Optimal Transport: Old and New, Grundlehren der Mathe-
matischen Wissenschaften 338, Springer, New York (2009).

26



[16] von Neumann, J., Mathematical Foundations of Quantum Mechanics,
Princeton Landmarks in Mathematics Series, Princeton University Press,
Princeton (1996).

[17] Vuillermot, P.-A., On the time evolution of Bernstein processes associ-
ated with a class of parabolic equations, Discrete and Continuous Dynamical
Systems Series B, 23 (2018) 1073-1090.

[18] Vuillermot, P.-A., Zambrini, J. C., Bernstein di¤usions for a class of
linear parabolic partial di¤erential equations, Journal of Theoretical Prob-
ability 27 (2014) 449-492.

[19] Vuillermot, P.-A., Zambrini, J. C., On Bernstein processes generated
by hierarchies of linear parabolic systems in Rd, arXiv: 1802.07077, (2018).

[20] Weinberger, H. F., A First Course in Partial Di¤erential Equations
with Complex Variables and Transform Methods, Dover Publications, Inc.
New York (1965).

[21] Zambrini, J. C., The research program of Stochastic Deformation (with
a view toward Geometric Mechanics), in: Stochastic Analysis, a Series
of Lectures, Birkhäuser Progress in Probability book series 68, Eds. R.
Dalang, M. Dozzi, F. Flandoli, F. Russo (2015), pp. 359-393.

27


