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Institute of Oceanography (MIO), La Garde, France

Univ. Pau & Pays Adour / E2S UPPA, Laboratoire des Sciences de l’Ingénieur Appliquées à la
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The purpose of this research work is to study the diffraction of surface gravity waves prop-
agating through rectangular porous medium in three dimensions. The considered porous
structure consists in dense arrays of surface piercing vertical cylinders. Experiments for dif-
ferent regular wave conditions have been carried out, especially for three wave frequencies.
The experimental data of wave refraction-diffraction and reflection have been compared to
computed results from potential linear theory solved with an integral matching method.
Comparison with a previous 2D study about wave propagation through porous medium
in a 10 m long wave flume is also discussed in order to highlight the refraction-diffraction
effect due to the porous structure.

Keywords: Wave;Porous medium;Dissipation;Diffraction;Reflection; Integral matching nu-
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1. Introduction

Coastal countries are generally facing the over-urbanization of their coastlines and

have to consider the increasing risks of damages in the nearshore due to climate

1
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change. Engineers have proposed many solutions to shelter the shore, more and

more designed to maintain the environmental quality of coastal waters.

A classical option is to install detached offshore breakwaters to scatter the waves.

Wave energy is then strongly reduced at the shore, due to both dissipation on

the rocky structure and redistribution of the wave field along the coast. Series of

breakwaters along the coast are often used, their efficiency being dependent on both

their width and spacing (Dalrymple and Martin, 1990; Abul-Azm and Williams,

1997). These breakwaters being displayed parallel to the shore, water circulation is

then maintained behind them.

Porous structures are also among the proposed solutions, for their ability to

dissipate part of the incoming wave energy and to maintain the water circulation.

Water wave still propagates through the structure with a significant damping. How-

ever, modelling such structures remains extremely difficult, since the behaviour of

water waves within such complex, inhomogeneous media remains partially misun-

derstood. Still, a few attempts can be found within the literature. For instance,

Sollitt and Cross (1972) have considered a complex expression of the dispersion

equation for water waves propagating within the porous media, for which the com-

plex wavenumbers include a propagating term and a dissipative term. The case of

emerging porous media including superimposed structures have been studied by

Yu and Chwang (1994). In their work, evanescent modes were taken into account

since the porosity was not constant along the vertical boundaries extending from

the bottom to the free surface.

Interesting insight on the wave propagation through porous media can also be

gained from hydrodynamics of dense arrays of vertical cylinders often used to model

wetland vegetation or coral reefs (Lowe, 2005a,b; Maza et al., 2015). In these studies,

both the size and cylinders’ spacing are small compared to the wave wavelength. A

general trend is the significant wave damping when propagating through the cylinder

array (Mei et al. (2014) and references cited herein). Generally, the wave propaga-

tion through arrays of cylinders are generally modeled by three kinds of mathematical

models. The flow can be directly 3D numerically solved, with a full discretization of

the domain (Ma et al., 2013). If this method allows a complete description of the

flow, it requires a strong computing power. To overcome this time consuming ap-

proach, several authors have investigated a homogenization theory which associates

micro- and macro-scales perturbation techniques compared to the wavelength-scale

of study (Liu et al., 2015; Yang et al., 2015; Chang et al., 2017a,b), this approach

allows on one hand a fine description at the scale of the structures, and on the

other hand their effect at the wave scale. In the present study, the porous medium

is considered as a homogeneous structure at the wave scale since both the size and

spacing of the cylinders remain small compared to the wavelength. This assumption

allows to define an equivalent wavelength within the porous medium as described in

the 2D case by Arnaud et al. (2017). Numerical resolution at the macroscale using

boundary integral matching method between the different domains is then consid-
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ered. Arrays of vertically emerging bodies have also been widely studied in ocean

engineering in the context of wave diffraction by cylinder arrays and wave loads on

these structures (see e.g. Kagemoto and Yue (1986); Ohl et al. (2001) and references

cited herein). However, these studies, which are often based on wave field expan-

sion in a circular coordinate system, assume sparse arrays of cylinders. Application

to either sparse or dense emerging vertical cylinder arrays was recently proposed

by Rey et al. (2018) for uneven periodic cylinders normally to the incoming wave

direction. For dense arrays of vertical emerging cylinders, both cylinder diameter

and spacing are small compared to the wavelength. With this approximation, the

cylinder array can be considered as a porous medium, as done by Arnaud et al.

(2017) in a one-dimensional case.

The purpose of the present work is to improve the understanding of wave prop-

agation through a porous structure involving a cylinder array homogeneous at the

wave scale, in terms of coastal protection. To do so, the general expressions of ve-

locity potentials are expanded in a cartesian frame of reference for each finite or

semi-finite medium composing the wave propagation media. The present analytical

model relies on the complex dispersion relation presented by Yu and Chwang (1994)

for the wavelength determination within the porous medium. Since the porous me-

dia is considered as homogeneous at the wave scale a linear damping approach is

used to take into account wave dissipation inside the porous media. Wave damp-

ing parametrization takes advantage of the careful experiments including various

wave steepnesses and periods carried out in the 2D case by Arnaud et al. (2017) for

similar structure.. The problem solution is obtained by integral matching method

resolving continuity equations of velocity and pressure at vertical boundaries be-

tween domains. The model is confronted to a corresponding physical model, and

the performance of the system is interpreted by intercomparing this model with

experimental results.

2. Experimental setup

2.1. Wave basin

Experiments have been carried out in a basin 10 m long and 2.60 width, of the

Engineering School of the University of Toulon (SeaTech). At one end, a ”corner”

type wave-maker is used to generate regular waves in the range 0.7 − 2.5 Hz. At

the other end, a parabolic porous beach is installed to maximize incoming waves

dissipation and avoid spurious reflection. The typical water depth is one meter but

in the present study an additional bottom was used in order to fulfill finite water

depth conditions. The bottom is then made of a sloping ramp from the wavemaker

and the horizontal part supporting the porous medium and imposing a constant

water depth h = 0.23 m.
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Figure 1. Experimental set-up

Figure 2. Scheme of top view and photography of side view of porous medium

2.2. Porous medium

The model porous medium is made of a vertical cylinder array. Cylinders are uni-

formly staggered along two perpendicular axes. These axes form a 45◦ angle with
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the longitudinal axis of the structure. A detailed study of such structure is presented

in Arnaud et al. (2017) in the 2D case. In the present study, the cylinder diameter is

D = 0.032 m. The length of the structure is L = 0.30 m and the width is 2dp = 1.20

m. The distances between cylinders along horizontal axis are dx = 0.0384 m and

dy = 0.0365 m, respectively (see Fig. 2). The porosity γ and the specific surface s

are defined in Eqs. 1 and 2, respectively.

γ =
2dpL−Nπ(D/2)2

2dpL
(1)

s =
πDN

2dpL
(2)

where N is the number of cylinders of porous medium, here N = 120.

In the present study γ = 0.7 and s = 33 m-1.

2.3. Sensors and experimental conditions

The free surface has been measured with thirteen acoustic wave probes deployed

in the near vicinity of the porous structure (see Fig. 1). The sampling frequency is

40 Hz. Measurements of the wave amplitude are carried out around the structure

according to a grid of 0.10× 0.10 m2 by moving the racks of gauges.

For this experiment, wave frequency and wave height are chosen in intermediate

to almost deep water conditions. Frequencies and amplitudes corresponding to the

dimensionless wavelength inside and around the porous medium are given in Table

1. Note that the conditions studied concern non breaking waves. λ and λp are the

Table 1. Wave conditions

Frequency Amplitudes (m) h/λ h/λp
f = 1 Hz 0.010 0.015 0.020 0.18 0.19

f = 1.5 Hz 0.010 0.015 0.020 0.34 0.38

f = 1.8 Hz 0.010 0.015 0.48 0.53

wave wavelengths outside and inside the porous structure, respectively.

3. Theoretical Models

The case of an incident wave in the Ox direction is considered. The wave propagates

towards positive x direction in the longitudinal axis of the basin. Oy is orthogonal

to the incident wave direction with y = 0 corresponding to the median axis of the

basin. Oz is vertical upwards with z = 0 corresponding to the position of the still

water level. The coordinate system (O, ~x, ~y, ~z) is a direct orthonormal coordinate

system. Using symmetry properties with respect to y = 0, the problem is solved for
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Figure 3. Scheme of half-width of tank with different domains considered in the theoretical model
(left); Scheme of domain definition in the model (right)

y ≥ 0. The problem solution is found writing a general expression of the potential

in four domains:

• Domain 1: upstream, 0 < y < dB, x < 0,

• Domain 2: porous medium, 0 < y < dp, 0 < x < Lp,

• Domain 3: sidelong, dp < y < dB, 0 < x < Lp,

• Domain 4: downstream, 0 < y < dB, x > Lp,

and solving the continuity equations between adjacent domains (Fig. 3).

3.1. General equations of velocity potentials

For each rectangular domain i of width di, dm < y < dM , and of length Li, the

general expression of the velocity potentials satisfying the impermeability conditions

at y = dim and y = diM are of the form:

Φi(x, y, z, t) = cosh[ki(z + h)]φi(x, y)eiωt

= cosh[ki(z + h)]
∑∞

n=0

[
A−i,ne

−ikixnx +A+
i,ne

+ikixnx
]
ψi,n(y)eiωt

(3)

i = 1, ..., 4, with

ω2Sr = gki tanh kih (4)

with kixn = ki cos θn and kiyn = ki sin θn, n is a priori infinite (but practically

truncated to an order n = P ). For domains 1, 3 and 4, Sr = 1 in contrast to domain

2 where Sr = 1 + Cm
1−γ
γ with Cm = 0.29 (see Arnaud et al. (2017)). The wave

number is ki in domains i = 1, ...4. In order to match the impermeability condition

which assumes a zero normal velocity, at y = dim,

ψi,n(y) = cos [kiyn(y − dim)] (5)
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For an impermeable boundary at y = diM , kiyn must satisfy:

kiyn =
nπ

diM − dim
(6)

The surface deformation ηi(x, y, t) is given by:

∂ηi
∂t

=
∂Φi

∂z

∣∣∣∣
z=0

(7)

Wave amplitude is related to the potential amplitude through the following relation:

A±j =
iω

kj sinh kjh
a±j (8)

Since ∇2Φi = 0,

kixn =
(
k2
i − k2

iyn

) 1
2 (9)

According to the kxn expression (eq. 9), from a given number of order np > 0, kxn
becomes pure imaginary. The direction of propagation θn for each mode n, n ≤ np,
with respect to the Ox direction of incident wave is given by:

θin = arctan

[
kiyn
kixn

]
For n > np, the modes do not correspond anymore to propagative waves but to

evanescent waves, and Eq. (9) can be written in the following form:

kixn = i
(∣∣k2

i − k2
iyn

∣∣) 1
2 (11)

For an impermeable boundary y = dim and a permeable boundary y = diM , the

function ψn can still be written:

ψn(y) = cos [kiyn(y − dim)] (12)

For a permeable boundary in y = dim and an impermeable boundary y = diM , the

function is written:

ψn(y) = cos [kiyn(y − diM )] (13)

Expressions for domain 1 (x < 0, 0 < y < dB):

The incident wave is known. Writing that only the incident wave (θ = 0) propa-

gates toward x > 0, and that evanescent modes do not diverge at −∞, the general

expression of the reduced potential φ1(x, y) is the following:

φ1(x, y) = A−10e
−ik1x0xψ10(y) +

∞∑
n=0

A+
1ne

+ik1xnxψ1n(y) (14)
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with

ψ1n(y) = cos [k1yn(y)] and k1yn =
nπ

dB
(15)

Expressions for domain 3 (0 < x < Lp, dp < y < dB):

The general expression of reduced potential φ3(x, y) is given by:

φ3(x, y) =
∞∑
n=1

[
A−3ne

−ik3xnx +A+
3ne

+ik3xn(x−Lp)
]
ψ3n(y) (16)

with

ψ3n(y) = cos [k3yn(y − dB)] (17)

k3yn is chosen of the form k3yn = nπ
dB

, which corresponds to the decomposition mode

in the absence of porous medium.

Expressions for domain 4 (x > Lp, 0 < y < dB):

Since there is no wave reflection from +∞ whatever θ angle, and evanescent modes

do not diverge at +∞, the general expression of the reduced potential φ4(x, y) is of

the form:

φ4(x, y) =
∞∑
n=0

A−4ne
−ik4xn(x−Lp)ψ4n(y) (18)

with

ψ4n(y) = cos [k4yn(y)] and ky4n =
nπ

dB
(19)

Expressions for domain 2 (0 < x < Lp, 0 < y < dB):

The general expression of the reduced potential φ2(x, y) writes:

φ2(x, y) =
∞∑
n=0

[
A−2ne

−ik2xnx +A+
2ne

+ik2xn(x−L)
]
ψ2n(y) (20)

with

ψ2n(y) = cos [k2yn(y)] (21)

As for domain 3, k2yn is chosen of the form ky2n = nπ
dB

. In Arnaud et al. (2017) both

linear and quadratic expression for wave damping were discussed. We consider here

the damping is linear because the porous structure length Lp is considered small

compared to the wave’s wavelength. A constant attenuation rate of wave amplitude

is assumed in the direction of propagation within the porous medium dissipation.

It is neglected elsewhere (domains 1, 3 and 4). For a partially stationary wave of
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the form η2 = a−2 e
i(ωt−k2x) +a+

2 e
i(ωt+k2x), the expressions of a−2 and a+

2 for a porous

medium of length Lp such as 0 6 x 6 Lp write:

a−2 (x) = a−2 (0)e−k2,dx

a+
2 (x) = a+

2 (Lp)e
−k2,d(Lp−x) (22)

where k2,d = k2/nw is the damping rate per unit length, nw is chosen constant. It

is obtained empirically from comparison to experimental data (see Arnaud et al.

(2017)).

3.2. Numerical method of resolution

We present here not only the case of porous structure but also the case of a porous

structure with impervious lateral boundaries (at y = ±dp) since both are computed

for comparisons with experimental data.

3.2.1. Porous structure

The continuity conditions for pressure p = −ρ∂Φ
∂t and velocity at vertical boundaries

are applied to the vertical extremities of the porous medium:

For x = 0: {
Φ1 = SrΦ2 and ∂Φ1

∂x = γ ∂Φ2
∂x for 0 6 y 6 dp

Φ1 = Φ3 and ∂Φ1
∂x = ∂Φ3

∂x for dp 6 y 6 dB
(23)

For x = Lp: {
SrΦ2 = Φ4 and γ ∂Φ2

∂x = ∂Φ4
∂x for 0 6 y 6 dp

Φ3 = Φ4 and ∂Φ3
∂x = ∂Φ4

∂x for dp 6 y 6 dB
(24)

For y = dp {
SrΦ2 = Φ3 for 0 6 x 6 Lp
γ ∂Φ2
∂y = ∂Φ3

∂y for 0 6 x 6 Lp
(25)

Continuity equations between domains:

The weak formulation of momentum and pressure continuity conditions is used

by double integration over both y and z directions, for n = 0, ..., P based on

eigenfunction expansion matching method. Integration along the z-axis on the water

depth gives the following constants K and Kp.

K =

∫ 0

−h
cosh[k(z + h)]dz and Kp =

∫ 0

−h
cosh[kp(z + h)]dz

where k = ki for i = 1, 3, 4 and kp = k2. At boundaries x = 0 and x = Lp, classical

integral matching method is used, with the choice of orthogonal eigenfunctions for
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the integral formulation. For the boundary conditions at x = 0 and x = Lp, basic

functions ψj,n, n = 0, ..., P are used (j = 1, 4 for x = 0 and x = Lp respectively). For

the boundary conditions at y = dp , we consider the functions Chn(x) = cosh[lnx]

with ln = nπ
Lp

, which form an orthogonal set since,∫ Lp

0
Chn.Chmdx = 0 if n 6= m. (27)

The continuity equation can then be written, for x = 0:{
K
∫ dB

0 φ1ψ1n(y)dy = SrKp

∫ dp
0 φ2ψ1n(y)dy +K

∫ dB
dp

φ3ψ1n(y)dy

K
∫ dB

0
∂φ1
∂x ψ1n(y)dy = γKp

∫ dp
0

∂φ2
∂x ψ1n(y)dy +K

∫ dB
dp

∂φ3
∂x ψ1n(y)dy

(28)

for n = 0, ..., P .

Similarly for x = Lp:{
SrKp

∫ dp
0 φ2ψ4n(y)dy +K

∫ dB
dp

φ3ψ4n(y)dy = K
∫ dB

0 φ4ψ4n(y)dy

γKp

∫ dp
0

∂φ2
∂x ψ4n(y)dy +K

∫ dB
dp

∂φ3
∂x ψ4n(y)dy = K

∫ dB
0

∂φ4
∂x ψ4n(y)dy

(29)

n = 0, ..., P and, for y = dp:{
SrKp

∫ Lp

0 φ2Chn(x)dx = K
∫ Lp

0 φ3Chn(x)dx

γKp

∫ Lp

0
∂φ2
∂y Chn(x)dx = K

∫ Lp

0
∂φ3
∂y Chn(x)dx

(30)

n = 0, ..., P .

After a development of the potential expressions (14), (16), (18) and (20), a set of

6(P + 1) linear equations, with 6(P + 1) unknowns A± are then to be solved.

Without dissipation by the porous medium (nw → ∞), the wave energy flux

along the Ox direction, over the basin width dB, is conserved:

|A−10|
2 = |A+

10|
2 + |A−40|

2 +
1

2

np∑
n=1

[
|A+

1n|
2 + |A−4n|

2
]

(31)

3.2.2. Porous structure with impervious walls at y = dp

In order to fulfill the zero normal velocity at y = dp,

k2yn =
nπ

dB − dp
and k2yn =

nπ

dp
(32)

The number of unknown coefficients is 6(P + 1).

For x = 0:
K
∫ dp

0 φ1ψ1n(y)dy = SrKp

∫ dp
0 φ2ψ1n(y)dy∫ dB

dp
φ1ψ1n(y)dy =

∫ dB
dp

φ3ψ1n(y)dy

K
∫ dB

0
∂φ1
∂x ψ1n(y)dy = γKp

∫ dp
0

∂φ2
∂x ψ1n(y)dy +K

∫ dB
dp

∂φ3
∂x ψ1n(y)dy

(33)
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For x = Lp:
SrKp

∫ dp
0 φ2ψ4n(y)dy = K

∫ dp
0 φ4ψ4n(y)dy∫ dB

dp
φ3ψ4n(y)dy =

∫ dB
dp

φ4ψ4n(y)dy

γKp

∫ dp
0

∂φ2
∂x ψ4n(y)dy +K

∫ dB
dp

∂φ3
∂x ψ4n(y)dy = K

∫ dB
0

∂φ4
∂x ψ4n(y)dy

(34)

Without dissipation, condition (31) is still verified.

4. Results and discussions

Wave amplitude fields around the porous medium have been measured for the wave

conditions given in Table 1. Our first aim was to analyse the wave scattering by the

porous structure including reflection, refraction-diffraction and dissipation phenom-

ena. Let us note that the side walls of the basin may affect the wave behaviour near

the structure, since dB is not large compared to dp. Such a configuration can also

describe the case of a periodic detached breakwater system (Rey et al., 2018). Inter-

mediate water depth conditions are considered for f = 1 and 1.5 Hz, while f = 1.8

Hz nearly corresponds to deep water conditions since h/λ = 0.48 and h/λp = 0.53

where λp = 2π/kp. For the three wave conditions, the wave’s wavelength remains

much higher than the cylinders size and spacing. The length of the porous structure

remains lower than the wavelength for the three frequency cases, while the width

2dp = 1.20 m is of the order of the wavelength for f = 1 Hz, twice the wavelength

for f = 1.5 Hz and five times for f = 1.8 Hz.

4.1. Maps of wave amplitude

Figures 4 to 6 depict 2D maps of relative wave amplitudes for each wave frequency,

for incoming wave amplitude 0.010 m for f=1Hz and 0.015 m for f = 1.5 Hz and f =

1.8 Hz. Results concerning the other amplitudes (see table 1) are shown and discussed

in sections 4.2 and 4.3 for longitudinal and transversal axes, respectively. Relative

wave amplitude corresponds to the ratio between the wave amplitude measured

around the porous medium and the wave amplitude measured at the position of

the reference wave gauge upwave the structure (see Fig. 1). For each case, plots of

wave amplitude from the experimental results are compared to numerical results for

the porous structure. The experimental wave fields are obtained after using a cubic

spline interpolation technique.

For the first studied frequency f = 1 Hz and a = 0.010 m, the wave amplitude

response upstream the porous structure along the central axis of the basin presents

successive maxima and minima, representing a wave reflection phenomenon (Fig. 4,

top). Downstream the porous structure the wave amplitude is rather homogeneous;

a part of the wave being transmitted through the porous structure. Wave refraction-

diffraction is observed on both edges of the structure.

Figure 4 (bottom) represents the theoretical model with a porous structure.

The wave reflection is well represented regarding the 3D wave amplitude pattern.
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The wave amplitude field downstream of the porous structure appears to be smooth

do the transmission of a significant part of the wave energy through the structure.

We can notice however that the amplitude variations are more pronounced for the

experimental case.

For f = 1.8 Hz, the experimental result (Fig. 6, top) shows wave reflection as

for f = 1 Hz but the extrema of wave amplitude upstream the porous structure are

more numerous due to a higher wavelength. Downstream the structure the wave rays

are curved particularly near to structure sides. The transmission is also lower than

for the first studied frequency. The theoretical model (Fig. 6, bottom) fits correctly

the experimental results. The oscillations of wave amplitude upstream the structure

are well represented as the wave rotation downstream the porous medium.

For the wave frequency f = 1.5 Hz, the experimental data give another pattern

compared to other cases. The wave amplitude oscillations is still observed along the

wave propagation direction but another amplitude oscillation is observed along the

transverse direction. Downstream of the structure, such a wave behaviour is also ob-

served even if it is less pronounced due to wave dissipation and backscattering. Such

transverse oscillations are well predicted qualitatively by both theoretical models for

the porous medium (Fig. 5, bottom).

To summarize these results, the first overall observation is the presence of signifi-

cant wave reflection and refraction-diffraction by the porous medium together with a

partial transmission which smooths the diffraction pattern downwave the structure.

Upstream the structure (y < 0), the series of successive minima and maxima can

be seen as the result of the partial reflection by the porous medium even if diffrac-

tion effects arising from the structure edges may modify the wave patterns. These

spatial modulations of wave amplitude upstream the porous block are observed for

the three wave conditions, with an increasing number of oscillations for increasing

wave frequency. Downstream of the porous medium, refraction-diffraction effects can

be observed. The wave direction varies along the basin width, propagating faster

on both sides of the structure and forming a cylindrical-type wave. The wave en-

ergy downstream the porous medium results from the combination of transmission

through the porous medium and diffraction at its edges, producing a more complex

wave structure than for an impervious structure. However, some discrepancies are

observed between experimental data and theoretical results. They are certainly due

to wave scattering from the beach and from the basin walls. Indeed, the basin and

the beach are designed for wave propagation along the x-axis, scattered waves by the

porous structure may be reflected by the beach, not designed for oblique incidence.

The theoretical results for the porous structure are found to provide a correct

representation of the surface wave field obtained for the three studied frequencies.

Since a given dissipation rate nw (Arnaud et al., 2017) per unit wavelength is consid-

ered, higher dissipation is observed for the higher frequency case, the porous length

Lp being kept constant in the experiments. For f = 1.5 Hz, we can also observe max-
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Figure 4. Wave amplitude for f = 1 Hz experiments (top), theory (down)

ima and minima of amplitude along the cross section ascribed to resonance effects

since the gap between the side walls and the porous medium (0.7 m) corresponds

nearly to the wave wavelength (λ = 0.68 m) and the porous width (2dp = 1.20 m)

to the wave wavelength inside the porous medium (λp = 0.61 m).

4.2. Wave amplitude along a longitudinal transect

Measurements along the section y = 0.10 m, i.e. near the longitudinal axis of the

basin, are compared to the 3D model results for the porous structure. The results

are also compared to the 2D theoretical model neglecting structure edges lateral

effects (dp →∞) (Arnaud et al., 2017).

Overall, Figure 7 shows that the theoretical results for the 3D case for a porous

structure are in good agreement with experimental data both upstream and down-
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Figure 5. Wave amplitude for f = 1.5 Hz experiments (top), theory (down)

stream the structure. The dissipation as well as reflection and refraction-diffraction

are well represented by the model. The amplitude study shows that the results are

consistent with the linear assumptions considered in the model. Indeed, quasi-similar

amplitudes are observed whatever the incoming wave amplitude as shown both on

longitudinal and transversal transects.

Upstream the structure, the amplitude of wave modulation is greater when in-

creasing frequency. This is induced by the frequency dependency of the reflected

wave amplitude due to interference processes shown in Arnaud et al. (2017). Down-

stream the structure, the sheltering effect of the porous medium progressively de-

creases and the wave amplitude increases slowly with some weak oscillations.

Frequency effects are highlighted when comparing porous 2D and 3D model. For

frequencies f = 1 Hz (Fig. 7, top) and f = 1.8 Hz (Fig. 7, bottom) both models
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Figure 6. Wave amplitude for f = 1.8 Hz experiments (top), theory (down)

upstream the structure are very close. This indicates that side effects are weak along

the median axis. By constrast, the case f = 1.5 Hz (Fig. 7, middle) highlights the

influence of the finite width of the structure with significant differences between

3D and 2D cases. This discrepancy can be explained by the presence of transverse

resonance in the 3D case. This resonant mode may then be due to either or both

the basin width or the gap between the basin and side walls of the porous structure.

In addition, one note also that downstream the structure for f = 1 Hz large

amplitude oscillations are measured but not provided by the models. They may be

due to resonance behaviour between the structure and the absorbing beach used in

the basin which is not perfect at low frequencies. The theoretical result with a wave

reflection of the beach of 20% highlights the presence of an amplitude modulation

downstream according to the observed modulation. However the predicted oscillation

remains much lower even if beach reflection is taken into account in the model (Fig.
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7, top). A possible explanation for this for this discrepancy might be related to a y-

dependent reflection of the beach, resulting from wave focusing behind the structure.

4.3. Wave amplitude along a transversal transect

The comparison between measurements and numerical results along the transversal

direction of the basin around the porous structure is presented in Fig. 8.

These plots highlight the 3D effects of the porous structure on the wave prop-

agation. The position of the transects are chosen to corresponds to minimum and

maximum upwave the cylinder array, respectively. The general tendency of the wave

amplitude is well represented by the model, the minima and maxima are well posi-

tioned along the basin width although the experimental results show higher amplitude

for f = 1 Hz and smaller amplitude for f = 1.8 Hz.

4.4. Discussion on the wave resonance

In order to better understand the observed transverse resonance occurring for f =

1.5 Hz, we present here results from a 3D model configuration neglecting the fluxes

through the side walls of the porous medium. A comparison of measured wave

amplitude and both theoretical cases (porous and impervious lateral boundaries)

for the three studied frequencies is depicted in Fig. 9.

For frequency f = 1 Hz (Fig. 9, top),the wave amplitude modulations are similar

for both theoretical models. This indicates that reflection and transmission are not

influenced by the exchanges through the side walls of the porous structure. For

f = 1.5 Hz (Fig. 9, middle), significant discrepancies are observed between model

configurations with strong differences of wave modulations along the incoming wave

direction, upstream and downstream the porous structure. As already mentioned in

the previous section, the model which considers porous side walls suits better with

experimental data, particularly upstream of the structure with a good representation

of the extrema. This indicates that fluxes and/or pressure drops across the porous

side walls have a significant influence at this frequency due to transverse resonance,

while they are much less significant for f = 1 Hz and f = 1.8 Hz.

For the higher frequency, f = 1.8 Hz (Fig. 9, bottom) both models give same

results upstream of porous medium and are in good agreement with experimental

data. This means that upstream the center part of porous structure there is no 3D

effect as for f = 1 Hz. Downwave the structure, the modulation is found to be higher

when the structure sides are considered as porous walls. Both theoretical trends fit

with experimental data even if oscillations observed experimentally may be due to

beach scattering as already mentioned in the previous subsection (subsec. 4.2). The

diffraction effects are then significant downstream also in its central part because

the wave wavelength is of the same order as the porous length.

In the absence of the transverse resonance, wave behaviour upstream the struc-
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ture far from its edges can be well described by the 2D model. By contrast, in the

presence of transverse resonance, the whole wave field is affected by 3D effects.

5. Conclusions

This combined experimental and theoretical study was dedicated to the analysis of

the interactions between regular waves and porous structure of finite dimensions.

Measurements of the wave field in the presence of the porous structure allowed to

evidence the effect of a porous structure on the wave scattering. Further insight was

provided by the theoretical approaches, which compare 2D and 3D models. The 3D

model provides a satisfactory representation of the wave field around the structure,

confirming the validity of the approach. The discrepancies observed between model

and measurements downstream the structure especially at the lower frequency are

attributed to wave scattering by the absorbing beach which hardly dissipates wave

energy at low frequency in the experiments.

Transverse resonances related to both structure width and the basin side walls

are shown by the measurements and accurately modelled. Two configurations, with

porous and impervious lateral boundaries, are used in the model to better under-

stand such processes. The resonance effect by the porous structure is amplified when

side-walls are considered as impervious. The difference between both hypothesis in

theoretical models is significant only for the case f = 1.5 Hz due to the presence

of transverse resonance, whereas the difference is rather negligible for both other

studied wave conditions.

On the whole, model gives a good prediction of wave transformation processes

through and around porous structure of finite dimensions. Further efforts will be

engaged to extend the model to more complex configurations of porous medium, in

particular including inhomogeneous porosity or specific surface within the structure.
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Figure 7. Cut near to the axis of the basin (Y = 0.10 m) for f = 1 Hz (top), f = 1.5 Hz (middle)
and f = 1.8 Hz (down)
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Figure 8. Transversal cuts of the basin for f = 1 Hz (top), f = 1.5 Hz (middle) and f = 1.8 Hz
(down)
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Figure 9. Cut near to the axis of the basin (Y = 0.10 m) for f = 1 Hz (top), f = 1.5 Hz (middle)
and f = 1.8 Hz (down)


