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Abstract

Static Single Assignment form is an intermediate representation, that uses�-functions
to merge values at each confluent points of the control flow graph.� functions are not
machine instructions and should be renamed back tomove operations when translat-
ing out-of-SSA form. Without a coalescing algorithm, out-of-SSA translation gener-
ates manymove instructions. In this paper we propose an extension of the algorithm
of Leung and George [7] to minimize the�-related copies during the out-of-SSA trans-
lation. Leung et al. constructed SSA form for programs represented as native machine
instructions, including the use of machine dedicated registers. For this purpose, the
out-of-SSA translation contains renaming constraints that are represented using a pin-
ning principle. Pinning the�-function arguments and their corresponding definition
to a common resource is a very attractive technique for coalescing variables, even if
this is not a true minimization: this article presents a renaming-constraints aware and
pinning-based coalescing algorithm. Even without renaming constraints, themove
instructions minimization problem is still considered an open issue [7, 10]. This ar-
ticle provides also a discussion about the formulation of this problem, its complexity
and its motivations. Finally, we implemented our algorithm in the STMicroelectronics
Linear Assembly Optimizer [2]. This provides many interesting results when compar-
ing several possible approaches. We also explain, using hand crafted examples, the
limitations of Leung’s, Sreedhar’s and classical register coalescing [6] algorithms.



Keywords: Static Single Assignment, Coalescing, NP-complete, K-COLORABILITY, Machine code level, register
allocation

Résuḿe

La forme SSA est une repr´esentation interm´ediaire de compilateur qui utilise des fonc-
tions virtuelles� pour fusionner les valeurs `a chaque point de confluence du graphe de
contrôle. Les fonctions� n’existant pas physiquement, elles doivent ˆetre remplac´ees
par des instructionsmove lors de la translation en code machine. Sans coalesceur, la
translation hors-SSA g´enère beaucoup demove.
Dans cet article, nous proposons une extention de l’algorithme de Leung et George [7]
qui effectue la minimisation de ces instructions de copie. Leung et al. proposent un al-
gorithme de translation d’une forme SSA pour du code assembleur, mais non optimis´e
pour le remplacement des instructions�. Par contre, ils utilisent la notion d’´epinglage
pour représenter les contraintes de renommage.
Notre idée est d’utiliser cette notion d’´epinglage afin de contraindre le renommage des
arguments des� pour faire du coalescing. C’est une formulation du probl`eme de coa-
lescing non ´equivalente au probl`eme initial toujours consid´eré comme ouvert dans la
litt érature [7, 10]. Nous prouvons n´eanmoins la NP-compl´etude de notre formulation,
une cons´equence de la preuve ´etant la NP-compl´etude du probl`eme initial en la taille
de la plus grande fonction�.
Enfin, nous avons impl´ementé notre algorithme dans le LAO [2], optimiseur d’assem-
bleur linéaire. La comparaison avec diff´erentes approches possibles fournit de nom-
breux résultats int´eressants. Nous avons aussi essay´e, à l’aide d’exemples faits `a la
main, d’expliquer les avantages et limitations des diff´erentes approches.

Mots-clés: forme SSA, fusion de variables, NP-compl´etude, K-COLORABLE, code assembleur, allocation de
registres
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1 Introduction

Static Single Assignment The Static Single Assignment (SSA) form [9] is an intermediate representation, widely
used in modern compilers. As opposed to some single assignment representations used on parallel computing [4], the
representation we consider here is scalar. We mean by scalar the fact that we allow several consecutive writes to the
same memory address. In SSA form, each scalar variable is statically defined only once in a program. Because of
this single assignment property, the SSA form contains virtualized registers, and�-functions are introduced to merge
different variables that come from the incoming edges at a confluent point of the control flow graph (see Figure 1).
Hence the SSA form cannot be used to represent final assembly code and a translation out of SSA should be performed.
This transformation replaces�-functions withmove instructions and part of the virtual registers into dedicated ones
when necessary. Apart from the fact that the replacement should be performed carefully whenever optimizations like
value numbering has been done while in SSA-form, a naive approach for the out of SSA translation generates a large
number of move instructions. This article addresses the problem of optimizing the number of generated copies during
this translation phase.

�� � �

�� � ����� ���
� � ����
� � ����

� � ����� ���
�� � �� � �

�� � ��

�� � ��� � �

�� � ��

	 � ���

� � �
for � � � to �

� � ����
� � ����
if �� � ��
then � � �

else � � �

� � � � �

	 � ��

Initial code Corresponding SSA form

Figure 1: Example of code in non-SSA form and its corresponding SSA form without the loop counter represented

Previous Work Cytron et al. [9] proposed a simple algorithm that replaces a� instruction by copies into the pre-
decessor blocks, and uses Chaitin’s coalescing algorithm to reduce the number of copies. Briggs et al. [1] exposed
two problems in this algorithm, namely the swap problem and the lost-copy problem, and proposed solutions to these.
Sreedhar [13] came with an algorithm that avoids the need for a Chaitin’s coalescing algorithm and that can eliminate
more copy operations than the previous algorithms. Leung [7] proposed an out of SSA algorithm for a SSA represen-
tation at the machine code level. Machine code level representations add naming constraints due to ABI rules on calls,
special purpose ABI defined registers, or restrictions imposed on register operands.

Context of the study Our study of an out-of-SSA algorithm was done in the STMicroelectronics Linear Assembly
Optimizer (LAO) tool. The purpose of the LAO is to convert a program written in Linear Assembly Input (LAI)
language to the basic assembly language that is suitable for assembly, linking and execution. The LAI language is a
superset of the assembly language where symbolic register names can be freely used. The LAO will perform register
allocation and instruction scheduling on LAI code. It also includes a number of transformations such as induction
variables optimizations, global value numbering and optimizations based on range propagation, and uses an SSA
intermediate representation to perform most of its optimizations.
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The LAO implements scheduling techniques based on software pipelining and superblock scheduling, and uses a
repeated coalescing [2] register allocator, which is an improvement over theiterated register coalescing from George
& Appel [6].

The LAO tool is targeted at the ST120 processor, a DSP processor with full predication, 16-bit packed arithmetic
instructions, multiply-accumulate instructions and a few 2-operands instructions such as addressing mode with auto-
modification of base pointer.

Layout of this paper This paper contains five parts: we start by a statement of the problem and a brief description of
Leung’s algorithm on which our solution is based. Then, we present our solution to the problem of variables coalescing
during the out-of-SSA phase. Next, we discuss in several theoretical examples how our algorithm compares to others.
Then, we present results that show the effectiveness of our solution on a set of benchmarks to finally conclude. This
paper contains also two appendices A and B devoted respectively to the refinement of Leung’s algorithm and to the
NP-completeness proof of the pinning based coalescing problem.

2 Leung’s algorithm and statement of the problem

2.1 Pinning mechanism

Renaming constraints are, in Leung’s algorithm, represented using a pinning mechanism. Because the pinning phase
described in [7] is restricted to physical registers and because the base-register1 constraint used can lead to an incorrect
pinning (see Figure 14), this paragraph describes our refined version of pinning. Roughly speaking, pinning is a pre-
coloring of SSA variables to resources. Pinning can be described using the three following properties:

1. [Resources]A program in SSA-form contains only SSA-variables. A resource is a target name for the renaming
of SSA-variables.Resources include physical registers in addition to virtual registers.

2. [Operand pinning] A pinning makes reference to a particular instance of a variable in the program: it can be
on the unique definition of a variable or on one of its uses. It means thatfor this instance, the SSA variable must
be renamed to the resource.

3. [Variable pinning] When a variable is said to be pinned to a resource, we implicitly refer tothe instance of the
unique definition of the variable.

ABI and 2-operand constraints First of all, pinning comes from the Application Binary Interface (ABI) and from
the Instruction Set Architecture (ISA) constraints. We have extended the pinning mechanism to the coalescing of
variables defined or used on� instructions. This extension is developed further.

In the st120 processor, we are concerned with ISA register renaming constraints and ABI function parameter pass-
ing rules. Program 1 expressed in pseudo assembly code provides an example of such constraints. The corresponding
SSA representation and its corresponding pinning, after copy folding and dead code, is given in Program 2. In this
example and in the rest of this document, the notation
�� is used to mark that a given instance of a SSA variable


is pinned to a resource�.
This code contains two kinds of constraints:

� function parameter passing rules: for example the use of variable� � in function call� should be renamed in
R0. Identically, the use of
� in the .output should be renamed in��.

� 2-operand instruction constraints (this is how Leung et al. call this kind of constraints): here, becauseautoadd
��, ���, 1 is an auto-increment instruction, the Instruction Set Architecture (ISA) of the target machine
imposes that�� and��� should be renamed to the same resource. Instructionmore has similar constraint.

1the base-register of a variable is the physical register this variable was renamed from during SSA construction
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Program 1 Example of code with ABI constraints

// performs f(@(P0),@(P0+1))+R0-0x00A12BFA
.input R0, P0
// inputs� & � are necessarily on R0 & P0 at the entry

move C, R0
move P, P0

load A, @P++
load B, @P++

// calling D=f(A,B)
move R0, A
move R1, B
call f
move D, R0

// E=C+D
add E, C, D

// K=0x00A12BFA
make K,0x00A1
more K,0x2BFA

// F=E-K
sub F,E,K

// returned� should be on��
move R0, F

.output R0

Program 2 SSA version of Program 1 and its corresponding pinning after copy-folding

.input ����
��, ����

��

��� load ��, @����
��

autoadd ���
�� , ����

�� , 1
��� load ��, @��
��� f ����

��,���
��,���

��

��� add ��,���,���
��� make ��, 0x00A1
��� more ���

�� ,���
�� , 0x2BFA

��� sub ��,��,��

.output ���
��

2.2 Leung’s algorithm

Leung’s algorithm is decomposed into three consecutive phases:

1. the collect phase where information about renaming constraints is collected: operands are pinned during this
phase.

2. the mark phase where information about conflicts generated by renaming is collected.

3. the reconstruct phase where renaming is performed and copies are inserted to repair values killed by local
renaming or by replacement of� functions.

Our pinning based coalescing phase takes place during the collect phase. Then, for a given pinning, the out of SSA
translation relies on the mark and reconstruct phases of Leung’s algorithm. This paragraph aims to illustrate the kind
of transformations that are performed during those two last phases. For this purpose, an example of pinned SSA code
and the resulting out of SSA code is given Figure 2.

From this example, we can make the following remarks:

3



return��
�� � 	��

input��
 ��

	��
��� ��	��

��
 	��
���

	��
��� 	��

�� ��

input 	����
 ���
��

	�� � ��

	�� � ��

���� �� � 	��
�� � ��

return 	����

�� � �� ��

	��
��� 
�	��

��
 ���
���

�� � �� ��
�� � ��
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	��
��� ��	�
 	��

���� �

Figure 2: Transformation of already pinned SSA code by Leung’s algorithm

� A repair copy is introduced when a pinned variable is killed before its use. This is the case around the call to the
function g, where x3 is killed by x4, before being used on the return instruction.

� The algorithm is careful not to introduce redundant copy instructions when a value is already available in the
resource it is pinned to. This is shown on the example on the use of x3 in the call to g, where x3 is already
available in R0 due to pinning on the� instruction.

� Parallel copies are used to avoid the so-called swap-copy problem. In the example, the copies�� � � �
�;

�� � �� are to be performed in parallel. In sequential code, the copies will be reordered and an intermediate
variable will be introduced when necessary. (In this example, the corresponding sequence will be�� � ��;
�� � ���).

� The main limitation of Leung’s algorithm is its inability to coalesce a non-constrained definition and a resource
to which a used operand is pinned. As an example,	� could have been coalesced to�� without creating
any interference. As illustrated by Figure 4, this weakness is similar to the�-function replacement coalescing
problem where use operands of a� are implicitly pinned to the def operand.

2.3 Correct pinning

As illustrated in Appendix A, renaming rules that are too constrained can lead to conflicting pinning in addition to
incorrect pinning. The semantics of a correct pinning is best explained using examples given in Figure 3.

In this figure,����� and����� are correct if and only if� � �. This is because, two different values can not be
contained in a unique resource both at the entry point and at the return point of an instruction.��� �� is the special case
on� instructions: because the semantics of the set of� instructions of a block is parallel, two different� definitions
in a same block cannot be pinned to the same resource.

On the other hand, on most architectures,����� is a correct pinning. But, the corresponding scheme����� on a
� instruction is forbidden: this is because all use operands of a� instruction are implicitly pinned to the resource the
def operand is pinned to2.

2The motivation for this semantic is given in Appendix A

4



�
��� � ��� � instr����
 ����

�
��� � ���� ��� � � ��� � � � �

�
��� � ����
 ���� � instr�����

�
��� �

�
�
�
�

���� ������
���� ������

�
��� � ���� instr����� 	��� �� � � 
 	��

	� � � � �
�� � � � �

(Case 6)

�� �

���� ���
 � � � �

Figure 3: All but����� are incorrect pinning

Hence, a more subtle incorrect pinning is given by (Case 6): the use operands� � and	� are operands of a same
instruction and the corresponding parallel copies takes place at the end of block� �. This incorrect pinning would

generate the meaningless parallel copies

���� � � ��
� � 	�

.

Defining precisely what kind of pinning is semantically correct might seems intuitive and unnecessary. But as
it is explained in Appendix A, for some dedicated registers like SP (Stack Pointer) for the st120, we might want to
rename-back the corresponding variables to their base-registers (as it wasbefore translatingto SSA form). This, added
to optimizations like value numbering, can lead to an incorrect pinning. Hence, when dealing with dedicated-register
constraints, optimizations should be aware of maintaining a semantically correct SSA code, which is not necessarily
trivial since the correctness cannot always be checked locally. For example our value numbering optimization is
allowed to coalesce two expressions containing SP based variables only if the defined variables are not SP based.

2.4 � coalescing: statement of the problem

As illustrated by Figure 4, pinning potentially prevents the reconstruction phase of Leung’s algorithm from inserting
useless copies. In this sense, pinning plays the role of a coalescing phase.

Remark that, as opposed to the pinning related to ABI constraints that is applied to a particular instance of a SSA-
variable, the copy optimization pinning is applied only to SSA-variable definitions. Hence,we extensively say that a
SSA-variable is pinned to a given resource and define Resourcedef�	� as�

� if the definition of	 is pinned to�
	 otherwise

Also, for simplicitywe mingle the notions of resource itself and set of variables pinned to it.

Code translated out-of-SSA
without pinning

Code translated out-of-SSA
if 	
 	� and	� are pinned
to the virtual resource	

Code translated out-of-SSA

to the virtual resource	
if 	 and	� are pinned

	� � �	��
	� � �	��

	 � 	� 	 � 	�

	 � ��	�
 	��

	� � �	��
	� � �	��

Initial SSA form

	 � �	��
	� � �	��

	 � 	�

	 � �	��
	� � 	
	 � �	��

	 � 	�

Figure 4: Usefulness of pinning the definitions of� arguments to a common resource and its counterpart when vari-
ables interfere

On the other hand, as illustrated by Figure 4, the pinning of two variables which creates an interference will
generate an additional copy (a repair copy) just after the definition of the killed variable. Moreover, if this interference
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precedes a�-function where these two variables are used, the replacement of this�-function will still generate the
copy that motivated the pinning.

Hence, the�-function coalescing problem consists in pinning, for each�, the maximum number of used variables
to a common resource while preserving the number of variables that are concerned with a repair. Since the cost of
pinning a resource that is concerned with a repair (at least one copy just after the definition plus the restore copy) is
generally greater than the gain obtained by this pinning (potentially no copies inserted while replacing�-functions),
the problem is to maximize the number of �-function arguments pinned to a common resource while not modifying the
current number of killed variables. Our formal formulation of the� function coalescing problem is GLOBAL PINNING

given in Appendix B.

3 Our solution

Our algorithm (Program Pinning), an heuristic solution to LOCAL PINNING, is based on an inner to outer loop
traversal. Each node is treated locally but within each node all� functions are treated together. Hence, for a given
node, an affinity graph is created (Initial G). Every edge that is concerned with an interference is removed from the
graph (Graph InitialPruning). The remaining graph is bipartite with possible interferences between nodes on the
same side (PrePruned G). Vertices are weighted to take into account interferences between SSA variables. Then
the graph is pruned (BinaryGraph pruning) and the elements of each resulting connected components (Final G) are
pinned to the same resource (PrunedGraph pinning).

The rest of this section is devoted to the precise description of this algorithm and provides a formal definition of
interferences between resources. Consecutive steps of this algorithm are applied on the example of Figure 5.

Algorithm 1 � coalesce, using pinning method, all nodes of P using a decreasing depth order traversal.

Program pinning(CFG Program P)
foreach N downdepth �Nodes of P�

Initial G=Create affinity graph(N)
PrePruned G=Graph InitialPruning(Initial G)
Final G=BinaryGraph pruning(PrePruned G)
PrunedGraph pinning(Final G)

3.1 The initial affinity graph

The affinity graph is an undirected graph where each vertex represents either a variable or its corresponding resource:
two variables that are pinned to the same resource are collapsed into the same vertex. For each definition
 �
����� � � � � ��� there is an affinity edge between the vertex of
 and the vertices of all� �. The construction of the
initial affinity graph is described in Algorithm 2.

Algorithm 2 Construction of initial affinity graph

Create affinity graph(CFG Node current node)
��
 � � � ��
 ��
for each � � ��	�
 � � � 
 	�� of current node
� � �

�
�Resource def����

for each 	 � �	�
 � � � 
 	��
� � �

�
�Resource def�	��

� � �Resource def���
Resource def�	��
if (� �� �) multiplicity(�)=0
� � �

�
���, multiplicity(�)++

return � � ��
 � �
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���
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��

��

0

�� � ���
 ��
 ���
�� � ���
 ��
 ���

0

0

�� � � � �

� � �

� � �
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[Intermediate pinned code]

���
��� � � �

���
��� ����
 ����� � ����
 ���

�� � ����
 ���

���
��� � � �

� � �

� � �

���
��� � � �

���
��� � � �

���
��� ����
 ���

���
��� ����
 ���

[Final pinned SSA code]

���
��� ����
 ���

[Final code]

�� � � � �
�� � � � �

�� � �� �� � � � �

[Final G]

[Initial G=PrePruned G]
[Initial G]

[PrePruned G=Final G]

Figure 5:Program pinning on an example. Affinity and interference edges are respectively represented using dashed
and full lines.

3.2 Interferences between variables

We enumerate below the cases where pinning two variables of a�-function to the same resource would create an
interference. We differentiate simple interferences from strong interferences: a strong interference generates a conflict
that violates the pinning semantics in such a way that it cannot be repaired by the reconstruct phase. On the other
hand, a simple interference can always be repaired despite the fact that the repair might generate additional copies.
The goal is then to minimize the number of simple interferences and to avoid all strong interferences.

[Case 1] Consider two variables� and�. If there exists a point in the Control-Flow graph where both� and� are
alive, then� and� interfere. Moreover, considering the definitions of� and�, one dominates the other. If the definition
of � dominates those of�, we say that thedefinition of � is killed by �. The consequence is that pinning the definitions
of � and� to a common resource would result in a repair of�.

[Case 2] Consider� (from block�) and�, where� is defined by a�-function � � ��� �� � � � � ��� (from block
��� � � � � ��). Then each argument�� is implicitly pinned to� at the point where the use actually occurs, which is at
the end of node��. Hence, if� �� �� and� is live-out of��, � and the use of�� interfere. We say thatthe definition of
� is killed by �.

Remark that our definition of liveness isdifferent from the definition used by Sreedhar et al.: a� instruction does
not occur where it textually appears, but on each predecessor basic blocks instead. Hence, if not used by another
instruction,�� is treated as dead upon the end of block� � and the entry of block�.

[Case 3] Consider two variables� and	, both defined by� functions. Their respective arguments might interfere
in a common predecessor node. Hence, if predecessor� � associated to�� is equal to predecessor�� associated to	�
and�� �� 	� we say thatthe definitions of � and 	 strongly interfere: indeed, as explained in Paragraph 2.3, pinning
those two definitions together is incorrect.
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[Case 4] Consider two� definitions� and	 within the same block. Because of Leung’s repairing implementation,
two definitions with the same arguments� � ����� � � � � ��� and	 � ����� � � � � ��� cannot be considered as identical.
Hence, they should always strongly interfere.

The different cases are illustrated in Figure 6. The corresponding algorithm is described in Algorithm 3 and Algo-
rithm 4.

Algorithm 3 Evaluates if two variables simply interfere. Returns true if� kills �.

Variable kills(Variable �, Variable �)
if the definition of � dominates those of �

and � and � interfere
return true �Case 1�

if � is defined as � � ���� � ��
 � � � 
 �� � ���
for � � � to �

if � is live out of �� and � �� ��
return true �Case 2�

return false

Algorithm 4 Evaluates if two variables strongly interfere. Should be adapted to the specificities of the ISA.

Variable stronglyInterfere(Variable �, Variable �)
if � and � are defined by �-functions

let � � �� � ���� � ��	�
 � � � 
 �� � ��	��
let � � �
 � ���� � �
	�
 � � � 
 �� � �
	��
if �� � �
 return true �Case 4�
for � � � to �

if ��	� is a predecessor of �


let ��	� � �
	�

if �� �� �� return true �Case 3�
return false

else if � and � are defined in the same instruction
let �� � � � � � � � � � � � � instr�� � � �
return true

return false

� � � � �
� � � � �

� kills �

...

[Case 1]

� � � � �

	 kills �

	 � ���
 ��

� � � � �
� �� �

[Case 2]

	 � ���
 	�� � � ����
 ��
� � ���
 ��

	� �� ��

	 strongly interfere with�
� strongly interfere with�

[Cases 3 & 4]

Figure 6: Different kind of interferences between variables.

3.3 Interferences between resources

An interference between two resources� � ���� � � � � ��� and� � ���� � � � � ��� means that pinning all the variables
���� � � � � ��� and���� � � � � ��� together would create either anew simple interference, orany strong interference.
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The result is given byResource interfere (Algorithm 6). It usesResource killed (Algorithm 5 gives a formal
description, but obviously this information can be maintained and updated after each merge) that returns variables
already killed within a resource set (remark that for the lost-copy problem a variable is killed by itself).

Algorithm 5 Returns the set of variables killed within�.

Resource killed(Resource �)
let � � ���
 � � � 
 ���
������ ������� �

��� � ����� � �
 Variable kills��� 
 ����
return ������ �������

Algorithm 6 Interference between resources.

Resource interfere(Resource�, Resource �)
let � � ���
 � � � 
 ���
let � � ���
 � � � 
 ���
let ������ ������� � Resource killed���
let ������ ������� � Resource killed���
if � and � are physical resources

if � �� � return true
for all ��
 �� � �	�

if � �� ������ ������� and Variable kills(�
 �)
return true

if � �� ������ ������� and Variable kills(�
 �)
return true

if Variable stronglyInterfere(�
�)
return true

return false

3.4 Pruning the affinity graph

The pruning phase is based on the interference analysis between resources. More formally, the optimization problem
can be stated as follows:

� Let � � ���������� � � � be the graph obtained from Createaffinity graph:� is the set of vertices labeled by
resources and��������� is the set of affinity edges between vertices.

� Let ��	��
��
�
��
� � � be the graph of interferences as defined by Resourceinterfere.

� The goal is to prune (edge deletion) the graph� into� � � ��
���
�� � � such that

condition 1 the cardinality of�
���
� is maximum

condition 2 for eachconnected variables���� ��� � � � of ��, ���� ��� �� �	��
��
�
��


In other words, the graph� is pruned into connected components such that the total number of deleted edges
from��������� is minimized and there is no edge from�	��
��
�
��
 within each connected component.

Trivially, because ofcondition 2, all edges from���������

�
�	��
��
�
��
 can be removed from� (Algorithm 7).

The obtained graphPrePruned G is bipartite: indeed, consider the set of�-functions of currentnode�
 � � ������� � � � � ������ � � � � �

There are two kinds of vertex in�, the one from the definitions����� � Resourcedef��
�� � � � � 
��� and the oth-
ers����� � Resourcedef������� � � � � ������ 	 ����� . By construction there is no edge between two elements of
����� . Also, because elements of����� strongly interfere together, there remains no edge between two elements
of ����� .

As explained in Appendix B, the pruning phase is NP-complete in the size of�-functions. Our algorithm is
an heuristic based on a greedy pruning of edges. In the particular case of a unique� function, it is identical to the
“Process the unresolved resources” of Sreedhar’s algorithm. For a binary affinity graph (with the trivial
pruning already performed), the algorithm is given by theBinaryGraph pruning procedure (Algorithm 8).
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Algorithm 7 Initial pruning. We obtain a bipartite graph.

Graph InitialPruning(Graph ��
��)
foreach �	�
 	�� � �,

if (Resource interfere�	�
 	��)
�
� �	�
 	��

return ��
��

Algorithm 8 Prunes ��� � � such that: (1) foreach connected vertices�� �� ��� � ��, Re-
sourceinterfere���� ��� �false; (2) the remaining� has a “maximal” cardinality.

BinaryGraph pruning(Binary Multi Graph ��
��)
� Evaluates the weight for each edge �
for all � � �, weight(�)=0
for all ��	
 	��
 �	
 	��� � �� such that 	� �� 	�

if Resource interfere(	�
 	�)
weight(�	
	��)��multiplicity(�	
	��)
weight(�	
	��)��multiplicity(�	
	��)

�Prunes in decreasing weight order
and update the weight�

while weight(�
) �
let �
 � ��
 	� such that

�� � �, weight(�
)�weight(�)
do
�
� �

for all � � ��
 �� � �

weight(�)
�multiplicity(�
)
for all � � �!
 	� � �

weight(�)
�multiplicity(�
)

return ��
��

3.5 Merging the connected components

Once the affinity graph has been pruned, resources of each connected components can be merged. To merge one
resource into another, all operands of the program pinned to the first resource should be pinned to the second one.
The correctness of this phase is insured by the absence of any strong interference inside the new merged resource.
To complete the coalescing of�-functions, the definition of each variable in a resource should be pinned to this
resource. A formal description of the algorithm is given by the procedurePrunedGraph pinning (Algorithm 9). In
practice, the update of pinning can be performed only once, just before the mark phase, so requiring only one traversal
of the control flow graph. Another remark is that the interference graph can be built incrementally at each call to
Resource interfere and updated at each resource merge, using a simple vertices merge operation: hence, as opposed
to the merge operation used in the repeated register coalescing algorithm where interferences have to be recomputed
at each iteration, here each vertex represents a SSA variable and merging is a simple edge union.

4 Theoretical discussion

4.1 Our algorithm vs register coalescing

Briggs’ out of SSA algorithm [1] relies on a Chaitin style coalescer to remove copy operations produced by the out
of SSA renaming. ABI constraints for a machine code level intermediate representation can be handled after the out
of SSA renaming by insertion of copy instructions at procedure entry and exit, around function calls, and before 2-
operand instructions. However, several reasons call for a combined processing of coalescing and ABI renaming during
the out of SSA phase:
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Algorithm 9 Merge connected components and pin definitions when necessary

PrunedGraph pinning(Graph G, Program P)
foreach � � �connected components of G�

let " �
�
��� #

let � �

�
#� if #� � � is a physical resource
" otherwise

foreach ��� � ��
 � � � � ��$�%���
 � � � � � �
foreach �� such that �� � "

pin �� to � in ��� �
foreach ���� such that % � �

replace % by �

����� �� ����� ��� � ��
� � �

� � ��
� � �

� � ��

� � � � � � � � � �

� � �

� � � � � � � � � ��

���� ������
 ����
 ����

����� ��

���� �

[Pined SSA form][Initial code]

Figure 7: Partial coalescing: the left hand-side code cannot be coalesced by a classical coalescer, whereas the corre-
sponding pinned SSA code will result in less move instructions. In this case, the only copy will be generated by a
repair of��.

� SSA form is a higher level representation that allows a more accurate definition of interferences. For example,
as illustrated by Figure 7, it allows partial coalescing. By partial coalescing, we mean coalescing of a subset of
a variable’s definitions.

� Classical coalescing algorithm is greedy, so it may block further coalescings. Instead, our algorithm locally
considers a set of possible coalescing and optimizes the number of coalesced variables.

� The main motivation of Leung’s algorithm is that ABI constraints introduce another bunch of copy instructions.
Some of these will be deleted by a dead code algorithm, but most of them will have to be coalesced. The goal
of our work is to reduce the overall complexity of the out of SSA renaming and coalescing phases. Compared
to the use of a repeated coalescer, we reduce the complexity of the coalescing phase by doing it on the SSA
representation, thus benefiting from the static single definition property.

4.2 Our algorithm vs Sreedhar

	 � &�
� � &�

� � ��	
 ��
! � ���
 ��

	 � &�
� � &�

� � ��	�
 ��
! � ���
 ���

� � &�
! � &�

� � &�

[Initial SSA] [CSSA after Sreedhar] [Our solution]

� � &�
	� � 	

! � &��� � � � � !

Figure 8: Comparison on example7: our solution optimizes all�-functions together whereas Sreedhar treats them one
after the other.
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[CSSA after Sreedhar]

	� � &�

	�� � 	�

[Our solution][Initial SSA]

	� � &�

��	�
 	��
�� � �� � �� ��� �

��	�
 	�� ��	�
 	
�

�� ��	��� 
 	
�

��

	�� � 	�

� � &�
	� � &� 	� � &� 	� � &�

� � 	�
	��� � 	�

Figure 9: Comparison on example6: Sreedhar’s algorithm generates copies that cannot be reused in the rest of the
process.

return ��� ��

input ��� ��

�� � ����� ���

return ��� ��

input ��� ��

��� � ��
���� � ��

�� � ���

�� � ����� �
��
��

�� � ����� ���
�� � ����� ���

�� � ����� ���
�� � ����� ���
��� � ��

��� � ������ �
�
��

�� � ����� ���

input �� �

return �� �

� � �
� � �
� � �

[Initial SSA] [CSSA after Sreedhar] [Our solution]

Figure 10: Comparison on example8: the superiority of using parallel copies.

[Our solution]

� � ��

� � � � �

� � � � �

� � �

[Initial SSA]

�� � ��

� � ���
 ���

�� � ����
 ��
�� � �� � � (autoadd)

� � � � �

� � � � � �

[CSSA after Sreedhar]

�� � ��

� � ���
 ��
�
�

�� � ����
 ��

� � � � �

� � � ��
�
� ��

��
�
� �� � �

�� � ��
�

[and ABI treated separately]

Figure 11: Comparison on exampleABI: if ABI is treated after�-function translation, even optimally, the result is
generally worth.
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Here we compare our approach against the algorithm from Sreedhar et al. in [13]. Sreedhar’s algorithm uses what
is called aConventional SSA (CSSA) form, which has the following important property:all variables which appear
in a same �-function can be replaced by a representative variable. In other words, in the translation out of CSSA
form, all occurences of a variable that appears as an argument of a�-function are renamed into the definition of that
�-function, and the�-function is discarded. In the examples Figure 8-11, appart from renaming and removal of�

functions, no other instruction is added or removed.
The translation from a general SSA form to a CSSA form may create new variables and insert copy instructions

to eliminate� variable interferences that would otherwise result in an incorrect program after renaming. Sreedhar
proposes three algorithms to convert to CSSA form. We only consider the last one which uses the interference graph
and liveness information to minimize the number of generated copy instructions. Below are cases where his and our
algorithms produces different results.

� Our algorithm considers the�-functions for a whole block together in order to compute pinning. Figure 8 shows
a case where this results in one less copy instruction than Sreedhar’s algorithm which consider each�-functions
one after the other.

� Our algorithm performs pinning using interferences information on an unchanged SSA form, whereas Sreedhar’s
process creates different variables that may hold the same value. Figure 9 shows an example where this process
yields to a situation where interferences cannot be removed.

� In addition to the two points above, Figure 10 illustrates the advantage we have by generating move instructions
after the pinning phase is complete. This example also demonstrates the use of parallel copies.

� Finally, because our SSA representation is at machine level, we need to take into account ABI constraints.
Figure 11 shows an example where a better choice of which variables to coalesce together can be taken if the
ABI constraints are considered.

4.3 Limitations

�� � � (repair)
� � � � �

�� � ��

� � � � �����

� � � � ������ � � �

���� ����
 ���

����� � � �

� � � � �������

� � � � �

� � � � �����

� � � � �

�� � � (repair)

[Initial SSA code] [Our solution] [Optimal solution]

Figure 12: Limitation of Leung’s repairing process: the repairing variable� � is not coalesced with further uses.

Below are several points that expose the limitations of our approach:

� Our algorithm is based on Leung’s algorithm that imposes the place where copy instructions are inserted. Also,
we use an approximation of the cost of an interference compared to the gain of a pinning. Hence, even if we
could provide an optimal solution to our formulation of the problem, this solution would not necessarily be an
optimal solution for the minimization of copy instructions.

� As explained in section 2.2, the main limitation of Leung’s algorithm is its incapacity to coalesce a non-
constrained definition and a resource to which a used operand is pinned. This can be worked-around using
a prepass pinning of concerned variable definitions. But as illustrated by Figure 12, repairing variables that are
introduced during Leung repairing phase cannot be handled this way.
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� Another point is, as explained in Appendix B, that our formulation of the problem is NP-complete. Note also that
a simple extension of the proof shows the NP-completeness of the number of move instructions minimization
problem.

� The last point is that in case of strong register pressure, the problem becomes different: coalescing (or split-
ting) variables has a strong impact on the colorability of the interference graph during the register allocator
phase (e.g. [8]).

Because our algorithm relies on the mark and reconstruct phases of Leung’s algorithm, a refinement of this algo-
rithm is provided in Appendix A.

5 Results

We conducted our experiments on different sets of benchmarks represented in LAI code. Since the LAI language
supports predicated instructions, the LAO tool uses a special form of the SSA representation, named�-SSA [12],
which introduces�-functions to represent predicated code under SSA. Without going into the details of the out-of-�-
SSA algorithm, we can say that�-functions introduce constraints similar to 2-operands constraints, and are handled
in our algorithm in a special pass where they are converted into a “�-conform” SSA form.

In the following tablesVALcc1 andVALcc2 refer to the same set of C functions compiled into LAI code with two
different ST120 C compilers. These sets include about 40 small functions with some basic digital signal processing
kernels, integer Discrete Cosine Transform, sorting, searching and string searching algorithms. The benchmarks
example1-8 are small examples written in LAI code specifically for the experiment. The benchesexample7 and
example8 are presented respectively in Figure 8 and Figure 10. The benchexample6 is a variant of Figure 9, since
a basic block with three successors cannot be expressed in the LAI language.LAI Large is a set of larger functions,
most of which come from the efr 5.1.0 vocoder from the ETSI [3]. Finally,SPECint refers to the SPEC CINT2000
benchmark [11].

benches U+C B+C S+C
VALcc1 193 +59 +3
VALcc2 170 +44 +13

example1 1 +0 +0
example2 1 +0 +0
example3 3 +0 +0
example4 1 +0 +0
example5 3 +0 +0
example6 1 +1 +1
example7 1 +0 +1
example8 3 +2 +1
LAI Large 438 +44 +48
SPECint 6803 +3135 -59

Table 1: Comparison of copy instruction count with no ABI constraint.

In order to perform experiments with Sreedhar’s algorithm (S+C, S+L+C and S+A), we have implemented a
modified version of this algorithm to include support for low level SSA representation with ABI constraints. This
version is correct in most cases, but it still performs some illegal variables splitting on some code. This results in
missed interferences, and the final code contains less copy instructions and is incorrect. Such cases mainly occurred
with SPECint, and thus SPECint figures after Sreedhar’s algorithm must be taken only as an optimistic approximation
of the number of copy instruction.

Comparison without ABI-constraints Table 1 shows the variation in number of copy instructions of SSA rename
back coalescing algorithms based on Briggs or Sreedhar compared to our algorithm, when ABI renaming constraints
are ignored. In this table, U+C, B+C and S+C corresponds respectively to our algorithm (U), Briggs’ algorithm (B)
and Sreedhar’s (S) algorithm, all followed by a repeated register coalescing (+C). In this experiment, our algorithm is
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better or equal in all cases, except for the SPECint benchmark with Sreedhar’s algorithm. However, as explained above,
dedicated register constraints and predicated definitions cannot be trivially ignored and repaired in a further pass, and
our implementation of Sreedhar’s algorithm produces incorrect code in some cases. In absence of ABI constraints,
this experiment is interesting on two points. One point is the interest of optimizing the coalescing on each�-functions
instead of running a greedy coalescing on each move. This is the comparison between the optimizing algorithm
from Sreedhar (S+C) and the simple algorithm from Briggs (B+C). The other point is the interest of performing the
coalescing and the repairing phases separately instead of doing these two operations for each�-functions together.
This is the comparison between our algorithm (U+C) and the algorithm from Sreedhar (S+C).

benches U+C S+L+C L+C B+A+C
VALcc1 242 +7 +3 +386
VALcc2 220 +15 +29 +449

example1 1 +0 +0 +2
example2 1 +0 +0 +2
example3 3 +0 +0 +2
example4 2 +0 +0 +1
example5 3 +0 +0 +2
example6 1 +1 +1 +3
example7 1 +1 +0 +2
example8 3 +1 +2 +4
LAI Large 1085 +26 +62 +634
SPECint 23930 +413 +482 +38623

Table 2: Comparison of copy instruction count with ABI constraints on all benches.

Comparison with renaming constraints Table 2 shows the variation in number of copy instructions of various SSA
rename back coalescing algorithms, with ABI renaming constraints. In this table, (U) corresponds to our algorithm i.e.
� renaming and ABI constraints treated together. (S+L) corresponds to Sreedhar followed by Leung, i.e.� renaming
optimization separated from the treatment of ABI constraints. (L) corresponds to Leung alone i.e. the� coalescing is
left to the repeated register coalescing (C). Finally, (B+A) corresponds to Briggs followed by a naive treatment of ABI
constraints i.e. all the coalescing is left to (C). Our algorithm performs better in all cases. In second position comes
the Sreedhar + Leung algorithm, i.e. phi and ABI optimized renaming performed separately. However, as already
mentioned, our modifications to Sreedhar’s algorithm do not handle ABI constraints correctly in all cases, resulting
in optimistic figures in our experiments. The results show the interest of treating ABI constraints and�-function
coalescing together.

Compilation time As explained in Section 3.5, our solution is better than a simple repeated register coalescing in
terms of time and space complexity because interference graph in SSA form is simplified (see [5] for more details).
Table 3 gives an evaluation of the number of copy instructions that would remain after the SSA rename back phase
if only naive techniques would be applied for the�-function replacement or ABI constraints. In addition, it gives an
evaluation of the cost of running a repeated register coalescer after one or the other simple SSA rename back phase. We
did not provide timing figures for the overall out-of-SSA and register coalescing phase for the different experiments

benches U S+A L
ABI PHI

VALcc1 277 +593 +690
VALcc2 245 +926 +749

example1-8 16 +38 +34
LAI Large 1447 +4543 +6161
SPECint 36882 +249481 +260095

Table 3: Order of magnitude.
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benches base depth opt pess
VALcc1 1109 +1 +4 +1484
VALcc2 877 +1 +8 +1716

example1-8 32 +0 +0 +4
LAI Large 17594 +60 +7 +22116
SPECint 1652065 -1798 +7258 +3038712

Table 4: Weighted count of move instructions on test versions.

because our implementation is too experimental and not optimized enough to give usable results. In this table, (S+A)
represents the number of move instructions introduced by a naive correction of ABI constraints, (L) the number of
move instructions introduced by a naive replacement of�-functions, all relatively to our algorithm (U).

Variations on our algorithm Table 4 compares small variations in the implementation of the algorithm. This table
reportsweighted move count, where move instructions are given a weight equal to� �, � being the nesting level, i.e.
depth, of the loop the move belongs to.

Our first variation (depth) is based on the simple remark that in our initial implementation we prioritized the� in-
structions according to their depth, instead of the depth of the move instructions they will generate. For this variation
we use a newCreate affinity graph procedure (Algorithm 12) with a depth constraint which callsProgram pinning
with decreasing depth. This results in a very short improvement on SPECint and a small worsening on LAILarge.
This result confirms the observation we made that affinity and interference graphs are not complex enough to moti-
vate a global optimization scheme. Our second (opt) and third (pess) variations use fuzzy definitions of interferences,
respectively optimistic (Algorithm 10) and pessimistic (Algorithm 11). It is interesting to note that optimistic inter-
ferences only incur a relatively small increase in number of move while reducing significantly the complexity of the
computation of the interference graph.

Algorithm 10 Optimistic definition of interferences

Variable kills optimistic(Variable �, Variable �)
let Node �: (Def �) � � � � �
let Node �: (Def �) � � � � �
if �� �� �� and (Def � dominates Def �) and

�� � liveout(Node �)�
return true �Case 1�

if � is defined as � � ���� � ��
 � � � 
 �� � ���
for � � � to �

if � is live out of �� and � �� ��
return true �Case 2�

return false

Algorithm 11 Pessimistic definition of interferences

Variable kills pessimistic(Variable �, Variable �)
let Node �: (Def �) � � � � �
let Node �: (Def �) � � � � �
if �� �� �� and (Def � dominates Def �) and

��� � livein(Node �)� or �Node � � Node ���
return true �Case 1�

if � is defined as � � ���� � ��
 � � � 
 �� � ���
for � � � to �

if � is live out of �� and � �� ��
return true �Case 2�

return false
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Algorithm 12 Construction of initial affinity graph with a depth constraint.

Create affinity graph(CFG Node current node,
Integer depth)

��
 � � � ��
 ��
for each � � ��	�
 � � � 
 	�� of current node
� � �

�
�Resource def����

for each 	 � �	�
 � � � 
 	��
let Node 	: 	 � � � �
if depth(Node 	)��depth

continue
� � �

�
�Resource def�	��

� � �Resource def���
Resource def�	��
if (� �� �) multiplicity(�)=0
� � �

�
���, multiplicity(�)++

return � � ��
 � �

6 Conclusion

This paper presents a pinning-based solution to the problem of variables coalescing during the out-of-SSA renaming
phase. We explain and demonstrate why considering the�-functions renaming and ABI constraints together results
in an improved coalescing of variables, thus reducing the number of copy instructions before instruction scheduling
and register allocation. Hence, we show the superiority of our approach both in terms of compile time and number of
copies compared to solutions composed of existing algorithms (Sreedhar, Leung, Briggs, repeated register coalescing).
These experiments also show that the affinity and interference graphs are usually pretty simple, which means that a
global optimization scheme would bring very little improvement over our local approach. Finally, we implemented
small variations of our algorithm and an interesting remark is that an optimistic implementation of interferences, using
live-range analysis, already provides good results while reducing significantly the complexity of the computation of the
interference graph. During this work we also improved slightly the mark and reconstruct phases of Leung’s algorithm
which we rely on. A refined version of this algorithm is provided in Appendix A.
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Appendix A: Limitations and refinement of Leung’s algorithm
Once pinning has been performed, our algorithm relies on Leung’smark andreconstruct algorithms to restore the

code into non-SSA form. Critical edges are subject to a particular treatment in Leung’s algorithm. But as illustrated
by Figure 13, the solution is not robust enough when dealing with aggressive pinning. The goal of this appendix is to
propose a clearest semantic for� functions, and to modify Leung’s algorithm accordingly.
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 ��%�
 	��

Original code SSA code with copies folded
�� are pinned to�

Leung’s solution to replace
�-functions is incorrect:

the inserted copy kills the previous
definition of�.
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Figure 13: The�-function replacement conflict problem

To begin with, let us consider a� definition� 	 	 � ��� � � �. The semantic used by Leung et al. is that this
definition is distributed over each predecessor of�. Hence, in a certain sense multiple definitions of� coexist and
therefore may conflict. Because conflicts for simple variables (not resources) are not taken into account in Leung’s
algorithm, the lost copy problem has a special treatment that corresponds to the lines below the“(*fix problem related
to critical edge*)”. Here, the copy��� 	� ���

�
�� � �� is incorrect (probably a typo) and it is difficult to fix to

obtain a correct and efficient code. Instead, that whenever the definition of	 is not pinned to any resource, we propose
to create a virtual resource	 and to pin this definition to it. This fix takes place in theCOLLECT procedure.

Another consequence of Leung’s� function semantic is that whenever	 has to be repaired, the repairing copies
are also distributed over each predecessors of�. Hence conflicts can occur and those repairing copies cannot be used
further� (which explains the need to introduce another repairing copy�). Because we found no a priori motivation
to do so, we propose to place the repairing copy of	 just after its definition instead. Hence, our new semantic of a
given� 	 	��� ���� 	 ��� � � � � �� 	 ��� (where	 is always pinned to a resource�) definition is the following:

� at the end of each block��, there is a new virtual instruction that defines no variable but that uses� ���.

� at the beginning of the block�, the� instruction contains no use arguments, but defines	� �.

� all the “virtual uses” of the end of each block have a parallel semantic i.e. are considered all together.

The consequence is a simplification of the code: whenever instructions of a block have to be traversed then� func-
tions definitions, normal instructions uses, normal instructions definitions and� functions uses (of each successors)
are considered consecutively.

The refined code is given below, modified code is written using the� sign.
Finally, we would like to outline the problem with dedicated register pinning. Indeed, we could find in Le-

ung’s collect phase the code “if 	 was renamed from some dedicated register � during SSA construction then
�� ! �"� �	� � �...”. As illustrated by Figure 14 copy-folding performed on dedicated register definition can lead
to an incorrect pinning. Because of its non local property, this inconsistency is not trivial to detect while doing the
optimization. Freezing optimizations when dealing with dedicated registers is a solution to this problem. On the other
hand the semantic is not necessarily strict enough to justify such a decision and pinning may be performed correctly
while being aware of this specific semantic. Hence because dedicated registers related pinning that is semantic aware
can be very complex, we have intentionally removed this part from the COLLECT procedure and delegated it to a
previous pinning phase.
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procedure COLLECT
initialize all entries of ���� ��� and ���� ��� to �
R := �
for b � basic blocks do

for i � �-functions in � do
let � 	 	 
 ���� � � � ���

� if ������ �����
 ��
� then let � be the dedicated register required
� else let� � 	

���� ��� �	� � �

R := R����
for i � non-�-functions in � do

let � 	 	� � � � 	� 
 ����� � � � ���
for � �� � to � do

if ������ �����
 �� then
let � be the dedicated register required
���� ��� �	� � �� �

R := R����
for � �� � to � do

if ������ �����
 �� then
let � be the dedicated register required
���� ��������� �� �

R := R����

procedure MARKINIT
for b � basic blocks do
for � � R do

�������� �� �
for r � R do

 ��������� �� �
�!������� �� �

for i � �-functions in block � do
let � 	 	 
 ���� � � � ���
if ���� ��� �	� � � 
� � then

�!������� �  ��������� � 	

�������� �� ��������� ���
for i � normal instructions in block � do

let � 	 	� � � � 	� 
 ����� � � � ���
for j := 1 to � do

if ���� ��������� � � 
� � then
 ��������� �� ��
�������� �� ��������� ���

for j := 1 to � do
if ���� ��� �	� � � � 
� � then

 ��������� �� 	�
�������� �� ��������� ���

� for b’ � ���������� do
� let � be the �th predecessor of ��

� for � � �-functions in �� do
� let � 	 ���� ��� �	�
�  ��������� � ��
� �������� �� ��������� ���

procedure MARK
MARKINIT()
for r � R do

������ ������� � �
������ �������� � �

for � � basic blocks do
for r � R do

�"�� ��� �� �"��������
for i � normal instructions in � do

let � 	 	� � � � 	� 
 ����� � � � ���
for j := 1 to � do USE��
 �
 ���
for j := 1 to � do DEFINE�	��

for b’ � ���������� do
let � be the �th predecessor of ��

for i � �-functions in �� do
let � 	 	 
 ��� � � �� � � ��
USE��
 �
 ���

��#�!������ �

�
� if $� !������ � � �� 

���%������ otherwise

procedure USE��
 �
 ��
�� � ��������� � �� ��

if ���� ��������� 
� � and �"�� ����� ���������� � � then
�� � ��������� � ����

return
if ���� ��� ��� 
� � and �"�� ����� ��� ���� 
� � then

if ������ ������� � � then
������ ������� := a new SSA name

������ �������� �� ������ �������� � ���
if ���� ��������� 
� � then

�"�� ����� ���������� �� �

procedure DEFINE���
if ���� ��� ��� 
� � then �"�� ����� ��� ���� �� �

�#����	�%	 �����
���

� if � is the entry
� if �&������� � � �� !#��
���
�
�������

��#�!�������if � � '
�� �!" ����

��#�!���#�������� otherwise
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procedure LOOKUP��
 ��
if ����#���� is empty then

if ���� ��� ��� 
� � then
return ���� ��� ���

else return �

else
let �	
 ������ � ��������#�����
if � � ����� then return 	

else if���� ��� ��� 
� � then return ���� ��� ���
else return �

procedure RENAME USE��
 �
 �
 �������
let 	 � LOOKUP��
 ��
let � � ���� ���������
if �� � ��������� then

rewrite the �th input operand of � to �

else if� 
� � then
������ �� ������� �� 
 	�
rewrite the �th input operand of � to �

else
rewrite the �th input operand of � to 	

return ������

procedure RENAME DEF��
 �
 	
 �������
let � � if ���� ��� �	� � � then 	 else���� ��� �	�
rewrite the �th output operand 	 to �

if ������ �����	� � ��� 
� � then
push ����
 ������ ������	�� onto ����#��	�
������ �� ������� ���� 
 ��

return ������

procedure RECONSTRUCT���
for i � �-functions in � do

let � 	 	 
 ���� � � � ���
� ��� � �
� ��� � �$%�&$ '$( ��
 �
 	
 ����
� insert parallel copies ��� after �

for i � normal instructions in � do
(* rewrite instructions *)
let � 	 	� � � � 	� 
 ����� � � � ���
��� �� �
for j := 1 to � do

��� �� �$%�&$ )*$��
 �
 �� 
 ����
insert parallel copies ��� before �

��� �� �
for j := 1 to � do

��� �� �$%�&$ '$( ��
 �
 	� 
 ����
insert parallel copies ��� after �

��� �� �
(* compute �-copies *)
for b’ � ���������� do

let � be the #th predecessor of ��

for i � �-functions in �� do
let � 	 	 
 ���� � � � �� � � � ���

� for j := 1 to � do
� ��� �� �$%�&$ )*$��
 �
 �� 
 ����
insert parallel copies ��� at the end of block �

for b’ � ���������� do
RECONSTRUCT����

Restore ����#��� to its state
at the beginning of this call
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Figure 14: Theparallel-copies conflict problem is generated by a too constrained pinning
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Appendix B: NP-completeness results
This appendix is devoted to the proof of LOCAL PINNING NP-completeness. Also, because this proof can be

extended to the global problem GLOBAL PINNING the corresponding proof is provided. Remark that the result is
valid with or without renaming constraints. For simplicity, proofs are made without renaming constraints.

We start with a few definitions.

Definition 1 (GLOBAL PINNING ) Consider a SSA program � containing no initial pinning and a set of � defini-
tions 
� � ������� � � � � ������. Let us denote by '�
( � �
�� � � � � 
��, ���(� � ������ � � � � ������, ���( ��
� ���(� and 
 � '�
( � ���(.

Find a partitioning of 
 into disjoint sets ��� � � � � �� such that

(CK):
�
���

Resource killed����� �
�

�����

Resource killed���� (no more killed variable)

(CS): �� � ) � ������ 	� � ��
� ��Variable stronglyInterfere(x,y) (no strong interference)

(CM): card

	


�
� �

�����

'�
( ����(�



� �

�
� �

�����

��
�



�
�
� is maximized

Definition 2 (LOCAL PINNING ) Consider a program � with some pinning already performed and a set of � defi-
nitions 
� � ������� � � � � ������ within the same block �. Let us denote by '�
( � �
�� � � � � 
��, ���(� �
������ � � � � ������, ���( �

�
����(�, 
 � '�
(����( and � the set of variables pinned to the same resource

than � � 
 . Find a partitioning of the set of resources 
 into disjoint sets ��� � � � � �� such that

�
���

Resource killed��� �
�

�����

Resource killed�
�

��� (no more killed variable)

�� � ) � ������ 	� �
��

��

��
��Variable stronglyInterfere(x,y) (no strong interference)

card

	


�
� �

�����

'�
( ����(�



� �

�
� �

�����

��
��

��
�
�
� is maximized

Theorem 1 GLOBAL PINNING is NP-complete in the size of � functions.

Proof of Theorem 1 We prove the theorem using the reduction to MAXIMUM -INDEPENDENT-SET. Hence, let us
consider a graph� � ����� where� � ���� � � � � ���. We aim to find a maximum independent set� � � � i.e.

�
card� � is maximum
for each���� ��� � � ��� ���� ��� �� �

Let us build the corresponding instance of GLOBAL PINNING :

� For all�� � V, consider a block�� which contains a definition of��

� For all ���� ��� � E consider

1. a definition��� in block��

2. a definition��� in block��

3. a block��� with predecessors�� and�� and containing the code
*�� 	 ��� � ���� 	 ��� ��� 	 ���
*�� 	 ��� � ����� 	 ��� �� 	 ���
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� A block�, with predecessors��� � � � � ��, which contains the instruction

 	 � � ���� 	 ��� � � � � �� 	 ���

For this program,

� there is an affinity between
 and all�� and for all���� ��� � � there are affinities between*�� and�� and
between*�� and���

� interferences are between all couple��� and��

Consider an optimal solution to GLOBAL PINNING with 
 the resource containing
 . First, we show by contra-
diction that
��� � � i.e. 
 � �
� is an independent set. Hence,suppose that�� �� ��� � 
���. Then, because
of condition (CK),��� �� �� � 
 . Otherwise the component���� � ��� 
� ��� would contain an interference���� � ���.
Identically��� �� �� � 
. Hence, consider the modified solution where� � is removed from
, �� � �*�� � ��� ����

and�*��� �� � ���� � �� . This solution is strictly better since it increases by two the objective function (CM). Which
contradicts the hypothesis that the solution is optimal.

Hence,
 � �
� is an independent set of�. Finally, because maximizing the cardinality of
 maximizes the
cardinality of kept affinity with
 , 
 � �
� is an Maximal Independent Set. �

[Initial Graph for]
[MAX -INDEPENDANT-SET]

[Corresponding affinities]
[and interferences] [independant set]

[� 
 ��� is an][Corresponding program for]
[GLOBAL -PINNING]

Affinity edge
Interference edge
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Figure 15: Example for the NP-completeness proof of GLOBAL PINNING

Theorem 2 LOCAL PINNING is NP-complete.

Proof of Theorem 2 The proof uses the same reduction than for GLOBAL PINNING : for a given graph� � �����
we consider the same program and suppose that blocks� �� have already been performed. Block� remains. At this
stage we have�� � �*�� � ��� ���� for all � and
 � �
�. Hence,���� ��� � � if and only if �� interfere with�� . So,
the optimal partitioning of�
� ��� � � � � ��� provides with
 � �
� an independent set for�. �

Remarks Remark that for the program of GLOBAL PINNING and LOCAL PINNING proofs, the solution provided
is strictly optimal in term of move coalescing3 optimization and move instruction4 minimization. This proves the
NP-completeness in the size of� functions for those two problems.

3The coalescing problem consist of coalescing a maximum number of move instructions already placed so that the remaining program is still
correct

4The move instruction minimization has more freedom than a simple coalescing since it can perform partial coalescing, code motion, etc.
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