DIRICHLET THEOREM FOR JACOBI-DUNKL EXPANSIONS
Frej Chouchene, Iness Haouala

To cite this version:
Frej Chouchene, Iness Haouala. DIRICHLET THEOREM FOR JACOBI-DUNKL EXPANSIONS. 2019. hal-02126595

HAL Id: hal-02126595
https://hal.archives-ouvertes.fr/hal-02126595
Submitted on 12 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The purpose of this paper is to study the pointwise convergence of the Jacobi-Dunkl series. Indeed, we recall some properties of the Jacobi-Dunkl coefficients. Then, we establish a Dirichlet type theorem for expansions in term of Jacobi-Dunkl polynomials.

1. Introduction

The Fourier series is named in honour of Jean-Baptiste Joseph Fourier (1768-1830) who introduced it for the purpose of solving the heat equation in a metal plate, publishing his initial results in [6], and pursuing his study in [7]. The question whether the Fourier series of a periodic function converges to a given function is well researched and an extensive literature exists on this subject. We mention here for example [9, 5, 12]. Indeed, mathematicians studied pointwise, absolute, uniform, quadratic convergences...

It is well known that many problems for partial differential equations are reduced to a power series expansion of the desired solution in terms of special functions or orthogonal polynomials. In particular, by using the properties of Jacobi polynomials ([15]), the Fourier-Jacobi series has been studied extensively by many authors and several results concerning the approximation of functions by partial sums of these series are proved (see e.g. [1, 11, 13, 14, 16, 17, 18]).

In this paper, we also discuss this subject. More precisely, we are interested in Jacobi-Dunkl expansions.

In [2], the author defined the Jacobi-Dunkl coefficients associated with Jacobi-Dunkl polynomials given by

\[
\psi_n^{(\alpha,\beta)}(\theta) := \begin{cases}
R_{\lvert n \rvert}^{(\alpha,\beta)}(\cos(2\theta)) + \frac{i\lambda_n^{(\alpha,\beta)}(\alpha,\beta)}{4(\alpha + 1)} \sin(2\theta) R_{\lvert n \rvert - 1}^{(\alpha + 1,\beta + 1)}(\cos(2\theta)) & \text{if } n \in \mathbb{Z} \setminus \{0\}, \\
1 & \text{if } n = 0,
\end{cases}
\]

(1)
where \(R_{m}^{(\alpha, \beta)}(x) \), \(m \in \mathbb{N} \), is the normalized Jacobi polynomial of degree \(m \) such that \(R_{m}^{(\alpha, \beta)}(1) = 1 \), and \(\lambda_{n}^{(\alpha, \beta)} \) is given by
\[
\lambda_{n}^{(\alpha, \beta)} := 2 \text{sgn}(n) \sqrt{|n|(n + \rho)}, \quad n \in \mathbb{Z},
\]
with
\[
\alpha \geq \beta \geq -\frac{1}{2}; \quad \alpha \neq -\frac{1}{2}, \quad \text{and} \quad \rho := \alpha + \beta + 1 > 0.
\]

In the second section, we will give some preliminaries concerning these polynomials. Then, we will see more properties of the Jacobi-Dunkl coefficients in the third section. In section 4, we state a theorem about Jacobi-Dunkl convergence in quadratic mean. Finally, we will focus on pointwise convergence. We establish a Dirichlet type theorem which generalizes the classical one, see [10]. The proof is based on the asymptotic behaviour of Jacobi and Jacobi-Dunkl polynomials studied in [3] and [4].

2. Preliminaries

In this section, we will recall some properties of Jacobi and Jacobi-Dunkl polynomials. We denote by
\[
(a)_{n} := \begin{cases}
 a(a + 1)\ldots(a + n - 1) & \text{if } n \in \mathbb{N} \setminus \{0\}, \\
 1 & \text{if } n = 0.
\end{cases}
\]

\((a)_{n}\) is called the Pochhammer symbol.

\(2F_1(a, b; c; z)\) is the Gauss hypergeometric function, given by
\[
\forall a, b \in \mathbb{C}, \forall c \in \mathbb{C} \setminus \mathbb{Z}, \forall z \in \mathbb{C}; \ |z| < 1, \quad 2F_1(a, b; c; z) := \sum_{n=0}^{+\infty} \frac{(a)_{n}(b)_{n}}{n!(c)_{n}}z^{n}.
\]

The Jacobi polynomials \(\varphi_{m}^{(\alpha, \beta)}(\theta) \), \(m \in \mathbb{N} \), \(\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \), are defined by
\[
\varphi_{m}^{(\alpha, \beta)}(\theta) := R_{m}^{(\alpha, \beta)}(\cos(2\theta)) = 2F_1(-m, m + \rho; \alpha + 1; (\sin \theta)^2).
\]

The Jacobi operator \(\Delta_{\alpha, \beta} \) defined on \(C^2 \left[0, \frac{\pi}{2} \right] \) is given by
\[
\Delta_{\alpha, \beta} := \frac{d^2}{d\theta^2} + \frac{A_{\alpha, \beta}'}{A_{\alpha, \beta}} \frac{d}{d\theta},
\]
where
\[
A_{\alpha, \beta}(\theta) := \begin{cases}
 2^{2\rho}(\sin |\theta|)^{2\alpha+1}(\cos \theta)^{2\beta+1} & \text{if } \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \setminus \{0\}, \\
 0 & \text{if } \theta = 0.
\end{cases}
\]

For all \(m \in \mathbb{N} \), \(\varphi_{m}^{(\alpha, \beta)} \) is the unique even \(C^\infty \)-solution on \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \) of the differential equation
\[
\begin{cases}
 \Delta_{\alpha, \beta} u = -\lambda_{m} u, \\
 u(0) = 1, \\
 u'(0) = 0.
\end{cases}
\]
The Jacobi-Dunkl operator $\Lambda_{\alpha,\beta}$ is defined by

$$\Lambda_{\alpha,\beta}f(\theta) := \frac{d}{d\theta}f(\theta) + \frac{A'_{\alpha,\beta}(\theta)}{A_{\alpha,\beta}(\theta)}f(\theta) - f(-\theta), \quad f \in C^1 \left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right),$$

with

$$\frac{A'_{\alpha,\beta}(\theta)}{A_{\alpha,\beta}(\theta)} = (2\alpha + 1) \cot \theta - (2\beta + 1) \tan \theta, \quad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}.$$

According to [2], the differential-difference equation

$$\Lambda_{\alpha,\beta}u(\theta) = i\lambda^{(\alpha,\beta)} u(\theta); \quad n \in \mathbb{Z}, u(0) = 1,$$

admits a unique C^∞-solution on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ given by (1), which is related to the Jacobi polynomial and to its derivative by

$$\psi_n^{(\alpha,\beta)}(\theta) := \begin{cases} \varphi_n^{(\alpha,\beta)}(\theta) - \frac{i}{\lambda^{(\alpha,\beta)}} \frac{d}{d\theta} \varphi_n^{(\alpha,\beta)}(\theta) & \text{if } n \in \mathbb{Z} \setminus \{0\}, \\ 1 & \text{if } n = 0, \end{cases}$$

and satisfies

$$\forall n \in \mathbb{Z}, \forall \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad |\psi_n^{(\alpha,\beta)}(\theta)| \leq 1.$$

For all $n, p \in \mathbb{Z}$, we have the following orthogonality property

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \psi_n^{(\alpha,\beta)}(\theta) \psi_p^{(\alpha,\beta)}(\theta) A_{\alpha,\beta}(\theta) d\theta = (h_n^{(\alpha,\beta)})^{-1} \delta_{n,p},$$

where

$$h_n^{(\alpha,\beta)} = \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left|\psi_n^{(\alpha,\beta)}(\theta)\right|^2 A_{\alpha,\beta}(\theta) d\theta\right)^{-1}$$

and

$$\forall n \in \mathbb{Z} \setminus \{0\}, \quad h_n^{(\alpha,\beta)} = \frac{(2|n| + \rho)\Gamma(\alpha + |n| + 1)\Gamma(\rho + |n|)}{2^{\rho+1} (\Gamma(\alpha + 1))^2 \Gamma(|n| + 1)\Gamma(\beta + |n| + 1)}.$$

Let $p \in [1, +\infty)$. We denote by

- $L^p_{\alpha,\beta} = L^p\left([\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], A_{\alpha,\beta}(\theta) d\theta\right)$: the space of measurable functions f on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that

$$\left\|f\right\|_{p,\alpha,\beta} = \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |f(\theta)|^p A_{\alpha,\beta}(\theta) d\theta\right)^{\frac{1}{p}} < +\infty \quad \text{if } 1 \leq p < +\infty,$$

$$\left\|f\right\|_{\infty,\alpha,\beta} = \text{ess sup}_{\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} |f(\theta)| < +\infty \quad \text{if } p = +\infty.$$

- $\tilde{L}^p_{\alpha,\beta} = L^p\left([0, \frac{\pi}{2}], A_{\alpha,\beta}(\theta) d\theta\right)$: the space of measurable functions g on $[0, \frac{\pi}{2}]$ such that

$$\left\|g\right\|_{p,\alpha,\beta} = \left(\int_{0}^{\frac{\pi}{2}} |g(\theta)|^p A_{\alpha,\beta}(\theta) d\theta\right)^{\frac{1}{p}} < +\infty \quad \text{if } 1 \leq p < +\infty,$$

$$\text{ess sup}_{\theta \in \left[0, \frac{\pi}{2}\right]} |g(\theta)| < +\infty \quad \text{if } p = +\infty.$$
The Jacobi coefficients (see [8]) of a function \(g \in \tilde{L}^1_{\alpha,\beta} \) are defined by

\[
\forall m \in \mathbb{N}, \quad \mathcal{F}_{\alpha,\beta}(g)(m) = \int_0^{\frac{\pi}{2}} g(\theta) \varphi_m^{(\alpha,\beta)}(\theta) A_{\alpha,\beta}(\theta) d\theta.
\]

The Jacobi-Dunkl coefficients (see [2]) of a function \(f \in L^1_{\alpha,\beta} \) are defined by

\[
\forall n \in \mathbb{Z}, \quad \mathcal{F}f(n) := \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} f(\theta) \overline{\psi_n^{(\alpha,\beta)}}(\theta) A_{\alpha,\beta}(\theta) d\theta,
\]

and satisfy

\[
\forall n \in \mathbb{Z}, \quad |\mathcal{F}f(n)| \leq \|f\|_{1,\alpha,\beta}.
\]

Now, we consider the analog of the Fourier series given by

\[
\sum_{n=-\infty}^{\infty} \mathcal{F}f(n) \psi_n^{(\alpha,\beta)}(\theta) h_n^{(\alpha,\beta)}, \quad \theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right].
\]

For \(n \in \mathbb{N} \), we denote its partial sum by

\[
S^f_n(\theta) := \sum_{k=-n}^{n} \mathcal{F}f(k) \psi_k^{(\alpha,\beta)}(\theta) h_k^{(\alpha,\beta)}, \quad \theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right].
\]

3. Jacobi-Dunkl coefficients

Let \(f \in L^1_{\alpha,\beta} \). We put for all \(k \in \mathbb{N} \),

\[
a_k(f) := \mathcal{F}f(k) + \mathcal{F}f(-k),
\]

and

\[
b_k(f) := \begin{cases}
-\frac{i}{\lambda_k^{(\alpha,\beta)}} [\mathcal{F}f(k) - \mathcal{F}f(-k)] & \text{if } k \in \mathbb{N} \setminus \{0\}, \\
0 & \text{if } k = 0.
\end{cases}
\]

Hence, by (2) we can write \(S^f_n(\theta) \), for \(n \in \mathbb{N} \setminus \{0\} \) and \(\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \), as

\[
S^f_n(\theta) = \frac{a_0(f)}{2} h_0^{(\alpha,\beta)} + \sum_{k=1}^{n} \left(a_k(f) \varphi_k^{(\alpha,\beta)}(\theta) + b_k(f) \frac{d}{d\theta} \varphi_k^{(\alpha,\beta)}(\theta) \right) h_k^{(\alpha,\beta)}.
\]

Remark 3.1.

For all \(k \in \mathbb{N} \), we have these relations:

(1) \(\mathcal{F}f(k) = \frac{a_k(f) + i\lambda_k^{(\alpha,\beta)} b_k(f)}{2} \).

(2) \(\mathcal{F}f(-k) = \frac{a_k(f) - i\lambda_k^{(\alpha,\beta)} b_k(f)}{2} \).

Proposition 3.2.

For all \(k \in \mathbb{N} \), we have the following integral representations:

(1) \(a_k(f) = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \varphi_k^{(\alpha,\beta)}(\theta) A_{\alpha,\beta}(\theta) d\theta \).
(2) \(b_k(f) = \frac{2}{(\lambda_k^{(\alpha,\beta)})^2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \frac{d}{d\theta} \phi_k^{(\alpha,\beta)}(\theta) A_{\alpha,\beta}(\theta) d\theta, \quad k \neq 0. \)

Proof.

(1) \(a_k(f) = \mathcal{F}f(k) + \mathcal{F}f(-k) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \left[\psi_k^{(\alpha,\beta)}(\theta) + \psi_{-k}^{(\alpha,\beta)}(\theta) \right] A_{\alpha,\beta}(\theta) d\theta. \)

Since we know that

\[
\psi_k^{(\alpha,\beta)}(\theta) + \psi_{-k}^{(\alpha,\beta)}(\theta) = 2 \Re \left(\psi_k^{(\alpha,\beta)}(\theta) \right) = 2 \varphi_k^{(\alpha,\beta)}(\theta),
\]

then, we obtain the result.

(2) \(b_k(f) = \frac{i}{\lambda_k^{(\alpha,\beta)}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \left[\psi_k^{(\alpha,\beta)}(\theta) - \psi_{-k}^{(\alpha,\beta)}(\theta) \right] A_{\alpha,\beta}(\theta) d\theta, \quad k \neq 0. \)

As we have

\[
\frac{\psi_k^{(\alpha,\beta)}(\theta)}{\psi_{-k}^{(\alpha,\beta)}(\theta)} = 2i \Im \left(\psi_k^{(\alpha,\beta)}(\theta) \right) = -\frac{2i}{\lambda_k^{(\alpha,\beta)}} \frac{d}{d\theta} \varphi_k^{(\alpha,\beta)}(\theta),
\]

then, we get the equality.

□

Remarks 3.3.

Let \(k \in \mathbb{N} \).

(1) If the function \(f \) is even, then

\[
b_k(f) = 0 \quad \text{and} \quad a_k(f) = 4 \int_{0}^{\frac{\pi}{2}} f(\theta) \varphi_k^{(\alpha,\beta)}(\theta) A_{\alpha,\beta}(\theta) d\theta.
\]

(2) If the function \(f \) is odd, then

\[
a_k(f) = 0 \quad \text{and} \quad b_k(f) = \frac{4}{(\lambda_k^{(\alpha,\beta)})^2} \int_{0}^{\frac{\pi}{2}} f(\theta) \frac{d}{d\theta} \varphi_k^{(\alpha,\beta)}(\theta) A_{\alpha,\beta}(\theta) d\theta, \quad k \neq 0.
\]

Proposition 3.4.

Let \(f \) be in \(L^1_{\alpha,\beta} \), a real-valued function. For all \(k \in \mathbb{N} \), we have these properties:

(1) \(\mathcal{F}f(-k) = \overline{\mathcal{F}f(k)}. \)

(2) \(a_k(f) = 2\Re (\mathcal{F}f(k)) \in \mathbb{R}. \)

(3) \(b_k(f) = \frac{2}{\lambda_k^{(\alpha,\beta)}} \Im (\mathcal{F}f(k)) \in \mathbb{R}, \quad k \neq 0. \)

Proof.

(1) \(\mathcal{F}f(-k) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \overline{\psi_{-k}^{(\alpha,\beta)}(\theta)} A_{\alpha,\beta}(\theta) d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \overline{\phi_k^{(\alpha,\beta)}(\theta)} A_{\alpha,\beta}(\theta) d\theta = \overline{\mathcal{F}f(k)}. \)
(2) \(a_k(f) = \mathcal{F}f(k) + \mathcal{F}f(-k) = \mathcal{F}f(k) + \overline{\mathcal{F}f(k)} = 2\Re(\mathcal{F}f(k)). \)

(3) For all \(k \in \mathbb{Z} \setminus \{0\} \), we have
\[
b_k(f) = \frac{i}{\lambda_k^{(\alpha,\beta)}} [\mathcal{F}f(-k) - \mathcal{F}f(k)] = \frac{i}{\lambda_k^{(\alpha,\beta)}} \left[\overline{\mathcal{F}f(k)} - \mathcal{F}f(k) \right] = \frac{2}{\lambda_k^{(\alpha,\beta)}} \Im(\mathcal{F}f(k)).
\]

\[
\square
\]

In the following parts, we will study for a suitable given function \(f \), the convergence of the series
\[
\sum_{n=-\infty}^{+\infty} \mathcal{F}f(n)\psi_n^{(\alpha,\beta)}(\theta)h_n^{(\alpha,\beta)}.
\]

4. CONVERGENCE IN QUADRATIC MEAN

Theorem 4.1. For all \(f \in L_{\alpha,\beta}^2 \), we have
\[
\lim_{n \to +\infty} \|S_n^f - f\|_{2,\alpha,\beta} = 0.
\]

Proof. Let \(f \in L_{\alpha,\beta}^2 \) and \(n \in \mathbb{N} \).
\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| S_n^f(\theta) - f(\theta) \right|^2 A_{\alpha,\beta}(\theta) d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (S_n^f(\theta) - f(\theta)) \overline{(S_n^f(\theta) - f(\theta))} A_{\alpha,\beta}(\theta) d\theta
\]
\[
= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |S_n^f(\theta)|^2 A_{\alpha,\beta}(\theta) d\theta - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} S_n^f(\theta)\overline{f(\theta)} A_{\alpha,\beta}(\theta) d\theta
\]
\[
- \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta)\overline{S_n^f(\theta)} A_{\alpha,\beta}(\theta) d\theta + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |f(\theta)|^2 A_{\alpha,\beta}(\theta) d\theta
\]
\[
:= I_1 + I_2 + I_3 + I_4.
\]

We have by the orthogonality property (3),
\[
I_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\sum_{k=-n}^{n} \mathcal{F}f(k)\psi_k^{(\alpha,\beta)}(\theta)h_k^{(\alpha,\beta)}(\theta) \right) \left(\sum_{p=-n}^{n} \mathcal{F}f(p)\psi_p^{(\alpha,\beta)}(\theta)h_p^{(\alpha,\beta)}(\theta) \right) A_{\alpha,\beta}(\theta) d\theta
\]
\[
= \sum_{k=-n}^{n} \sum_{p=-n}^{n} \left(\mathcal{F}f(k)\overline{\mathcal{F}f(p)}h_k^{(\alpha,\beta)}h_p^{(\alpha,\beta)} \right) \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \psi_k^{(\alpha,\beta)}(\theta)\overline{\psi_p^{(\alpha,\beta)}(\theta)} A_{\alpha,\beta}(\theta) d\theta \right)
\]
\[
= \sum_{k=-n}^{n} \sum_{p=-n}^{n} \mathcal{F}f(k)\overline{\mathcal{F}f(k)}h_k^{(\alpha,\beta)} \left(h_k^{(\alpha,\beta)} \right)^{-1} \delta_{k,p}
\]
\[
= \sum_{k=-n}^{n} |\mathcal{F}f(k)|^2 h_k^{(\alpha,\beta)}
\]
\[
= \sum_{k=-n}^{n} |\mathcal{F}f(k)|^2 h_k^{(\alpha,\beta)}.
\]
Furthermore

\[
I_2 = - \int_{-\pi/2}^{\pi/2} \left(\sum_{k=-n}^{n} \mathcal{F} f(k) \psi_k^{(\alpha,\beta)}(\theta) h_k^{(\alpha,\beta)}(\theta) \right) \overline{f(\theta)} A_{\alpha,\beta}(\theta) d\theta
\]

\[
= - \sum_{k=-n}^{n} \mathcal{F} f(k) h_k^{(\alpha,\beta)} \left(\int_{-\pi/2}^{\pi/2} f(\theta) \overline{\psi_k^{(\alpha,\beta)}(\theta)} A_{\alpha,\beta}(\theta) d\theta \right)
\]

\[
= - \sum_{k=-n}^{n} \mathcal{F} f(k) \overline{\mathcal{F} f(k)} h_k^{(\alpha,\beta)}
\]

\[
= - \sum_{k=-n}^{n} |\mathcal{F} f(k)|^2 h_k^{(\alpha,\beta)}
\]

\[
= - I_1.
\]

We also have

\[
I_3 = I_2 = I_2 = - I_1.
\]

Then

\[
\int_{-\pi/2}^{\pi/2} |S_n^f(\theta) - f(\theta)|^2 A_{\alpha,\beta}(\theta) d\theta = \|f\|_{2,\alpha,\beta} - \sum_{k=-n}^{n} |\mathcal{F} f(k)|^2 h_k^{(\alpha,\beta)}.
\]

By the Plancherel formula [2, Theorem 3.4], we obtain

\[
\lim_{n \to +\infty} \int_{-\pi/2}^{\pi/2} |S_n^f(\theta) - f(\theta)|^2 A_{\alpha,\beta}(\theta) d\theta = 0.
\]

\[\square\]

5. Dirichlet Type Convergence

Notation 5.1.

For all \(n \in \mathbb{N}, \theta, \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). We denote by

\[
D_n^{(\alpha,\beta)}(\theta, \phi) := \sum_{k=-n}^{n} \psi_k^{(\alpha,\beta)}(\theta) \overline{\psi_k^{(\alpha,\beta)}(\phi)} h_k^{(\alpha,\beta)}.
\]

\(D_n^{(\alpha,\beta)}(\theta, \phi)\) is the analog of the Dirichlet kernel associated with the Fourier series.

Proposition 5.2.

Let \(f \in L^1_{\alpha,\beta}, \ n \in \mathbb{N} \) and \(\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). We have

\[
S_n^f(\theta) = \int_{-\pi/2}^{\pi/2} f(\phi) D_n^{(\alpha,\beta)}(\theta, \phi) A_{\alpha,\beta}(\phi) d\phi.
\]
Proof.
\[S_n^{f}(\theta) = \sum_{k=-n}^{n} \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi) \overline{\psi_k^{(\alpha,\beta)}(\phi)} A_{\alpha,\beta}(\phi) d\phi \right) \psi_k^{(\alpha,\beta)}(\theta) h_k^{(\alpha,\beta)} \]
\[= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi) \left(\sum_{k=-n}^{n} \overline{\psi_k^{(\alpha,\beta)}(\phi)} \psi_k^{(\alpha,\beta)}(\theta) h_k^{(\alpha,\beta)} \right) A_{\alpha,\beta}(\phi) d\phi \]
\[= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi) D_n^{(\alpha,\beta)}(\theta, \phi) A_{\alpha,\beta}(\phi) d\phi. \]

\[\square \]

Proposition 5.3.
Let \(n \in \mathbb{N} \) and \(\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \). We have
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} D_n^{(\alpha,\beta)}(\theta, \phi) A_{\alpha,\beta}(\phi) d\phi = 1. \]

Proof.
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} D_n^{(\alpha,\beta)}(\theta, \phi) A_{\alpha,\beta}(\phi) d\phi = \sum_{k=-n}^{n} \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \overline{\psi_k^{(\alpha,\beta)}(\phi)} A_{\alpha,\beta}(\phi) d\phi \right) \psi_k^{(\alpha,\beta)}(\theta) h_k^{(\alpha,\beta)} . \]
As we know, by the orthogonality property (3), that
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \overline{\psi_k^{(\alpha,\beta)}(\phi)} A_{\alpha,\beta}(\phi) d\phi = \left(h_0^{(\alpha,\beta)} \right)^{-1} \delta_{0,k}, \]
then, we get
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} D_n^{(\alpha,\beta)}(\theta, \phi) A_{\alpha,\beta}(\phi) d\phi = \psi_0^{(\alpha,\beta)}(\theta) = 1. \]
\[\square \]

Proposition 5.4.

(1) \(\forall n \in \mathbb{N}, \forall \theta, \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] ; \theta \neq \pm \phi, \) we have
\[D_n^{(\alpha,\beta)}(\theta, \phi) = \frac{\Gamma(\alpha + n + 2) \Gamma(\rho + n + 1)}{2^{2n+n+1} \Gamma(\alpha + 1)^2 (2n + \rho + 1)n! \Gamma(\beta + n + 1)} \times \frac{1}{\cos(2\theta) - \cos(2\phi)} \times \left[\varphi_n^{(\alpha,\beta)}(\theta) \varphi_n^{(\alpha,\beta)}(\phi) - \varphi_n^{(\alpha,\beta)}(\theta) \varphi_n^{(\alpha,\beta)}(\phi) + \frac{\lambda_n^{(\alpha,\beta)} \lambda_n^{(\alpha,\beta)} (\alpha + n + 1)}{4(n + 1)(n + \rho)} \times \left(\mathfrak{R}\psi_n^{(\alpha,\beta)}(\theta) \mathfrak{R}\psi_n^{(\alpha,\beta)}(\phi) - \mathfrak{R}\psi_n^{(\alpha,\beta)}(\theta) \mathfrak{R}\psi_n^{(\alpha,\beta)}(\phi) \right) \right] , \]
with \(\mathfrak{R}\psi_n^{(\alpha,\beta)}(\theta) = \frac{\cos(\theta) - \cos(\phi)}{\sin(\theta) \sin(\phi)}. \)

(2) \(\forall n \in \mathbb{N}, \forall \theta, \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \) we have
\(D_n^{(\alpha,\beta)}(\theta, \phi) \in \mathbb{R}. \)
\((a) \ D_n^{(\alpha,\beta)}(\theta, \phi) \in \mathbb{R}. \)
\((b) \ D_n^{(\alpha,\beta)}(\theta, \theta) > 0. \)
(c) \(D_{n}^{(\alpha,\beta)}(\phi,\theta) = D_{n}^{(\alpha,\beta)}(\theta,\phi)\).

Proof.

(1) The case \(n = 0\) is obvious, and we have the result in [4, theorem 3.1], for \(n \in \mathbb{N} \setminus \{0\}\).

(2) (a) We deduce the result from (1), for \(\theta \neq \pm \phi\). We also have

\[
D_{n}^{(\alpha,\beta)}(\theta,\theta) = \sum_{k=-n}^{n} \left| \psi_{k}^{(\alpha,\beta)}(\theta) \right|^{2} h_{k}^{(\alpha,\beta)} \in \mathbb{R},
\]

and

\[
D_{n}^{(\alpha,\beta)}(\theta,-\theta) = \sum_{k=-n}^{n} \left(\psi_{k}^{(\alpha,\beta)}(\theta) \right)^{2} h_{k}^{(\alpha,\beta)}
= h_{0}^{(\alpha,\beta)} + \sum_{k=1}^{n} \left(\left(\psi_{k}^{(\alpha,\beta)}(\theta) \right)^{2} + \left(\overline{\psi}_{k}^{(\alpha,\beta)}(\theta) \right)^{2} \right) h_{k}^{(\alpha,\beta)}
= h_{0}^{(\alpha,\beta)} + 2 \Re \left(\sum_{k=1}^{n} \left(\psi_{k}^{(\alpha,\beta)}(\theta) \right)^{2} \right) \in \mathbb{R}.
\]

(b) \(D_{n}^{(\alpha,\beta)}(\theta,\theta) = h_{0}^{(\alpha,\beta)} + \sum_{k=-n,k \neq 0}^{n} \left| \psi_{k}^{(\alpha,\beta)}(\theta) \right|^{2} h_{k}^{(\alpha,\beta)} > 0\).

(c) \(D_{n}^{(\alpha,\beta)}(\phi,\theta) = \overline{D_{n}^{(\alpha,\beta)}(\theta,\phi)} = D_{n}^{(\alpha,\beta)}(\theta,\phi)\).

\[\square\]

Theorem 5.5.

Let \(f\) be a piecewise continuous function on \([-\pi/2,\pi/2]\) and \(\theta \in [-\pi/2,\pi/2] \setminus \{0\}\) such that

i) \(f(-\theta) = f(\theta)\),

ii) \(f\) is differentiable on \(\theta\) and \(-\theta\).

Then we have

\[
\lim_{n \to +\infty} S_{n}^{f}(\theta) = f(\theta).
\]

Proof.

Let \(n \in \mathbb{N}\) and \(\theta \in [-\pi/2,\pi/2] \setminus \{0\}\). By Proposition 5.3, we can write

\[
f(\theta) - S_{n}^{f}(\theta) = \int_{-\pi/2}^{\pi/2} [f(\theta) - f(\phi)] D_{n}^{(\alpha,\beta)}(\theta,\phi) A_{\alpha,\beta}(\phi) d\phi.
\]
From [4, Theorem 3.1], we have for all $\theta \neq \pm \phi$

$$f(\theta) - S_n^f(\theta) = \int_{-\pi/2}^{\pi/2} \frac{f(\theta) - f(\phi)}{\cos(2\theta) - \cos(2\phi)} \left[\varphi_n^{(\alpha,\beta)}(\theta) \varphi_n^{(\alpha,\beta)}(\phi) - \varphi_n^{(\alpha,\beta)}(\theta) \varphi_n^{(\alpha,\beta)}(\phi) \right] \lambda_n^{(\alpha,\beta)} \lambda_{n+1}^{(\alpha,\beta)} A_{\alpha,\beta}(\phi) d\phi,$$

where

$$I_n^{(\alpha,\beta)} := \frac{\Gamma(\alpha + n + 2) \Gamma(\rho + n + 1)}{2^{2\rho-1} (\Gamma(\alpha + 1))^2 (2n + \rho + 1)! \Gamma(\beta + n + 1)}.$$

For all $\phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \setminus \{\pm \theta\}$, we put

$$g_\theta(\phi) := \frac{f(\theta) - f(\phi)}{\cos(2\theta) - \cos(2\phi)}.$$

Since we have supposed that f is a piecewise continuous function on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, then g_θ is also piecewise continuous on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \setminus \{\pm \theta\}$.

Furthermore, we have

$$\lim_{\phi \to \theta} g_\theta(\phi) = -\frac{1}{2} \frac{1}{\sin(2\theta)} f'(\theta).$$

And from hypothese i) of our theorem, we deduce that

$$\lim_{\phi \to -\theta} g_\theta(\phi) = \frac{1}{2} \frac{1}{\sin(2\theta)} f'(-\theta).$$

Under the assumption ii) of the theorem, these limits exist and are finite.
We still call g_θ the extension of g_θ on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. Thus, $g_\theta \in L^2_{\alpha,\beta}$.

In the following, we denote by

$$\check{g}_\theta(\phi) := g_\theta(-\phi), \quad \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

$$\hat{g}_\theta^1 := (g_\theta)|_{[0, \frac{\pi}{2}]},$$

$$\hat{g}_\theta^2 := (g_\theta)|_{[-\frac{\pi}{2}, 0]},$$

$$\check{g}_\theta^2(\phi) := \check{g}_\theta(-\phi), \quad \phi \in \left[0, \frac{\pi}{2} \right].$$

Now, we write

$$f(\theta) - S_n^f(\theta) = I_1 + I_2 + I_3 + I_4,$$
where
\[I_1 := \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_\theta(\phi) \varphi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) \, d\phi, \]
\[I_2 := -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_\theta(\phi) \varphi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) \, d\phi, \]
\[I_3 := \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_\theta(\phi) \varphi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) \, d\phi, \]
\[I_4 := -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_\theta(\phi) \varphi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) \, d\phi. \]

Combining the fact that
\[I_n^{(\alpha,\beta)} \sim \frac{1}{2\pi (\Gamma(\alpha + 1))^2 n^{2\alpha+1}}, \]
and the result (35) of [3], we get
\[I_n^{(\alpha,\beta)} \varphi_{n+1}^{(\alpha,\beta)}(\theta) \sim \frac{\cos \left((2n + 2 + \rho)\theta - (2\alpha + 1)\pi \right)}{\sqrt{\pi} \Gamma(\alpha + 1) A_{\alpha-\frac{1}{4}, \beta-\frac{1}{4}}(\theta)}. \]

Moreover, we have
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_\theta(\phi) \varphi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) \, d\phi = \mathcal{F}_{\alpha,\beta} \left(g_\theta^1 + g_\theta^2 \right)(n). \]

From the Parseval formula for the Jacobi coefficients (see [2]), we obtain
\[\mathcal{F}_{\alpha,\beta} \left(g_\theta^1 + g_\theta^2 \right)(n) = o \left(n^{-(\alpha+\frac{1}{2})} \right). \]

Thus, \(\lim_{n \to +\infty} I_1 = 0. \)

We use the same proof as for \(I_1 \) to show that
\[\lim_{n \to +\infty} I_2 = \lim_{n \to +\infty} - \left[n^{\alpha+\frac{1}{2}} \frac{\cos \left((2n + \rho)\theta - (2\alpha + 1)\frac{\pi}{4} \right)}{\sqrt{\pi} \Gamma(\alpha + 1) A_{\alpha-\frac{1}{4}, \beta-\frac{1}{4}}(\theta)} \mathcal{F}_{\alpha,\beta} \left(g_\theta^1 + g_\theta^2 \right)(n + 1) \right] \]
\[= 0. \]

Otherwise, we have
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_\theta(\phi) \varphi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) \, d\phi = \frac{1}{2t} \mathcal{F} \left(g_\theta - g_\theta \right)(n). \]

By [2, corollary 3.5], we have
\[\mathcal{F} \left(g_\theta - g_\theta \right)(n) = o \left(n^{-(\alpha+\frac{1}{2})} \right). \]
Furthermore, we get, from [3, Theorem 4.7], that
\[
\Im \psi_{n+1}^{(\alpha,\beta)}(\theta) \sim 2^{2\rho} \Gamma(\alpha + 1) \frac{n^{-\frac{(\alpha+1)}{2}}}{A_{2\alpha-1}^{-1}(\theta)} \sin \left[(2n + 2 + \rho)|\theta| - (2\alpha + 1)\frac{\pi}{4} \right].
\]
Since we have
\[
\lim_{n \to +\infty} \frac{\lambda_n^{(\alpha,\beta)}\lambda_n^{(\alpha,\beta)}}{4(n+1)(n+\rho)} = 1,
\]
then, we get
\[
\lim_{n \to +\infty} I_3 = 0.
\]
We use the same reasons as for \(I_3\) to show that
\[
\lim_{n \to +\infty} I_4 = \lim_{n \to +\infty} -I_n^{(\alpha,\beta)} \frac{\lambda_n^{(\alpha,\beta)}\lambda_n^{(\alpha,\beta)}}{4(n+1)(n+\rho)} \Im \psi_n^{(\alpha,\beta)}(\theta) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g_{\theta}(\phi) \Im \psi_{n+1}^{(\alpha,\beta)}(\phi) A_{\alpha,\beta}(\phi) d\phi = 0.
\]
Hence, we obtain
\[
\lim_{n \to +\infty} \left[f(\theta) - S_n^f(\theta) \right] = \lim_{n \to +\infty} I_1 + I_2 + I_3 + I_4 = 0.
\]
Which achieves the proof.

References

E-mail address: frej.chouchene@essaths.u-sousse.tn
E-mail address: iness.haouala@yahoo.fr