J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, vol.26, pp.239-257, 1972.

R. Singh, A. Letai, and K. Sarosiek, Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins, Nat. Rev. Mol. Cell Biol, vol.20, pp.175-193, 2019.

M. O. Hengartner, R. E. Ellis, and H. R. Horvitz, Caenorhabditis elegans gene ced-9 protects cells from programmed cell death, Nature, vol.356, pp.494-499, 1992.

M. O. Hengartner and H. R. Horvitz, elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2, Cell, vol.76, pp.665-676, 1994.

J. Yuan and H. R. Horvitz, The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death, Development, vol.116, pp.309-320, 1992.

K. Schulze-osthoff, D. Ferrari, M. Los, S. Wesselborg, and M. E. Peter, Apoptosis signaling by death receptors, Eur. J. Biochem, vol.254, pp.439-459, 1998.

D. E. Bredesen, P. Mehlen, and S. Rabizadeh, Apoptosis and dependence receptors: a molecular basis for cellular addiction, Physiol. Rev, vol.84, pp.411-430, 2004.

J. E. Chipuk, L. Bouchier-hayes, and D. R. Green, Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario, Cell Death Differ, vol.13, pp.1396-1402, 2006.

P. E. Czabotar, G. Lessene, A. Strasser, and J. Adams, Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nat. Rev. Mol. Cell Biol, vol.15, pp.49-63, 2014.

D. R. Mcilwain, T. Berger, and T. W. Mak, Caspase functions in cell death and disease, Cold Spring Harb. Perspect. Biol, 2015.

L. Galluzzi, A. Lopez-soto, S. Kumar, and G. Kroemer, Caspases connect cell-death signaling to organismal homeostasis, Immunity, vol.44, pp.221-231, 2016.

A. Linkermann, B. R. Stockwell, S. Krautwald, and H. J. Anders, Regulated cell death and inflammation: an auto-amplification loop causes organ failure, Nat. Rev. Immunol, vol.14, pp.759-767, 2014.

T. Vanden-berghe, A. Linkermann, S. Jouan-lanhouet, H. Walczak, and P. Vandenabeele, Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol, vol.15, pp.135-147, 2014.

J. U. Schweichel and H. J. Merker, The morphology of various types of cell death in prenatal tissues, Teratology, vol.7, pp.253-266, 1973.

J. F. Kerr, Shrinkage necrosis: a distinct mode of cellular death, J. Pathol, vol.105, pp.13-20, 1971.

G. Kroemer, G. Marino, and B. Levine, Autophagy and the integrated stress response, Mol. Cell, vol.40, pp.280-293, 2010.
DOI : 10.1016/j.molcel.2010.09.023

URL : https://doi.org/10.1016/j.molcel.2010.09.023

Y. Liu, Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia, Proc. Natl Acad. Sci. USA, vol.110, pp.20364-20371, 2013.

J. Nassour, Autophagic cell death restricts chromosomal instability during replicative crisis, Nature, 2019.
DOI : 10.1038/s41586-019-0885-0

R. Weinlich, A. Oberst, H. M. Beere, and D. R. Green, Necroptosis in development, inflammation and disease, Nat. Rev. Mol. Cell Biol, vol.18, pp.127-136, 2017.
DOI : 10.1038/nrm.2016.149

G. Kroemer, Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.12, pp.1463-1467, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00407686

G. Kroemer, Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.16, pp.3-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407686

L. Galluzzi, Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.19, pp.107-120, 2012.

L. Galluzzi, Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ, vol.22, pp.58-73, 2015.

L. Galluzzi, Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.25, pp.486-541, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727577

M. Pasparakis and P. Vandenabeele, Necroptosis and its role in inflammation, Nature, vol.517, pp.311-320, 2015.
DOI : 10.1038/nature14191

C. A. Ray and D. J. Pickup, The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene, Virology, vol.217, pp.384-391, 1996.

S. M. Laster, J. G. Wood, and L. R. Gooding, Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis, J. Immunol, vol.141, pp.2629-2634, 1988.

N. Holler, Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule, Nat. Immunol, vol.1, pp.489-495, 2000.
DOI : 10.1038/82732

S. He, Y. Liang, F. Shao, and X. Wang, Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway, Proc. Natl Acad. Sci. USA, vol.108, 2011.
DOI : 10.1073/pnas.1116302108

URL : http://www.pnas.org/content/108/50/20054.full.pdf

J. W. Upton, W. J. Kaiser, and E. S. Mocarski, DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA, Cell Host. Microbe, vol.11, pp.290-297, 2012.
DOI : 10.1016/j.chom.2012.01.016

URL : https://doi.org/10.1016/j.chom.2012.01.016

S. N. Schock, Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway, Cell Death Differ, vol.24, pp.615-625, 2017.

M. Brault, T. M. Olsen, J. Martinez, D. B. Stetson, and A. Oberst, Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling, J. Immunol, vol.200, pp.2748-2756, 2018.
DOI : 10.4049/jimmunol.1701492

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893403

D. Chen, PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors, Proc. Natl Acad. Sci. USA, vol.115, pp.3930-3935, 2018.
DOI : 10.1073/pnas.1717190115

URL : https://www.pnas.org/content/pnas/115/15/3930.full.pdf

X. Wang, Z. He, H. Liu, S. Yousefi, and H. U. Simon, Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming, J. Immunol, vol.197, pp.4090-4100, 2016.
DOI : 10.4049/jimmunol.1600051

URL : http://www.jimmunol.org/content/jimmunol/197/10/4090.full.pdf

D. Vercammen, Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor, J. Exp. Med, vol.187, pp.1477-1485, 1998.

A. Degterev, Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat. Chem. Biol, vol.1, pp.112-119, 2005.

A. Degterev, Identification of RIP1 kinase as a specific cellular target of necrostatins, Nat. Chem. Biol, vol.4, pp.313-321, 2008.

D. W. Zhang, RIP3, an energy metabolism regulator that switches TNFinduced cell death from apoptosis to necrosis, Science, vol.325, pp.332-336, 2009.

S. He, Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha, Cell, vol.137, pp.1100-1111, 2009.

Y. S. Cho, Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation, Cell, vol.137, pp.1112-1123, 2009.

L. Sun, Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase, Cell, vol.148, pp.213-227, 2012.

J. Zhao, Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis, Proc. Natl Acad. Sci. USA, vol.109, pp.5322-5327, 2012.

M. Mompean, The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex, Cell, vol.173, p.1210, 2018.

J. Li, The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, vol.150, pp.339-350, 2012.

J. Seo, CHIP controls necroptosis through ubiquitylation-and lysosomedependent degradation of RIPK3, Nat. Cell Biol, vol.18, pp.291-302, 2016.

Y. Xie, Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma, Gastroenterology, vol.153, p.1425, 2017.

W. Chen, Ppm1b negatively regulates necroptosis through dephosphorylating Rip3, Nat. Cell Biol, vol.17, pp.434-444, 2015.

M. Onizawa, The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis, Nat. Immunol, vol.16, pp.618-627, 2015.

Z. Huang, RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice, Cell Host. Microbe, vol.17, pp.229-242, 2015.

R. J. Thapa, Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases, Proc. Natl Acad. Sci. USA, vol.110, pp.3109-3118, 2013.

N. Robinson, Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium, Nat. Immunol, vol.13, pp.954-962, 2012.

H. Wang, Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3, Mol. Cell, vol.54, pp.133-146, 2014.

Y. Dondelinger, MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates, Cell Rep, vol.7, pp.971-981, 2014.

J. M. Hildebrand, Activation of the pseudokinase MLKL unleashes the fourhelix bundle domain to induce membrane localization and necroptotic cell death, Proc. Natl Acad. Sci. USA, vol.111, pp.15072-15077, 2014.

J. M. Murphy, The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism, Immunity, vol.39, pp.443-453, 2013.

X. Chen, Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death, Cell Res, vol.24, pp.105-121, 2014.

X. M. Zhao, Hsp90 modulates the stability of MLKL and is required for TNFinduced necroptosis, Cell Death Dis, vol.7, p.2089, 2016.

D. Li, Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis, Cell Chem Biol, vol.23, pp.257-266, 2016.

A. V. Jacobsen, HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death, Cell Death Dis, vol.7, p.2051, 2016.

J. W. Bigenzahn, An inducible retroviral expression system for tandem affinity purification mass-spectrometry-based proteomics identifies mixed lineage kinase domain-like protein (MLKL) as an heat shock protein 90 (HSP90) client, Mol. Cell. Proteomics, vol.15, pp.1139-1150, 2016.

C. M. Dovey, MLKL requires the inositol phosphate code to execute necroptosis, Mol. Cell, vol.70, pp.936-948, 2018.

Y. N. Gong, ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences, Cell, vol.169, p.216, 2017.

S. Yoon, A. Kovalenko, K. Bogdanov, and D. Wallach, MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation, Immunity, vol.47, p.57, 2017.

T. Vanden-berghe, Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features, Cell Death Differ, vol.17, pp.922-930, 2010.

Z. Wang, H. Jiang, S. Chen, F. Du, and X. Wang, The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways, Cell, vol.148, pp.228-243, 2012.

Y. Zhang, RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome, Nat. Commun, vol.8, p.14329, 2017.

Z. Yang, RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis, Nat. Cell Biol, vol.20, pp.186-197, 2018.

Q. Remijsen, Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis, Cell Death Dis, vol.5, p.1004, 2014.

S. Yoon, K. Bogdanov, A. Kovalenko, and D. Wallach, Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it, Cell Death Differ, vol.23, pp.253-260, 2016.

K. Weber, R. Roelandt, I. Bruggeman, Y. Estornes, and P. Vandenabeele, Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis, Commun Biol, vol.1, p.6, 2018.

X. Wang, S. Yousefi, and H. U. Simon, Necroptosis and neutrophil-associated disorders, Cell Death Dis, vol.9, p.111, 2018.

K. Newton, Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis, Science, vol.343, pp.1357-1360, 2014.

K. E. Lawlor, RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL, Nat. Commun, vol.6, p.6282, 2015.

B. Shan, H. Pan, A. Najafov, and J. Yuan, Necroptosis in development and diseases, Genes Dev, vol.32, pp.327-340, 2018.

C. P. Dillon, B. Tummers, K. Baran, and D. R. Green, Developmental checkpoints guarded by regulated necrosis, Cell. Mol. Life Sci, vol.73, pp.2125-2136, 2016.

L. Galluzzi, O. Kepp, F. K. Chan, and G. Kroemer, Necroptosis: mechanisms and relevance to disease, Annu. Rev. Pathol, vol.12, pp.103-130, 2017.

T. Vanden-berghe, Passenger mutations confound interpretation of all genetically modified congenic mice, Immunity, vol.43, pp.200-209, 2015.

S. L. Fink and B. T. Cookson, Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Infect. Immun, vol.73, pp.1907-1916, 2005.

M. A. Brennan and B. T. Cookson, Salmonella induces macrophage death by caspase-1-dependent necrosis, Mol. Microbiol, vol.38, pp.31-40, 2000.

D. Hersh, The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1, Proc. Natl Acad. Sci. USA, vol.96, pp.2396-2401, 1999.

P. Broz and V. M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling, Nat. Rev. Immunol, vol.16, pp.407-420, 2016.

X. Chen, Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis, Cell Res, vol.26, pp.1007-1020, 2016.

J. K. Rathkey, Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis, Sci. Immunol, 2018.

Y. He, M. Y. Zeng, D. Yang, B. Motro, and G. Nunez, NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux, Nature, vol.530, pp.354-357, 2016.

T. Fernandes-alnemri, The AIM2 inflammasome is critical for innate immunity to Francisella tularensis, Nat. Immunol, vol.11, pp.385-393, 2010.

V. A. Rathinam, The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses, Nat. Immunol, vol.11, pp.395-402, 2010.

N. Kayagaki, Non-canonical inflammasome activation targets caspase-11, Nature, vol.479, pp.117-121, 2011.

J. Shi, Inflammatory caspases are innate immune receptors for intracellular LPS, Nature, vol.514, pp.187-192, 2014.

J. A. Hagar, D. A. Powell, Y. Aachoui, R. K. Ernst, and E. A. Miao, Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock, Science, vol.341, pp.1250-1253, 2013.

N. Kayagaki, Noncanonical inflammasome activation by intracellular LPS independent of TLR4, Science, vol.341, pp.1246-1249, 2013.

S. K. Vanaja, Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation, Cell, vol.165, pp.1106-1119, 2016.

M. Deng, The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis, Immunity, vol.49, pp.740-753, 2018.

V. A. Rathinam, TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria, Cell, vol.150, pp.606-619, 2012.

S. M. Man, IRGB10 Liberates Bacterial Ligands For Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes, Cell, vol.167, pp.382-396, 2016.

B. Lu, Novel role of PKR in inflammasome activation and HMGB1 release, Nature, vol.488, pp.670-674, 2012.

M. Xie, PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation, Nat. Commun, vol.7, p.13280, 2016.

L. Yang, PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis, Nat. Commun, vol.5, p.4436, 2014.

J. S. Moon, mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation, Cell Rep, vol.12, pp.102-115, 2015.

J. Ding, Pore-forming activity and structural autoinhibition of the gasdermin family, Nature, vol.535, pp.111-116, 2016.

X. Liu, Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores, Nature, vol.535, pp.153-158, 2016.

N. Kayagaki, Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling, Nature, vol.526, pp.666-671, 2015.

J. Shi, Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature, vol.526, pp.660-665, 2015.

W. T. He, Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion, Cell Res, vol.25, pp.1285-1298, 2015.

B. L. Lee, Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation, J. Exp. Med, vol.215, pp.2279-2288, 2018.

R. Kang, Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis, Cell Host. Microbe, vol.24, pp.97-108, 2018.

R. Chen, cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis, Sci. Adv, 2019.

S. Ruhl, ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation, Science, vol.362, pp.956-960, 2018.

P. Orning, Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death, Science, vol.362, pp.1064-1069, 2018.

J. Sarhan, Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection, Proc. Natl Acad. Sci. USA, vol.115, pp.10888-10897, 2018.

Y. Wang, Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin, Nature, vol.547, pp.99-103, 2017.

H. Kambara, Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death, Cell Rep, vol.22, pp.2924-2936, 2018.

G. Sollberger, Gasdermin D plays a vital role in the generation of neutrophil extracellular traps, Sci. Immunol, 2018.

K. W. Chen, Noncanonical inflammasome signaling elicits gasdermin Ddependent neutrophil extracellular traps, Sci. Immunol, 2018.

C. L. Evavold, The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages, Immunity, vol.48, pp.35-44, 2018.

N. M. De-vasconcelos, N. Van-opdenbosch, H. Van-gorp, E. Parthoens, and M. Lamkanfi, Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture, Cell Death Differ, 2018.

S. Dolma, S. L. Lessnick, W. C. Hahn, and B. R. Stockwell, Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells, Cancer Cell, vol.3, pp.285-296, 2003.

S. J. Dixon, Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell, vol.149, pp.1060-1072, 2012.

F. Angeli and J. P. , Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat. Cell Biol, vol.16, pp.1180-1191, 2014.

S. Neitemeier, BID links ferroptosis to mitochondrial cell death pathways, Redox Biol, vol.12, pp.558-570, 2017.

S. H. Hong, Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression, Oncotarget, vol.8, pp.115164-115178, 2017.

W. S. Yang, Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis, Proc. Natl Acad. Sci. USA, vol.113, pp.4966-4975, 2016.

H. Feng and B. R. Stockwell, Unsolved mysteries: how does lipid peroxidation cause ferroptosis?, PLoS Biol, vol.16, p.2006203, 2018.

M. Hayano, W. S. Yang, C. K. Corn, N. C. Pagano, and B. R. Stockwell, Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation, Cell Death Differ, vol.23, pp.270-278, 2016.

W. S. Yang, Regulation of ferroptotic cancer cell death by GPX4, Cell, vol.156, pp.317-331, 2014.

J. H. Woo, Elucidating compound mechanism of action by network perturbation analysis, Cell, vol.162, pp.441-451, 2015.

M. Weiwer, Development of small-molecule probes that selectively kill cells induced to express mutant RAS, Bioorg. Med. Chem. Lett, vol.22, pp.1822-1826, 2012.

J. Y. Cao and S. J. Dixon, Mechanisms of ferroptosis, Cell. Mol. Life Sci, vol.73, pp.2195-2209, 2016.

M. M. Gaschler, FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation, Nat. Chem. Biol, vol.14, pp.507-515, 2018.

B. Hassannia, Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma, J. Clin. Invest, vol.128, pp.3341-3355, 2018.

Q. Li, Inhibition of neuronal ferroptosis protects hemorrhagic brain, JCI Insight, vol.2, p.90777, 2017.

H. Yuan, X. Li, X. Zhang, R. Kang, and D. Tang, CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation, Biochem. Biophys. Res. Commun, vol.478, pp.838-844, 2016.

N. Yagoda, RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels, Nature, vol.447, pp.864-868, 2007.

M. Gao, Role of mitochondria in ferroptosis, Mol. Cell, vol.73, p.353, 2019.

Y. Xie, Ferroptosis: process and function, Cell Death Differ, vol.23, pp.369-379, 2016.
DOI : 10.1038/cdd.2015.158

URL : https://www.nature.com/articles/cdd2015158.pdf

A. Seiler, Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death, Cell Metab, vol.8, pp.237-248, 2008.

Q. Ran, Embryonic fibroblasts from Gpx4+/-mice: a novel model for studying the role of membrane peroxidation in biological processes. Free Radic, Biol. Med, vol.35, pp.1101-1109, 2003.

O. Canli, Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors, Blood, vol.127, pp.139-148, 2016.

W. S. Yang and B. R. Stockwell, Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells, Chem. Biol, vol.15, pp.234-245, 2008.

S. Doll, ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol, vol.13, pp.91-98, 2017.

V. E. Kagan, Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nat. Chem. Biol, vol.13, pp.81-90, 2017.

H. Yuan, X. Li, X. Zhang, R. Kang, and D. Tang, Identification of ACSL4 as a biomarker and contributor of ferroptosis, Biochem. Biophys. Res. Commun, vol.478, pp.1338-1343, 2016.

S. E. Wenzel, PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals, Cell, vol.171, p.626, 2017.

X. Sun, Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology, vol.63, pp.173-184, 2016.

X. Sun, HSPB1 as a novel regulator of ferroptotic cancer cell death, Oncogene, vol.34, pp.5617-5625, 2015.

S. Zhu, HSPA5 regulates ferroptotic cell death in cancer cells, Cancer Res, vol.77, pp.2064-2077, 2017.

M. Gao, P. Monian, N. Quadri, R. Ramasamy, and X. Jiang, Glutaminolysis and transferrin regulate ferroptosis, Mol. Cell, vol.59, pp.298-308, 2015.

X. Sun, Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis, Hepatology, vol.64, pp.488-500, 2016.

D. Chen, NRF2 is a major target of ARF in p53-independent tumor suppression, Mol. Cell, vol.68, pp.224-232, 2017.

L. C. Chang, Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis, Cancer Lett, vol.416, pp.124-137, 2018.

M. Y. Kwon, E. Park, S. J. Lee, and S. W. Chung, Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death, Oncotarget, vol.6, pp.24393-24403, 2015.

L. Jiang, Ferroptosis as a p53-mediated activity during tumour suppression, Nature, vol.520, pp.57-62, 2015.

Y. Zhang, BAP1 links metabolic regulation of ferroptosis to tumour suppression, Nat. Cell Biol, 2018.

Y. Xie, The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity, Cell Rep, vol.20, pp.1692-1704, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581142

A. Tarangelo, p53 suppresses metabolic stress-induced ferroptosis in cancer cells, Cell Rep, vol.22, pp.569-575, 2018.

R. Kang, G. Kroemer, and D. Tang, The tumor suppressor protein p53 and the ferroptosis network. Free Radic, Biol. Med, 2018.

M. Jennis, An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model, Genes Dev, vol.30, pp.918-930, 2016.

Z. Wu, Chaperone-mediated autophagy is involved in the execution of ferroptosis, Proc. Natl Acad. Sci. USA, vol.116, pp.2996-3005, 2019.

M. Gao, Ferroptosis is an autophagic cell death process, Cell Res, vol.26, pp.1021-1032, 2016.

W. Hou, Autophagy promotes ferroptosis by degradation of ferritin, Autophagy, vol.12, pp.1425-1428, 2016.

X. Song, AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity, Curr. Biol, vol.28, p.2385, 2018.

B. Zhou, Ferroptosis is a type of autophagy-dependent cell death, Sem. Cancer Biol. pii, pp.30006-30015, 2019.

Y. Bai, Lipid storage and lipophagy regulates ferroptosis, Biochem. Biophys. Res. Commun, vol.508, pp.997-1003, 2019.
DOI : 10.1016/j.bbrc.2018.12.039

R. Kang and D. Tang, Autophagy and ferroptosis -what's the connection?, Curr Pathobiol Rep, vol.5, pp.153-159, 2017.

B. R. Stockwell, Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease, Cell, vol.171, pp.273-285, 2017.

S. Tan, D. Schubert, and P. Maher, Oxytosis: a novel form of programmed cell death, Curr. Top. Med. Chem, vol.1, pp.497-506, 2001.

T. H. Murphy, A. T. Malouf, A. Sastre, R. L. Schnaar, and J. T. Coyle, Calciumdependent glutamate cytotoxicity in a neuronal cell line, Brain Res, vol.444, pp.325-332, 1988.

J. Lewerenz, G. Ates, A. Methner, M. Conrad, and P. Maher, Oxytosis/ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system, Front. Neurosci, vol.12, p.214, 2018.

K. K. David, S. A. Andrabi, T. M. Dawson, and V. L. Dawson, Parthanatos, a messenger of death, Front. Biosci. (Landmark Ed), vol.14, pp.1116-1128, 2009.

C. Delettre, AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer, J. Biol. Chem, vol.281, pp.6413-6427, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00186983

H. Wang, Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death, J. Neurosci, vol.24, pp.10963-10973, 2004.

D. W. Nicholson, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature, vol.376, pp.37-43, 1995.

M. Tewari, Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmAinhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell, vol.81, pp.801-809, 1995.

R. Wang, OGG1-initiated base excision repair exacerbates oxidative stressinduced parthanatos, Cell Death Dis, vol.9, p.628, 2018.

S. A. Andrabi, T. M. Dawson, and V. L. Dawson, Mitochondrial and nuclear cross talk in cell death: parthanatos, Ann. N. Y. Acad. Sci, vol.1147, pp.233-241, 2008.

S. A. Susin, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature, vol.397, pp.441-446, 1999.

S. W. Yu, Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor, Science, vol.297, pp.259-263, 2002.

Y. Wang, ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos), Sci. Signal, vol.4, p.20, 2011.

M. Mashimo, J. Kato, and J. Moss, ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress, Proc. Natl Acad. Sci. USA, vol.110, pp.18964-18969, 2013.

S. A. Andrabi, Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death, Nat. Med, vol.17, pp.692-699, 2011.

Y. Wang, A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1, 2016.

K. H. Jang, AIF-independent parthanatos in the pathogenesis of dry agerelated macular degeneration, Cell Death Dis, vol.8, p.2526, 2017.

J. M. Rodriguez-vargas, ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy, Cell Res, vol.22, pp.1181-1198, 2012.

X. Xu, The role of PARP activation in glutamate-induced necroptosis in HT-22 cells, Brain Res, vol.1343, pp.206-212, 2010.

M. Overholtzer, A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion, Cell, vol.131, pp.966-979, 2007.

J. C. Hamann, Entosis Is Induced by Glucose Starvation, Cell Rep, vol.20, pp.201-210, 2017.

J. Durgan, Mitosis can drive cell cannibalism through entosis, 2017.

M. Brouwer, L. De-ley, C. A. Feltkamp, J. Elema, and A. P. Jongsma, Serumdependent "cannibalism" and autodestruction in cultures of human small cell carcinoma of the lung, Cancer Res, vol.44, pp.2947-2951, 1984.

M. Krajcovic, A non-genetic route to aneuploidy in human cancers, Nat. Cell Biol, vol.13, pp.324-330, 2011.

J. Durgan and O. Florey, Cancer cell cannibalism: multiple triggers emerge for entosis, Biochim. Biophys. Acta Mol. Cell Res, vol.1865, pp.831-841, 2018.
DOI : 10.1016/j.bbamcr.2018.03.004

URL : https://doi.org/10.1016/j.bbamcr.2018.03.004

I. Martins, Entosis: the emerging face of non-cell-autonomous type IV programmed death, Biomed J, vol.40, pp.133-140, 2017.

M. Wang, Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression, Sci. Rep, vol.5, p.12223, 2015.

Q. Sun, E. S. Cibas, H. Huang, L. Hodgson, and M. Overholtzer, Induction of entosis by epithelial cadherin expression, Cell Res, vol.24, pp.1288-1298, 2014.

F. Sottile, F. Aulicino, I. Theka, and M. P. Cosma, Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis, Sci. Rep, vol.6, p.36863, 2016.

S. Wen, Z. Shang, S. Zhu, C. Chang, and Y. Niu, Androgen receptor enhances entosis, a non-apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells, Prostate, vol.73, pp.1306-1315, 2013.

Q. Sun, Competition between human cells by entosis, Cell Res, vol.24, pp.1299-1310, 2014.

Q. Wan, Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment, Mol. Biol. Cell, vol.23, pp.2076-2091, 2012.

P. Xia, Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction, J. Mol. Cell Biol, vol.6, pp.240-254, 2014.
DOI : 10.1093/jmcb/mju016

URL : https://academic.oup.com/jmcb/article-pdf/6/3/240/14098356/mju016.pdf

L. S. Hinojosa, M. Holst, C. Baarlink, and R. Grosse, MRTF transcription and Ezrindependent plasma membrane blebbing are required for entotic invasion, J. Cell. Biol, vol.216, pp.3087-3095, 2017.
DOI : 10.1083/jcb.201702010

URL : https://doi.org/10.1083/jcb.201702010

Y. Li, X. Sun, and S. K. Dey, Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation, Cell Rep, vol.11, pp.358-365, 2015.

B. L. Heckmann, E. Boada-romero, L. D. Cunha, J. Magne, and D. R. Green, LC3-associated phagocytosis and inflammation, J. Mol. Biol, vol.429, pp.3561-3576, 2017.
DOI : 10.1016/j.jmb.2017.08.012

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743439

V. Brinkmann, Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1535, 2004.
DOI : 10.1126/science.1092385

M. Arazna, M. P. Pruchniak, and U. Demkow, Reactive Oxygen Species, Granulocytes, and NETosis, Adv. Exp. Med. Biol, vol.836, pp.1-7, 2015.

N. M. Kazzaz, G. Sule, and J. S. Knight, Intercellular interactions as regulators of NETosis, Front. Immunol, vol.7, p.453, 2016.
DOI : 10.3389/fimmu.2016.00453

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2016.00453/pdf

Q. Remijsen, Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality, Cell Death Differ, vol.18, pp.581-588, 2011.
DOI : 10.1038/cdd.2011.1

URL : https://www.nature.com/articles/cdd20111.pdf

N. Branzk and V. Papayannopoulos, Molecular mechanisms regulating NETosis in infection and disease, Semin. Immunopathol, vol.35, pp.513-530, 2013.
DOI : 10.1007/s00281-013-0384-6

URL : https://link.springer.com/content/pdf/10.1007%2Fs00281-013-0384-6.pdf

J. Albrengues, Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice, 2018.
DOI : 10.1126/science.aao4227

P. Skendros, I. Mitroulis, and K. Ritis, Autophagy in neutrophils: from granulopoiesis to neutrophil extracellular traps, Front. Cell. Dev. Biol, vol.6, p.109, 2018.

Q. Remijsen, Neutrophil extracellular trap cell death requires both autophagy and superoxide generation, Cell Res, vol.21, pp.290-304, 2011.
DOI : 10.1038/cr.2010.150

URL : https://www.nature.com/articles/cr2010150.pdf

B. G. Yipp, Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo, Nat. Med, vol.18, pp.1386-1393, 2012.
DOI : 10.1038/nm.2847

URL : http://europepmc.org/articles/pmc4529131?pdf=render

P. Li, PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps, J. Exp. Med, vol.207, pp.1853-1862, 2010.
DOI : 10.1084/jem.20100239

URL : http://jem.rupress.org/content/207/9/1853.full.pdf

S. Hemmers, J. R. Teijaro, S. Arandjelovic, and K. A. Mowen, PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection, PLoS ONE, vol.6, p.22043, 2011.
DOI : 10.1371/journal.pone.0022043

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022043&type=printable

I. Mitroulis, Neutrophil extracellular trap formation is associated with IL1beta and autophagy-related signaling in gout, PLoS ONE, vol.6, p.29318, 2011.
DOI : 10.1371/journal.pone.0029318

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0029318&type=printable

E. Neubert, Chromatin swelling drives neutrophil extracellular trap release, Nat. Commun, vol.9, p.3767, 2018.
DOI : 10.1038/s41467-018-06263-5

URL : https://www.nature.com/articles/s41467-018-06263-5.pdf

K. Okubo, Lactoferrin suppresses neutrophil extracellular traps release in inflammation, EBioMedicine, vol.10, pp.204-215, 2016.
DOI : 10.1016/j.ebiom.2016.07.012

URL : https://doi.org/10.1016/j.ebiom.2016.07.012

S. Aits and M. Jaattela, Lysosomal cell death at a glance, J. Cell. Sci, vol.126, pp.1905-1912, 2013.
DOI : 10.1242/jcs.091181

URL : http://jcs.biologists.org/content/126/9/1905.full.pdf

J. Franko, M. Pomfy, and T. Prosbova, Apoptosis and cell death (mechanisms, pharmacology and promise for the future), Acta Medica, vol.43, pp.63-68, 2000.

G. Kroemer and M. Jaattela, Lysosomes and autophagy in cell death control, Nat. Rev. Cancer, vol.5, pp.886-897, 2005.

H. Gao, Ferroptosis is a lysosomal cell death process, Biochem. Biophys. Res. Commun, vol.503, pp.1550-1556, 2018.
DOI : 10.1016/j.bbrc.2018.07.078

U. Repnik, V. Stoka, V. Turk, and B. Turk, Lysosomes and lysosomal cathepsins in cell death, Biochim. Biophys. Acta, vol.1824, pp.22-33, 2012.

P. A. Kreuzaler, Stat3 controls lysosomal-mediated cell death in vivo, Nat. Cell Biol, vol.13, pp.303-309, 2011.

G. S. Wu, P. Saftig, C. Peters, and W. S. El-deiry, Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity, Oncogene, vol.16, pp.2177-2183, 1998.

N. Liu, NF-kappaB protects from the lysosomal pathway of cell death, EMBO J, vol.22, pp.5313-5322, 2003.

G. A. Colletti, Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis, J. Biol. Chem, vol.287, pp.8082-8091, 2012.

A. Terman and T. Kurz, Lysosomal iron, iron chelation, and cell death, Antioxid. Redox. Signal, vol.18, pp.888-898, 2013.
DOI : 10.1089/ars.2012.4885

S. Torii, An essential role for functional lysosomes in ferroptosis of cancer cells, Biochem. J, vol.473, pp.769-777, 2016.

F. M. Platt, B. Boland, and A. C. Van-der-spoel, The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction, J. Cell. Biol, vol.199, pp.723-734, 2012.

R. Gomez-sintes, M. D. Ledesma, and P. Boya, Lysosomal cell death mechanisms in aging, Ageing Res. Rev, vol.32, pp.150-168, 2016.

D. J. Klionsky, Autophagy: from phenomenology to molecular understanding in less than a decade, Nat. Rev. Mol. Cell Biol, vol.8, pp.931-937, 2007.

B. Levine and G. Kroemer, Biological functions of autophagy genes: a disease perspective, Cell, vol.176, pp.11-42, 2019.

I. Dikic and Z. Elazar, Mechanism and medical implications of mammalian autophagy, Nat. Rev. Mol. Cell Biol, vol.19, pp.349-364, 2018.
DOI : 10.1038/s41580-018-0003-4

Y. Liu and B. Levine, Autosis and autophagic cell death: the dark side of autophagy, Cell Death Differ, vol.22, pp.367-376, 2015.

S. Bialik, S. K. Dasari, and A. Kimchi, Autophagy-dependent cell death-where, how and why a cell eats itself to death, J. Cell. Sci, 2018.
DOI : 10.1242/jcs.215152

D. Denton and S. Kumar, Autophagy-dependent cell death, Cell Death Differ, 2018.
DOI : 10.1038/s41418-018-0252-y

URL : https://www.nature.com/articles/s41418-018-0252-y.pdf

J. Kriel and B. Loos, The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death, Cell Death Differ, 2019.

J. M. Gump, Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1, Nat. Cell Biol, vol.16, pp.47-54, 2014.

W. He, A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy, Oncogene, vol.33, pp.3004-3013, 2014.

L. Sousa, Effects of iron overload on the activity of Na,K-ATPase and lipid profile of the human erythrocyte membrane, PLoS ONE, vol.10, p.132852, 2015.

X. Song, JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice, Gastroenterology, vol.154, pp.1480-1493, 2018.

C. J. Zheng, L. L. Yang, J. Liu, and L. Zhong, JTC-801 exerts anti-proliferative effects in human osteosarcoma cells by inducing apoptosis, J. Recept. Signal. Transduct. Res, vol.38, pp.133-140, 2018.

J. M. Pochet, P. F. Laterre, M. Jadoul, and O. Devuyst, Metabolic alkalosis in the intensive care unit, Acta Clin. Belg, vol.56, pp.2-9, 2001.

C. Holze, Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway, Nat. Immunol, vol.19, pp.130-140, 2018.

Y. Saito, Turning point in apoptosis/necrosis induced by hydrogen peroxide, Free. Radic. Res, vol.40, pp.619-630, 2006.

I. Ingold, Selenium Utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis, Cell, vol.172, p.421, 2018.

N. Casares, Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, J. Exp. Med, vol.202, pp.1691-1701, 2005.

D. R. Green, T. Ferguson, L. Zitvogel, and G. Kroemer, Immunogenic and tolerogenic cell death, Nat. Rev. Immunol, vol.9, pp.353-363, 2009.

M. Obeid, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat. Med, vol.13, pp.54-61, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00451702

L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, and G. Kroemer, Immunogenic cell death in cancer and infectious disease, Nat. Rev. Immunol, vol.17, pp.97-111, 2017.

D. Tang, R. Kang, C. B. Coyne, H. J. Zeh, and M. T. Lotze, PAMPs and DAMPs: signal 0s that spur autophagy and immunity, Immunol. Rev, vol.249, pp.158-175, 2012.

W. Hou, Strange attractors: DAMPs and autophagy link tumor cell death and immunity, Cell Death Dis, vol.4, p.966, 2013.

N. Yatim, RIPK1 and NF-kappaB signaling in dying cells determines crosspriming of CD8(+) T cells, Science, vol.350, pp.328-334, 2015.

J. Ahn, T. Xia, A. Rabasa-capote, D. Betancourt, and G. N. Barber, Extrinsic Phagocyte-dependent STING signaling dictates the immunogenicity of dying cells, Cancer Cell, vol.33, pp.862-873, 2018.

Y. Ma, Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy, J. Exp. Med, vol.208, pp.491-503, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00576679

J. Ren, The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8(+) T cells, Cell. Mol. Immunol, vol.14, pp.639-642, 2017.

M. Michaud, Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice, Science, vol.334, pp.1573-1577, 2011.

E. Vacchelli, Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1, Science, vol.350, pp.972-978, 2015.

L. Apetoh, Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nat. Med, vol.13, pp.1050-1059, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00316924

M. Yang, TFAM is a novel mediator of immunogenic cancer cell death, Oncoimmunology, vol.7, p.1431086, 2018.

R. Kang, HMGB1 in health and disease, Mol. Aspects. Med, vol.40, pp.1-116, 2014.

H. Kazama, Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein, Immunity, vol.29, pp.21-32, 2008.

C. Li, PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism, Dev. Cell, vol.46, pp.441-455, 2018.

T. Ito, Proteolytic cleavage of high mobility group Box 1 protein by thrombin-thrombomodulin complexes, Arterioscler. Thromb. Vasc. Biol, vol.28, pp.1825-1830, 2008.

H. Yu, Role of high-mobility group Box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity, Infect. Immun, vol.78, pp.3288-3297, 2010.

Y. Yu, D. Tang, and R. Kang, Oxidative stress-mediated HMGB1 biology, Front. Physiol, vol.6, p.93, 2015.

J. S. Fridman and S. W. Lowe, Control of apoptosis by p53, Oncogene, vol.22, pp.9030-9040, 2003.

K. Fujiki, H. Inamura, T. Sugaya, and M. Matsuoka, Blockade of ALK4/5 signaling suppresses cadmium-and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms, Cell Death Differ, 2019.

X. Song, FANCD2 protects against bone marrow injury from ferroptosis, Biochem. Biophys. Res. Commun, vol.480, pp.443-449, 2016.
DOI : 10.1016/j.bbrc.2016.10.068

S. W. Alvarez, NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis, Nature, vol.551, pp.639-643, 2017.

C. W. Brown, J. J. Amante, H. L. Goel, and A. M. Mercurio, The alpha6beta4 integrin promotes resistance to ferroptosis, J. Cell. Biol, vol.216, pp.4287-4297, 2017.

T. Liu, L. Jiang, O. Tavana, and W. Gu, The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11, Cancer Res, 2019.

T. Yoneda, Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress, J. Biol. Chem, vol.276, pp.13935-13940, 2001.

M. Kalai, Regulation of the expression and processing of caspase-12, J. Cell. Biol, vol.162, pp.457-467, 2003.

P. Haberzettl and B. G. Hill, Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response, Redox Biol, vol.1, pp.56-64, 2013.

T. Barany, Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure, Oxid. Med. Cell Longev, p.1249614, 2017.

E. N. Palladino, L. A. Katunga, G. R. Kolar, and D. A. Ford, 2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation, J. Lipid Res, vol.59, pp.1424-1432, 2018.

R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, A role for mitochondria in NLRP3 inflammasome activation, Nature, vol.469, pp.221-225, 2011.

J. Silke, J. A. Rickard, and M. Gerlic, The diverse role of RIP kinases in necroptosis and inflammation, Nat. Immunol, vol.16, pp.689-697, 2015.

A. Polykratis, Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo, J. Immunol, vol.193, pp.1539-1543, 2014.

K. Newton, RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury, Cell Death Differ, vol.23, pp.1565-1576, 2016.

S. B. Berger, Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice, J. Immunol, vol.192, pp.5476-5480, 2014.

V. Kondylis, S. Kumari, K. Vlantis, and M. Pasparakis, The interplay of IKK, NFkappaB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation, Immunol. Rev, vol.277, pp.113-127, 2017.

Y. Dondelinger, M. Darding, M. J. Bertrand, and H. Walczak, Poly-ubiquitination in TNFR1-mediated necroptosis, Cell. Mol. Life Sci, vol.73, pp.2165-2176, 2016.

Y. Dondelinger, NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling, Mol. Cell, vol.60, pp.63-76, 2015.

M. B. Menon, p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection, Nat. Cell Biol, vol.19, pp.1248-1259, 2017.

Y. Dondelinger, MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death, Nat. Cell Biol, vol.19, pp.1237-1247, 2017.

I. Jaco, MK2 phosphorylates RIPK1 to prevent TNF-induced cell death, Mol. Cell, vol.66, p.695, 2017.

J. Geng, Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis, Nat. Commun, vol.8, p.359, 2017.

D. Xu, TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging, Cell, vol.174, p.1419, 2018.

K. W. Wegner, D. Saleh, and A. Degterev, Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis, Trends Pharmacol. Sci, vol.38, pp.202-225, 2017.

J. J. Choi, C. F. Reich, and D. S. Pisetsky, Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro, Scand. J. Immunol, vol.60, pp.159-166, 2004.

Q. Chen, L. Sun, and Z. J. Chen, Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing, Nat. Immunol, vol.17, pp.1142-1149, 2016.

C. K. Holm, Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses, Nat. Commun, vol.7, p.10680, 2016.

C. Franco and M. M. , Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation, J. Immunol, vol.200, pp.607-622, 2018.

V. R. Defilippis, D. Alvarado, T. Sali, S. Rothenburg, and K. Fruh, Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1, J. Virol, vol.84, pp.585-598, 2010.

Z. Zhang, The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells, Nat. Immunol, vol.12, pp.959-965, 2011.

T. Kondo, DNA damage sensor MRE11 recognizes cytosolic doublestranded DNA and induces type I interferon by regulating STING trafficking, Proc. Natl Acad. Sci. USA, vol.110, pp.2969-2974, 2013.

L. Unterholzner, IFI16 is an innate immune sensor for intracellular DNA, Nat. Immunol, vol.11, pp.997-1004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00582635

L. Zeng, ALK is a therapeutic target for lethal sepsis, Sci. Transl. Med, 2017.

G. N. Barber, STING: infection, inflammation and cancer, Nat. Rev. Immunol, vol.15, pp.760-770, 2015.

J. Ahn, S. Son, S. C. Oliveira, and G. N. Barber, STING-dependent signaling underlies IL-10 controlled inflammatory colitis, Cell Rep, vol.21, pp.3873-3884, 2017.

J. Ahn, D. Gutman, S. Saijo, and G. N. Barber, STING manifests self DNA-dependent inflammatory disease, Proc. Natl Acad. Sci. USA, vol.109, pp.19386-19391, 2012.

S. F. Bakhoum, Chromosomal instability drives metastasis through a cytosolic DNA response, Nature, vol.553, pp.467-472, 2018.

D. A. Sliter, Parkin and PINK1 mitigate STING-induced inflammation, Nature, vol.561, pp.258-262, 2018.

B. Larkin, Cutting edge: activation of STING in T cells induces type I IFN responses and cell death, J. Immunol, vol.199, pp.397-402, 2017.

M. F. Gulen, Signalling strength determines proapoptotic functions of STING, Nat. Commun, vol.8, p.427, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01623390

M. M. Gaidt, TheDNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3, Cell, vol.171, pp.1110-1124, 2017.

L. D. Cunha, LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance, 2018.

S. M. Man, R. Karki, and T. D. Kanneganti, AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity, Eur. J. Immunol, vol.46, pp.269-280, 2016.

J. E. Wilson, Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt, Nat. Med, vol.21, pp.906-913, 2015.

T. Kuriakose and T. D. Kanneganti, ZBP1: innate sensor regulating cell death and inflammation, Trends Immunol, vol.39, pp.123-134, 2018.