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of a specific area. Other solutions use embedded sensors
like mobile phones or GPS devices to locate vehicles. More
information such as status of traffic and alternative routes are
collected but at the cost of a strong system constraint since
every vehicle must be equipped with a localization device.

We now address the advantages and drawbacks of using
UAVs in the context of an RTM system. The first advantage
of UAV based RTM systems is that they allow the monitoring
of a larger area. UAVs can move from one area to another
[6]. The field of view is not limited to a given area just
like with RTM systems using sensors and cameras. Moreover,
UAVs can perform vehicle identification when equipped with
cameras and image processing capabilities, without the need
for embedded sensors within cars. UAVs can be deployed in
an area of interest at no additional cost for the infrastructure.
On the other hand, UAVs are limited by battery life and their
use causes privacy issues.

Two main UAV based RTM systems already exist. In the
first system, one or multiple UAVs are used to collect data
from multiple sensors placed on the roads [3] [7]. The idea is
that the UAV continually flies over ground sensors, establishes
a connection with them and then exchanges messages to gather
information. In [8], the UAV communicates only with the
clusters heads nodes. In the second system, only one UAV
is responsible for measuring target parameters. The UAV is
equipped with image processing capabilities that allow it to
observe and measure the relevant parameters about the vehicles
[9] [10]. In those two systems the UAV trajectory is predefined.

In this paper, we propose a UAV based RTM system
and address the issue of UAV trajectories. The purpose is
to show the advantages that could bring the use of multiple
UAVs to monitor the traffic within city roads. Since it is
not reasonable to address an exhaustive monitoring of all the
vehicles in the city area, and due to a limited number of
UAVs, we study the impact of mobile UAV trajectories on
the event detection rate and the number of controlled vehicles.
We generate UAVs trajectories to monitor as many vehicles as
possible for as long as possible. In the first proposal, UAVs
trajectories are computed according to the movement of the
vehicles. First, vehicles are grouped into clusters, and then the
UAV trajectories are computed following the centers of gravity
of these clusters. In the second proposal, UAVs trajectories are
generated according to a mobility model.

The rest of the paper is organized as follows. In Section II,
we present the context. In Section III, we analyze simulation
results. We conclude in Section IV.
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Abstract—Unmanned Aerial Vehicles (UAVs) are becoming an 
attractive solution for road traffic monitoring because of their 
mobility, low cost, and broad view range. Up to now, existing 
traffic monitoring systems based on UAVs only use one UAV 
with fixed trajectory to extract information about vehicles. In 
this paper, we propose a road traffic monitoring system using 
multiple UAVs. We develop a method to generate adaptive UAVs 
trajectories, which is based on the tracking of moving points in 
the UAV field of view. Also we generate UAVs trajectories using 
mobility models that are usually used to model vehicles mobility. 
UAVs monitor the traffic on a city road, they are responsible 
for collecting and sending, in real time, vehicle information to a 
traffic processing center for traffic regulation purposes. We show 
that the performance of our system is better than the performance 
of the fixed UAV trajectory traffic monitoring system in terms of 
coverage rates and events detection rates.

Keywords—Unmanned Areal Vehicles (UAVs), road traffic mon-
itoring, UAVs trajectories, events detection, estimation of events 
duration.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones, 
are used in an increasing number of civil and commercial ap-
plications. Among these applications, Road Traffic Monitoring 
(RTM) systems constitute a domain where the use of UAVs is 
receiving significant interest. This paper addresses the design 
of a UAV-based system for the management of road traffic 
within a city.

Several RTM systems already exist. Their activity is usually 
structured around two main tasks. The first one concerns the 
detection of events like car accidents and speeding. The second 
one focuses on traffic regulation purposes to avoid traffic 
congestion or traffic jams.

To implement these two tasks, RTM systems should first 
collect traffic data from deployed devices. Traffic data can 
consist of the number of vehicles in a specific area, the number 
of vehicles passing through a given point. Sophisticated data 
collection devices can further estimate the position, the speed 
of a vehicle. The data should then be transmitted to control 
centers to be processed. The collected data can automatically 
trigger emergency measures in case of a serious event (car 
accident, bank attack) [1][2][3], or it can be appended to 
previously collected data to compute traffic statistics [2][4]. 
Actions are then undertaken to manage the events or to regulate 
road traffic (read lights, traffic displays).

Several current systems collect traffic data through sensors 
and cameras [5]. These systems allow for the monitoring



II. A NEW ROAD TRAFFIC MONITORING TECHNIQUE

The goal here is to monitor vehicles moving on city roads.
These vehicles are considered as targets that need to be tracked.
To design a realistic UAV based system we need to select a
method to collect information about vehicles, we also need to
organize the deployment of UAVs over the coverage area, and
finally we must generate optimal UAVs trajectories to cover
as many targets as possible.

A. Collecting information about vehicles

Several parameters can be observed and measured accord-
ing to the devices that are deployed over the coverage area:
vehicle position, speed, and direction, the number of vehicles
within an area, the number of vehicles passing through a given
point (a gate, an intersection, a crossing). Specific events can
be detected through value changes of the above mentioned
parameters. For instance, speeding can be detected when the
speed of a vehicle exceeds a given limit. On the other hand,
traffic jams can be detected when the speed of several vehicles
falls below a given threshold.

In this paper, we consider multiple UAVs that are equipped
with image processing capabilities that allow them to observe
and measure the relevant parameters with perfect estimation.
We assume that the detection of targets in the FoV is always
possible, i.e., no obstacle is obstructing the UAV line of sight.
Also, we assume that UAVs can temporarily change their alti-
tude to prevent collisions, and that UAVs exchange information
about vehicles they are tracking (identifier, position).

B. Deploying UAVs over coverage areas

The major issue here is to evaluate the number of UAVs
that are needed to cover a city area, even if we consider a
static UAV allocation. Because it is not possible to deploy an
unlimited number of UAVs, a single UAV must be assigned
to a set of targets. A possible solution to reduce the number
of UAVs is to form target clusters and to assign a UAV to
each cluster. To constitute group of targets, we will use almost
the same technique as in sensor network or VANETs (Vehic-
ular Ad-Hoc Networks). To do so, the following parameters
can be used: distances between targets, target velocities, and
directions of movement. The distance criterion is a natural
criterion to constitute groups of targets. We are also interested
in constituting stable groups, i.e., groups whose constitution
will not significantly change from one assignment update to
another. In this context, the smaller the difference between the
group members velocity, the more stable the group will be.
The cluster will also be more stable if the members have the
same moving direction.

We propose an algorithm (Algorithm 1) to perform this
clustering step. We think about this step as an off-line step
that allows system operators to estimate the number of UAVs.
We first assume that the total number of targets is known, and
that all the targets are perfectly identified with the following
parameters: label, position, speed, direction of movement.
These parameters could have been measured by other means
and stored in a database. The algorithm inputs are presented in
TABLE I. In this paper, three criteria are selected to perform
the clustering: the distance between the central target and a

potential member of the group, the speed difference these two
targets, and their direction of movement. The first criterion
is mandatory to perform the clustering. The other two criteria
are optional, i.e., they can be used in conjunction with the first
criterion. We first choose a target that will be the central target
of the first group of targets. This target is randomly chosen.
All the N targets are numbered from 1 to N and a number is
drawn according to uniform distribution. Then we review all
the targets and we assign a target to the current group when
the target satisfy one or several conditions according to the
above mentioned criteria:

• the distance between the central target and the po-
tential member of the group is lower than a given
threshold, equal to the radius of the UAV’s FoV,
denoted r;

• the speed difference between the two targets is below
a given threshold, denoted Vd;

• the direction of movement of the central target is the
same as the one of the potential member.

At this point, we must remove all the selected targets so they
will not be considered in future steps. We go on choosing
another central target till all the targets are placed in a set of
targets.

TABLE I: Algorithm inputs

Tnb Targets numbers G Groups members

D Max distance value V Max speeds difference

Pt Target position Mt Target direction

Vt Target velocity compt Covered targets

Ttag Target tag Tid Target id

Cid Central target id Pc Central target position

Mc Central target direction Ctag Central target tag

Vc Central target speed

Algorithm 1: Uniform method

1 j = 1 ; compt = 0 ;
2 while compt < Tnb do
3 while Ctag(j) == 1 do
4 Pc(j) = Uniform (Pt) ;

5 Ctag(j) = 1 ; G(j, j) = Cid(j) ;
6 compt = compt+ 1 ;
7 for i = 1 to Tnb do
8 if (Ttag(i) == 0) & (i 6= j)
9 & (Mt(i) == Mc(j))

10 & |Vt(i)− Vc(j)| < V
11 & |Pt(i)− Pc(j)| < D then
12 G(j, i) = Tid(i) ;
13 compt = compt+ 1 ;
14 Ttag(i) = 1

15 j = j + 1

C. Designing UAVs trajectories

Now that we have an estimate of the number of UAVs, we
address the design of UAV trajectories. Three approaches were
studied and presented in Fig. 1.



For the existing method, the UAV trajectory is fixed, and
guided by predefined Points Of Interest (POI) [2] [11]. POIs
are points where there is high traffic (intersection for example).
A single UAV is used.

Our first proposal is based also on the concept of POIs and
the use of multiple cooperative UAVs. The multiple UAVs are
capable of of identifying the targets in their FoV and estimating
their positions and speeds, and exchange those information
between each other and with a central point. UAVs trajectories
are adaptive and POIs are mobile. This method is referred to
as the mobile POI method. In this method, the objective is
that every UAV keeps in its FoV the maximum number of
targets, and keeps tracking them as long as possible. Because
the trajectories of the UAV will depend on the motion of the
targets in their FoV, the mobiles POIs that will be followed
are the centers of gravity of targets groups. The center of
gravity Pg of a target group with members number nb, and
with positions Pgt is computed as follow:

Pg =

∑nb

k=1
Pgt(k)

nb

UAVs trajectories are calculated according to the motion of
the centers of gravity of their groups of targets, so that UAVs
always fly over those computed positions. The motion of the
center of gravity depends on the motion of targets within the
group, but the motion also depends on incoming and outgoing
targets within the FoV of the UAV. In this case, UAVs speed
is variable to adapt to the trajectories of the centers of gravity.
The constitution of the group may change over the time, and
the velocity of the members is the principal cause.

The second proposed approach relies on vehicular mobility
models, we call it Vehicular mobility based method. The
UAV trajectory is generated according to these models. In this
method we use also multiple UAVs to do the monitoring task.
We use the same mobility model as the one we used to simulate
target movements. The trajectories of UAVs are guided by
points randomly generated by the Shortest Path Map-Based
Movement model. So UAVs will move exactly above roads,
and do observation regarding the targets in their FoV. So with
this technique, the chance to observe targets and events is
higher. The speed interval is an essential attribute to define,
in fact the speed of UAVs must be close to the speed of the
targets to observe as long as possible targets. UAVs speeds are
uniformly distributed random variables.

III. SIMULATION RESULTS

In this section, we present the simulation tool, simulation
parameters, and simulation results.

A. Simulation tool

To compute event rates and event duration, the first alterna-
tive is to use real mobility traces of cars moving on city roads,
and the second alternative is to use a simulator to generate
car mobility traces based on real cities maps. For the real
traces we worked on dataset of mobility traces of taxi cabs
in Rome, Italy, and dataset of mobility traces of taxi cabs in
San Francisco, USA, provided by CRAWDAD [12], to evaluate
the performance of our contribution. Our methods are based

Fig. 1: Traffic monitoring techniques

on the clustering of targets and assignment of an UAV to a
group of target, but with those real traces it is not possible
to show the pertinence of our contribution, because taxi cabs
are very far from each other. So we decide to use instead a
simulator and generate mobility traces of a higher number of
vehicles.

We opted for the Opportunistic Network Environment
(ONE) simulator [13]. ONE is an opportunistic networking
evaluation tool that can integrate real-world maps. We use
the Shortest Path Map-Based Movement model (SPMBM) to
compute the path between two points on a map: a departure
point and an arrival point. Paths are computed according to
the Dijkstra’s shortest path algorithm. First, we fix the number
of cars on the map. We recall that the cars are the targets that
need to be tracked. Target positions are drawn according to a
uniform distribution, i.e., the abscissa x and the ordinate y of
a target are uniformly distributed random variables. The speed
of a target follows also a uniform distribution and the speed
remains constant over the simulation duration. Once the target
arrived to its designated arrival point, it waits for a random
amount of time before it moves on the another arrival point.

UAVs will be flying over the area, trying to collect as
much data as possible. We will evaluate the coverage rate of
the cars, the percentage of occurrence of the abnormal events
(congestion, and infractions), and the duration of detected
events.

B. Simulation parameters

We work on the Helsinki downtown area (4500m×3400m)
and we consider scenarios with 1000 targets spread out over
the area. Vehicle speeds are uniformly distributed in two
different intervals according to the simulation run. The interval
is [10m/s, 15m/s] when we estimate the requested UAVs



number, and the interval is [0, 15m/s] when we estimate
tracking parameters. The wait time when the targets arrived
to its destination is null. Other parameters are in Table II.

TABLE II: Simulation parameters

Parameters Value Parameters Value

Simulation time 1000 s Sampling interval 1 s

Maximal velocity of cars 15 m/s Minimal velocity of cars 10 m/s

Difference of velocity (Vd) 1 m/s Cars numbers 1000

UAVs altitude (A) 200 m Radius of the UAV’s FoV (r) 100 m

C. Number of requested UAVs

We implemented the clustering method presented in the
previous section. Three approaches are compared. The first one
relies on the distance criterion, the second one relies on two
criteria: the distance and the velocity. The third one also relies
on two criteria: the distance and the direction of movement.
Simulation results are presented Fig. 2.

Fig. 2: Number of UAVs

We observe that the number of requested UAVs converges
toward a stable value after a transient period of approximately
200s. The value is around 250 to cover the 1000 targets when
the clustering is performed using the distance criterion. This
number increases to 450 when the distance criterion is used
in conjunction with another criterion (velocity or direction
of movement). The two last approaches give higher values
because they are more restrictive to build the clusters. The
results provide an order of magnitude for the number of
requested UAVs.

With the first approach, around 250 UAVs is needed to
cover 1000 targets. The number of requested UAVs is too high
to allow for a realistic implementation of the RTM system, and
too high for the simulator. So we decide to reduce the number
of UAVs to use, so for sure as consequence the coverage rate
will decrease. We expect that 25 UAVs could cover 100 targets,
i.e., achieve a coverage rate of 10%. So we will do simulation
for a number of UAVs between 5 and 50 to check if the ratio
between the targets number and the UAVs number is linear. We
will as well compare the performance of existing monitoring
methods and proposed ones.

D. UAVs tracking methods

The number of cars is 1000 and they are moving according
to the Shortest Path Map-Based Movement. The velocity of

cars is between 0 and 15m/s, with no wait time. We did
simulation for different number of UAVs.

The proposed tracking methods are evaluated according to
the following parameters: the coverage rate, the detection rate
of speeding violations, the detection rate of speeding vehicles,
the average duration of the detected speeding violations, the
detection rate of congestion events, and the average duration
of the detected congestion events. That is how we evaluate the
parameters:

• Coverage rate: percentage of vehicles in the UAV’s
FoV.

• Detection rate of speeding violations: speeding vio-
lations are detected when vehicles velocities exceed
12m/s.

• Detection rate of speeding vehicles: speeding vehicles
are detected when their velocities exceed 12m/s.

• Average duration of the detected speeding violations.

• Detection rate of congestion events: congestion events
are detected when vehicles velocities are lower than
3m/s.

• Average duration of the detected congestion events.

The UAV trajectories are computed according to the three
approaches presented in the previous section. In the case
of the mobile POI method, and for the vehicular mobility-
based method, the speed of the UAVs is variable. The speeds
are uniformly distributed in the interval [0, 15m/s], and the
initial locations of the UAVs are uniformly distributed over
the coverage area.

• In the mobile POI method, the trajectory of a UAV is
defined by the center of gravity of its corresponding
group of targets.

• In the method based on a vehicular mobility model for
the UAVs, UAVs trajectories are generated according
to this mobility model.

• In the exiting method (Fixed POI method and Sta-
tionary Fixed POI method), at the beginning of the
simulation, all UAVs are located at the same fixed
starting point. Then they move to their respective
POIs. In the case of the Fixed POI method, UAVs
fly over the POIs according to a random waypoint
model over a delimited circular area whose center
is the POI and whose radius is 200m with a fixed
velocity (12m/s). In the case of the Stationary Fixed
POI method, UAVs are hovering over the POI (with a
null speed).

In this existing method only one UAV is used to monitor
all the fixed POI. But, in the Simulation, to be fair, the number
of UAVs will be equal to the number of POIs. We assume that
UAVs exchange information so collisions between UAVs are
avoided. We also assume that the collected information is sent
to a processing center using 4G connections.

The results of coverage rates, events detection rates, and
events duration of the three type of trajectories for different
number of UAVs are listed in Table III.



For the Fixed POI method with a random movement of
UAVs around the POIs, The detection rate of speeding vehicles
can go from 32%, with 5 POIs, to 80.87%, with 50 POIs.In
fact, when the number of POIs gets higher, an additional
number of cars will be observed. So the coverage rate will
be higher, and the detection rate of events will be higher.

The real average duration of the congestion events is
575.66sec and the real average duration of speeding violations
is 179.41sec. The average duration of detected congestion
events, goes from 94.16sec in the case of 5 POI, down to
74.29sec in the case of 50 POI. In deed, when the number
of POI increases the time spent by an UAV over a given area
decreases, so the observed duration of events will decrease and
will not be close to reality.

Like the Fixed POI method, in the Stationary Fixed POI
method, when the number of POIs gets higher, the coverage
rate will be higher as well as detection rate of events. For
50 POIs, when UAVs are stationary, the coverage rate is
16.31% while it is equal to 19.27% when the UAVs are
moving randomly around the 50 POIs. In fact, when UAVs are
flying exactly over the POIs (like fixed cameras), only cars in
the FoV of UAVs will be observed. This explains the lower
rates of coverage and detection events comparing to the fixed
POI method with a random movement of the UAVs. This is
confirmed for all the scenarios.

For example, for 50 UAVs, the average duration of the
detected congestion events, is equal to 109.02sec in the case
of Stationary Fixed POI method, and equal to 74.29sec in the
case of Fixed POI method. Actually, when UAVs are stationary,
slow vehicles will remain longer in the FoV of the UAVs, so
the average duration of the congestion events will be better
than for the case when the UAVs are randomly moving around
the POI. And fast vehicles will go out faster from the UAVs
FoV, so the average duration of the speeding violation will be
lower.

Our proposed methods exhibit better performance in terms
of coverage rate, event detection rates and event average
duration. The coverage rate is better (up to 28.62% in the
case of Mobile POI method with 50 UAVs). The detection
rate of speeding violation is better (up to 30.09% in the case
of Vehicular mobility based method with 50 UAVs). Also the
values of the events duration are the closest to the reality.
In deed, the proposed methods are based on mobile UAVs
trajectories, so a higher number of cars will be observed in
the trajectory of the UAVs. They are more suited to observe
the evolution of events in time since they are not based
on fixed points. Also, when the number of UAVs increases,
the performances are better because an additional number of
targets will be observed.

Also the average duration of the detected speeding violation
is better in the mobile methods than in the fixed methods
because in the mobile method the UAVs are more likely to
observe fast moving vehicle in their mobile trajectory.

The value of the average duration of the detected conges-
tion events in the Mobile POI methods is higher than in the
vehicular mobility based method (206.92sec for 50 UAVs).
This is due to the fact that in the Mobile POI method, the

UAVs are adapting their trajectory according to the center of
gravity of their groups of targets so they are more likely to
keep in their FoV a group of target much longer especially
those with more slow motion.

Proposed methods always perform better than the Fixed
methods. The reason is when trajectories are mobile and not
attached to fixed points more targets will be covered. Also,
we observe that for a small number of UAVs performance are
almost the same for all methods, but from 25 UAVs we observe
a notable amelioration in our methods.

The estimation that we did early was that 25 UAVs would
cover 10% of targets, but with our proposed methods the
coverage rate is around 17%. This confirms the pertinence of
our contribution.

IV. CONCLUSION

In this paper, we proposed methods to monitor the road
traffic using multiple cooperative UAVs. These methods have
two goals. The first one is to cover the largest number of
targets and the second one is to detect the highest number of
events to be monitored. The proposed methods are based on
mobile UAVs trajectories. In a first approach, the trajectories
are adapted by moving points which are the centers of gravity
of target groups in the UAVs’s FoV. In a second approach,
trajectories are generated by a mobility model.

To evaluate the performance of our methods, we compute
the coverage rate, the detection rate of speeding violations,
speeding vehicles, and congestion events, the average duration
of the detected congestion events, and detected speeding vi-
olations for a different number of UAVs. We observe better
performance regarding coverage and event detection compar-
ing to methods based on fixed trajectories.

In this paper, the detection of congestion events is based
on the detection of a single vehicle with a low speed. We can
improve the detection process by better characterizing a traffic
jam. Moreover, sharing information among UAVs could also
improve the detection rates. This is left for future work.
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TABLE III: The results of the existing tracking methods

(5 POI, 5 UAVs) / 1000 targets Stationary Fixed POI method Fixed POI method Mobile POI method Vehicular mobility based method

Coverage rate 3.01% 3.46% 4.32% 3.4%

Detection rate of speeding violations 2.88% 3.39% 3.98% 3.6%

Detection rate of speeding vehicles 30.31% 32% 45.11% 43.03%

Average duration of the detected speeding violations 17.18 sec 19.75 sec 18.14 sec 17.59 sec

Detection rate of congestion events 2.88% 3.11% 4.50% 3.39%

Average duration of the detected congestion events 118.62 sec 94.16 sec 88.62 sec 64.39 sec

(10 POI, 10 UAVs) / 1000 targets

Coverage rate 5.66% 6.11% 7,42% 7.07%

Detection rate of speeding violations 6.13% 5.91% 6,54% 7.38%

Detection rate of speeding vehicles 44.95% 46.84% 63,40 % 66.73%

Average duration of the detected speeding violations 16.71 sec 18.65 sec 20,75 sec 23.34 sec

Detection rate of congestion events 5.42% 5.36% 8,61% 5.91%

Average duration of the detected congestion events 115.55 sec 86.14 sec 111,56 sec 66.13 sec

(20 POI, 20 UAVs) / 1000 targets

Coverage rate 9.65% 10.63% 13.78% 12.45 %

Detection rate of speeding violations 8.99% 10.12% 12.95% 12.95%

Detection rate of speeding vehicles 58.83% 60.49% 82.12 % 82.53%

Average duration of the detected speeding violations 16.48 sec 17.43 sec 32.49 sec 33.51 sec

Detection rate of congestion events 9.52% 10.11% 14.83% 11.63%

Average duration of the detected congestion events 112.91 sec 79.27 sec 139.9 sec 100.54 sec

(25 POI, 25 UAVs) / 1000 targets

Coverage rate 11.46% 12.82% 17.39% 17.15 %

Detection rate of speeding violations 10.41% 11.72% 16.44% 18.18%

Detection rate of speeding vehicles 60.29% 62.16% 90.02 % 89.39%

Average duration of the detected speeding violations 16.24 sec 17.1 sec 37.67 sec 41.36 sec

Detection rate of congestion events 11.8% 12.81% 18.62% 15.42%

Average duration of the detected congestion events 114.96 sec 82.04 sec 152.9 sec 125.18 sec

(30 POI, 30 UAVs) / 1000 targets

Coverage rate 13.19% 15.34% 19.8% 19.36%

Detection rate of speeding violations 11.8% 13.97% 18.43% 20.75%

Detection rate of speeding vehicles 64.86% 69.02% 90.43% 90.02%

Average duration of the detected speeding violations 15.57 sec 16.59 sec 42.28 sec 47.42 sec

Detection rate of congestion events 13.83% 15.41% 20.17% 17.23%

Average duration of the detected congestion events 114.25 sec 80.99 sec 165.16 sec 138.20 sec

(40 POI, 40 UAVs) / 1000 targets

Coverage rate 14.98% 17.66% 25.81% 25.88%
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