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ABSTRACT: 
Non-invasive Brain-Computer Interfaces (BCIs) based 
on motor imagery (MI) tasks represent a valuable tool 
both from a societal and a clinical perspective. 
Nevertheless, performances vary inconsistently across 
subjects and the mechanisms underlying a successful 
skill acquisition is poorly understood. In this longitudinal 
study performed with the electroencephalography 
(EEG), we show that BCI training can be characterized 
by patterns that rely on the neurophysiology. We 
observed that the desynchronization effect increases 
significantly over the sessions within the a and b sub-
bands for subjects who showed a significant 
improvement of their BCI scores. Notably, we observed 
that they also presented a decrease of the functional 
connectivity in regions beyond those targeted during the 
BCI experiments, whereas the subjects who did not 
improve their performances did not show any significant 
change over sessions. Taken together, these results give 
additional insights about the skill acquisition process 
during MI-based BCI trainings.  
 
INTRODUCTION 
Non-invasive BCIs are largely used to produce thought-
provoked action, by exploiting the ability of subjects to 
voluntary modulate their brain activity through mental 
imagery. Despite its societal and clinical applications [1], 
[2], voluntarily modulating brain activity to control a BCI 
appears to be a learned skill [3], [4], based on the 
feedback presented to the user, and, in general, several 
weeks or even months may be needed to reach relatively 

high-performance (> 90 %) in BCI control [1],[15]. 
Furthermore, between 15 and 30 % of the users [6] face 
difficulties in controlling a BCI even after several 
training sessions, eliciting a high inter-subject variability. 
This point shows the difficulty to understand the key-
aspects, or subject-related patterns, of an efficient 
learning process in MI-based BCI more specifically.  
In previous studies, two main types of predictors of MI-
based BCI success have been elicited [7]. The first 
category corresponds to the behavioral or psychological 
predictors. Among them, kinesthetic imagination score, 
mental rotation ability, self-reliance, visuo-motor 
coordination and concentration have shown significant 
correlations with BCI scores [8]–[11]. The second 
category corresponds to the neurophysiological 
predictors. Most of them relied on resting state or pre-
stimulus recordings and are associated with power 
spectra. More specifically, these activations involve 
mainly sensorimotor areas (µ, low a and high q power 
[12], [13]) and the fronto-parietal axis (within the g band 
[14], [15]). 
However, while there is a large number of inter-subject 
comparisons, less longitudinal studies have been 
conducted and little is known about how the 
communication between brain areas may differ during 
the learning process and between subjects.  
In this work, we propose an original approach that aims 
at eliciting patterns that come from functional 
connectivity (FC) of successful learning process based on 
a longitudinal study performed with EEG. We 
hypothesize that the FC changes over the training, 



involving areas beyond those targeted during the BCI 
experiment, and that the associated properties present a 
specific pattern of learning efficiency.  
 
MATERIALS AND METHODS 
     BCI protocol and participants 
Twenty healthy subjects (aged 27.45 ± 4.01 years, 
12 men), right-handed and BCI-naïve, participated in the 
study. It consisted of a longitudinal EEG-based BCI 
training composed by four sessions (i.e. twice in a week 
for two weeks). None presented medical or psychological 
disorders. A written informed consent was obtained from 
subjects after explanation of the study, approved by the 
ethical committee CPP-IDF-VI of Paris. All participants 
received financial compensation at the end of their 
participation. The BCI task consisted of a standard 1D, 
two-target box task [16] in which, to control the vertical 
position of a cursor moving from the left to the right side 
of the screen,  the subjects modulated their brain activity. 
To hit the target-up, the subjects imagined a sustained 
movement of the right hand (MI condition) and they 
remained at rest to hit the target-down (Rest condition). 
Thus, the BCI scores are defined here as the proportion 
of hit targets.  Each session was composed by 6 runs of 
32 trials. Each trial lasted 7 s and consisted of a 1 s of 
inter-stimulus, followed by 2 s of target presentation, 3 s 
of feedback and 1 s of result presentation (Fig 1). At the 
beginning of each session, BCI features (EEG channels 
and frequency) were selected in a calibration phase in 
which the subjects were instructed to perform the BCI 
tasks without any visual feedback. We selected the 
features within the a-b band and localized within the 
motor area contralateral to the movement. The online 
classification was performed with a Linear Discriminant 
Analysis, suited for a two-class paradigm [17]. 
 

 
Fig 1 Experimental design. The different timescales 
(session, run, trial) are presented. 

Following the last inclusion, we selected two groups of 
five subjects each to elicit the most extreme profiles in 
terms of learning process. The selection was based on the 
difference in terms of BCI scores between the first and 
the last session. The five subjects who showed the best 
improvement in terms of BCI scores (aged 
27.40 ± 2.07 years, 4 men) were gathered within the 
Group 1 (G1). The five subjects who improved the less 
(aged 27.60 ± 3.36 years, 1 men) were gathered within 
the Group 2 (G2). 
 
 

     Materials 
EEG signals were collected with a 74-channel BrainAmp 
system (referenced to mastoids signals). Left and right 
electromyogram (EMG) signals were recorded to ensure 
that subjects were not moving their forearm while 
performing the tasks. Recordings were performed with a 
1 kHz frequency sampling and an offline filter applied 
between 0.1 and 300 Hz. BCI sessions were performed 
from EEG signals transmitted via the Fieldtrip buffer 
[18] to the BCI2000 toolbox [19]. 
After the fourth session, individual T1 scans were 
obtained by using a 3T Siemens Magnetom PRISMA. 
The experiment consists in a 15 minute-resting-state task 
to obtain an accurate head model for the source 
reconstruction.  
 
     EEG processing  
After having downsampled the signals to 250 Hz, we 
performed an Independent Components Analysis with 
the Infomax approach [20] using the Fieldtrip toolbox 
[18] to remove potential ocular and/or cardiac artifacts.  
Once the signals epoched and average referenced, we 
performed source reconstruction by computing the 
individual head model with the Boundary Element 
Method (BEM) [21], [22]. BEM surfaces resulted from 
three layers associated with the subject's MRI (scalp, 
inner skull, outer skull) with 1922 vertices each. The 
weighted Minimum Norm Estimate [23] method was 
used to estimate the sources via the Brainstorm toolbox 
[24]. Here, the identity matrix was defined as the noise 
covariance matrix. The minimum norm estimate 
corresponds in our case to the current density map. The 
regions of interest (ROIs) relied on the use of the 
Destrieux atlas [25]. 
To compute the power spectrum density of the signals at 
the source level, we used the Welch method with a 
window length of 1 s and a window overlap ratio of 50 % 
applied during the feedback period that ranges (from 
t = 3 s to t = 6 s) within the individual anatomical space. 
 
     Functional connectivity analysis 
Functional connectivity has already been shown to be a 
valuable tool in the BCI domain [26]–[28]. Here, we 
were particularly interested in eliciting patterns of 
successful learning that rely on FC. Thus, we used the 
imaginary coherence, weakly affected by volume 
conduction and spatial leakage [29], [30], between each 
pair of ROIs. In this study, we used a concise metric that 
could elicit highly connected hubs: the node strength, 
defined as the sum of the connectivity weights of the 
edges linked to each node i. 
 
     Metrics and statistical analysis: 
To take into account the subjects’ specificity, we defined 
our frequency bands according to the Individual Alpha 
Frequency (IAF) [31]. We restricted our study within the 
a-b frequency bands for two reasons. First, because it 
corresponds to the frequency bands targeted during the 
BCI experiments (i.e. modulated during motor imagery 
task). Secondly, because both a and b bands have been 
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Session 1 Session 3 Session 4Session 2

Training Testing

1 run

1 trial       
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shown to be involved in learning processes [32], [33]. 
Here, the IAF corresponds to the first peak comprised 
between 6 and 12 Hz. The a1 band ranges from 
IAF – 2 Hz to IAF, the a2 band from IAF to IAF + 2 Hz, 
b1 from IAF + 2 Hz to IAF + 11 Hz and b2 from 
IAF + 11 Hz to IAF + 20 Hz. 
We computed statistical differences among activations 
(i.e. power spectra) recorded in the MI and the rest 
conditions at the subject level via a paired t-test. Statistics 
were corrected for multiple comparisons using the cluster 
approach [24], [34], with a statistical threshold to 0.05, a 
minimum number of neighbors of 2 and a number of 
randomization of 500. Cluster-level statistics are 
obtained by using the sum of the t-values within every 
cluster. Besides the correction for multiple comparisons, 
this method avoids any spatial a priori about areas that 
show a significant desynchronization effect. 
To obtain a single value that takes into account the 
desynchronization effect, we worked with the relative 
power, ∆P, defined as follows: 

Δ𝑃 = 100	×	
𝑃() − 𝑃+,-.

𝑃+,-.
 

where PMI and PRest correspond, respectively to the 
averaged power calculated across the cluster from MI 
and Rest trials. Similarly, we computed the relative node 
strength ∆N as the relative difference in terms of node 
strength between the conditions. 
 
RESULTS 
     Behavioral performances 
G1 showed a significant improvement of the BCI scores 
(one-way ANOVA, F3,12 = 15.1, pFDR = 2.36x10-4) 
whereas the scores obtained by G2 did not show a session 
effect (F3,12 = 0.14, pFDR = 1) (Fig. 2A). These results 
enabled us to check that we did have two groups that 
strongly differed. Notably, this difference became 
prominent from session 3 (Fig. 2A).  
 
     Brain activation 
From the activation perspective, we observed a strong 

decrease of the relative power from session 3 for G1 (Fig. 
2B). Nevertheless, a significant session effect was 
observed only within the a2 band (one-way ANOVA, 
F3,12 = 5.16, pFDR = 0.02). ∆P did not present a session 
effect for G2 both in a2 and b1 frequency bands. Notably, 
this trend is similar to the one previously observed with 
behavioral performances (Fig. 2A). As expected, with the 
practice, the desynchronization effect will increase only 
within G1. This result is in line with [6] where subjects 
with poor performances show fewer significant features 
than the other subjects. 
 

 
Fig. 2 Trends over sessions obtained for G1 and G2. (A) 
BCI performances. (B) Evolution of the relative power 
(∆P) within the a2 band. *p < 0.05; **p < 0.05 (Mann-
Whitney test). 
 
     Brain connectivity  
A way to assess potential differences in terms of 
connectivity is to compare the relative node strength 
values, obtained during the fourth session when the 
behavioral results are the most discriminative between 
the two groups of subjects. First, as shown in Fig. 3 in 
absolute values, the ∆N values were larger within G1 
than within G2, meaning that there was a larger 
discrimination between conditions within G1 than within 
G2 from the FC perspective. Secondly, within G1, the 
strongest negative values of ∆N involved the pre-frontal, 
parietal and occipital areas (bilateral) whereas the 
strongest positive ones were located in pre-and 
postcentral gyri (bilateral) in a1 and a2. Thus, at the  

 
Fig. 3 Averaged relative node strength, obtained during the fourth session, across the subjects from respectively G1 and 
G2 within the a2 band.  
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Fig. 4 Evolution of the relative node strength, averaged across subjects from respectively G1 and G2, over the sessions. 
For each frequency band (i.e. column), we selected the 10 ROIs that discriminate the best the two groups during the last 
session. The only ROI that shows a significant session effect is the subcentral gyrus (central operculum) and sulci left 
within G1 and the b1 band (one-way ANOVA, F3,12 = 4.30, p = 0.03). 
 
end of a successful training, performing a MI task tends 
to engender a lower connectivity, with respect to the Rest 
task, within frontal, parietal and occipital areas and 
engenders higher connectivity in primary somatosensory 
cortex and primary motor cortex. 
To take into account the training effect, we studied the 
evolution of the node strength over the sessions by 
focusing our work on the ROIs that showed the highest 
difference between the groups (Fig. 4). Within the a1 and 
the a2 bands, most of the selected ROIs were located in 
areas involved in visual perception; in the retinotopic 
representation of the peripheral visual field (posterior 
transverse collateral sulcus), the visual attention 
(intraparietal sulcus and transverse parietal sulci), the 
peripheral vision (anterior transverse collateral sulcus) 
and preparation of the movement (inferior occipital gyrus 
and sulcus). Within G1, the ∆N values tended to decrease 
with the training whereas they were stable (or increased 
in the case of the a2 band) within G2. The trends tended 
to be similar to those obtained with ∆P.  

Notably within the b1 band, the selected ROIs are known 
to be involved in the preparation of the movement 
(inferior occipital gyrus and sulcus), and in working 
memory (superior frontal gyrus, superior frontal sulcus). 
Among the selected ROIs some of them belong to the 
salience network (middle-anterior part of the cingulate 
gyrus and sulcus), or to the sensorimotor network 
(subcentral gyrus and sulci, inferior part of the precentral 
sulcus). Once again, within G1, the FC tended to decrease 
over the sessions whereas they are stable within G2.  
 
DISCUSSION & CONCLUSION 
Understanding the variations of BCI performances 
between subjects is crucial to improve the reliability of 
BCI systems. To reduce the inter-subject variations in 
terms of BCI performances, different approaches have 
been described, going from the improvement of feature 
extraction [35]  and of the classification algorithm [36] to 
the adaptation to the user’s profile [8]. Another element 
could be the combination of different modalities to take 
advantage of their complementarity in terms of 
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sensitivity towards noise for instance. The present study 
relies on EEG signals only. Nevertheless, it has been 
previously shown that combining for instance EEG and 
magnetoencephalography could strongly improve the 
classification accuracy [37]. 
From the subject-based perspective, one approach 
consists of identifying factors that can influence BCI 
scores to adapt the training to the subject’s profile [7]. If 
psychological and power-based predictors have been 
elicited [7], functional connectivity has been less 
considered so far whereas it has been proved to provide 
reliable monitoring of cognitive function such as working 
memory for instance [38] and to be used as alternative 
features [35]. In a previous study, we demonstrated that 
neurophysiological and FC information could be used as 
predictors of BCI performances [39]. Here, we focused 
our study on the changes at the neurophysiological level 
associated with a successful learning process. For that 
purpose, we used simple metrics to elicit FC behavior 
from longitudinal study. Our results suggest that an 
efficient training is accompanied by a decrease of the FC. 
Notably, as expected, this phenomenon affects areas 
involved in the sensorimotor network but also areas 
involved in the movement preparation and the working 
memory, especially within the b1 band. In the case of 
subjects who showed the weakest improvement, the 
relative node strength tends to remain stable or to 
increase within these areas. Nevertheless, we 
acknowledge that increasing the number of sessions and 
the number of subjects would enable to get a more 
reliable idea of the neural mechanisms underlying the 
learning process, in terms of potential re-organization of 
the brain network but also in terms of learning speed. 
Previous studies reported a lack of learning metric in 
sensorimotor rhythm-based BCI [3] and therefore, a lack 
of evidence of learning. Here, common trends between 
BCI scores, relative power and FC can be elicited. 
Indeed, in the case of G1, after the session 2, BCI scores 
start to increase significantly, accompanied by an 
increase of the desynchronization effect and a decrease 
of the node strength within the a1, the a2, and the b1 
bands. In the case of G2, none of the tested metric 
showed a session effect. Thus, combining power-based 
and FC markers, which rely on separability of brain 
features, to identify learning metrics based on 
neurophysiological information and not only on the BCI 
accuracy could be a tool to better assess individual 
learning.  
 
In this study, by using metrics based on FC we could 
elicit specific patterns that involve regions beyond the 
sensorimotor areas, mainly characterized by a decrease 
of the node strength over a successful training. Further 
experiments and analysis relying on more sophisticated 
methods, based notably on graph theory, will certainly 
help to consolidate this result, and to understand the 
mechanisms underlying the learning process. 
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